The packing measure of the graph of a stable process
Colloque Paul Lévy sur les processus stochastiques, Astérisque, no. 157-158 (1988), pp. 341-362.
@incollection{AST_1988__157-158__341_0,
     author = {Rezakhanlou, Fraydoun and Taylor, S. James},
     title = {The packing measure of the graph of a stable process},
     booktitle = {Colloque Paul L\'evy sur les processus stochastiques},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {157-158},
     year = {1988},
     zbl = {0677.60082},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1988__157-158__341_0/}
}
TY  - CHAP
AU  - Rezakhanlou, Fraydoun
AU  - Taylor, S. James
TI  - The packing measure of the graph of a stable process
BT  - Colloque Paul Lévy sur les processus stochastiques
AU  - Collectif
T3  - Astérisque
PY  - 1988
DA  - 1988///
IS  - 157-158
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1988__157-158__341_0/
UR  - https://zbmath.org/?q=an%3A0677.60082
LA  - en
ID  - AST_1988__157-158__341_0
ER  - 
%0 Book Section
%A Rezakhanlou, Fraydoun
%A Taylor, S. James
%T The packing measure of the graph of a stable process
%B Colloque Paul Lévy sur les processus stochastiques
%A Collectif
%S Astérisque
%D 1988
%N 157-158
%I Société mathématique de France
%G en
%F AST_1988__157-158__341_0
Rezakhanlou, Fraydoun; Taylor, S. James. The packing measure of the graph of a stable process, in Colloque Paul Lévy sur les processus stochastiques, Astérisque, no. 157-158 (1988), pp. 341-362. http://archive.numdam.org/item/AST_1988__157-158__341_0/

1. M. T. Barlow. Continuity of local times for Levy processes. Zeitschrift f. Wahrsch. 69 (1985), 23-35. | DOI | Zbl

2. M. T. Barlow. Necessary and sufficient conditions for the continuity of local time of Lévy processes. To appear. Annals of Probability. | Zbl

3. M. Jain and W. B. Pruitt. The correct measure function for the graph of a transient stable process. Zeitschrift f. Wahrsch. 9 (1968), 131-138. | DOI | Zbl

4. J. F. Le Gall and S. J. Taylor. The packing measure of planar Brownian motion. Seminar on Stochastic Processes, Birkhauser (1986), 139-148. | Zbl

5. P. Lévy. La mesure de Hausdorff de la courbe du mouvement brownien. Giovn Ist Ital. Attuari 16 (1953), 1-37. | Zbl

6. W. E. Pruitt and S. J. Taylor. The potential kernel and hitting probabilities for the general stable process in 𝐑 N . Trans. Amer. Math. Soc. 146 (1969), 299-321. | Zbl

7. W. E. Pruitt and S. J. Taylor. Sample path properties of processes with stable components. Zeitschrift f. Wahrsch. 12 (1969), 267-289. | DOI | Zbl

8. W. E. Pruitt and S. J. Taylor. Hausdorff measure properties of the asymmetric Cauchy processes. Annals Prob. 5 (1977), 608-615. | DOI | Zbl

9. W. E. Pruitt and S. J. Taylor. The packing dimension of the sample path of a Lévy process. In preparation.

10. X. S. Raymond and C. Tricot. Packing regularity of sets in n-space. Preprint. | DOI | Zbl

11. F. Rezakhanlou. The packing measure of the graph and level sets of continuous functions. Preprint. | DOI | Zbl

12. S. J. Taylor. Sample path properties of a transient-stable process. J. Math. Mechanics 16 (1967), 1229-1246. | Zbl

13. S. J. Taylor. The use of packing measure in the analysis of random sets. Stochastic Processes and their Applications. Springer Lecture Notes 1203 (1985), 214-222. | Zbl

14. S. J. Taylor. The measure theory of random fractals. Math. Proc. Camb. Phil. Soc. 100 (1986), 383-406. | DOI | Zbl

15. S. J. Taylor and C. Tricot. Packing measure and its evaluation for a Brownian path. Trans. Amer. Math. Soc. 288 (1985), 679-699. | DOI | Zbl

16. S. J. Taylor and C. Tricot. The packing measure of rectifiable subsets of the plane. Math. Proc. Camb. Phil. Soc. 99 (1986), 285-296. | DOI | Zbl

17. S. J. Taylor and J. G. Wendel. The exact Hausdorff measure of the zero set of a stable process. Zeitschrift f. Wahrsch. 6 (1966), 170-180. | DOI | Zbl