@incollection{AST_1987__154-155__73_0, author = {Allard, William K.}, title = {Notes on the theory of varifolds}, booktitle = {Th\'eorie des vari\'et\'es minimales et applications}, author = {Collectif}, series = {Ast\'erisque}, publisher = {Soci\'et\'e math\'ematique de France}, number = {154-155}, year = {1987}, zbl = {0635.53035}, mrnumber = {955060}, language = {en}, url = {archive.numdam.org/item/AST_1987__154-155__73_0/} }
Allard, William K. Notes on the theory of varifolds, dans Théorie des variétés minimales et applications, Astérisque, no. 154-155 (1987), 21 p. http://archive.numdam.org/item/AST_1987__154-155__73_0/
[1] On the first variation of a varifold, Ann. Math. 95 (1972), 417-491. | Article | MR 307015 | Zbl 0252.49028
,[2] On the first variation of area and generalized mean curvature, C.I.M.E. notes, Edizioni Cremonese, Roma, 1973. | MR 420404 | Zbl 0289.49043
,[3] An a priori estimate for the oscillation of the normal to a hypersurface whose first and second variation with respect to a parametric elliptic integrand is controlled, Inventiones Math. 73 (1983), 287-321. | Article | EuDML 143048 | MR 714094 | Zbl 0526.49028
,[4] An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrand is controlled, Proc. Symp. Pure Mathematics, Volume 44, Amer. Math. Soc. Providence (1986) 1-28. | Article | MR 840267 | Zbl 0609.49028
,[5] On the structure of one-dimensional varifolds with positive density, Inventiones Math. 34 (1976), 83-97. | Article | EuDML 142389 | MR 425741 | Zbl 0339.49020
and ,[6] Geometric measure theory, Springer-Verlag, New-York, 1969. | MR 257325 | Zbl 0874.49001
,[7] Solution of the Plateau problem for -dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1-92. | Article | MR 114145 | Zbl 0099.08503
,