@incollection{AST_1990__191__35_0, author = {Baker, Andrew}, title = {Exotic multiplications on {Morava} $K$-theories and their liftings}, booktitle = {Th\'eorie de l'homotopie}, editor = {Miller H.-R. and Lemaire J.-M. and Schwartz L.}, series = {Ast\'erisque}, pages = {35--43}, publisher = {Soci\'et\'e math\'ematique de France}, number = {191}, year = {1990}, mrnumber = {1098965}, zbl = {0729.55001}, language = {en}, url = {http://archive.numdam.org/item/AST_1990__191__35_0/} }
TY - CHAP AU - Baker, Andrew TI - Exotic multiplications on Morava $K$-theories and their liftings BT - Théorie de l'homotopie AU - Collectif ED - Miller H.-R. ED - Lemaire J.-M. ED - Schwartz L. T3 - Astérisque PY - 1990 SP - 35 EP - 43 IS - 191 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1990__191__35_0/ LA - en ID - AST_1990__191__35_0 ER -
%0 Book Section %A Baker, Andrew %T Exotic multiplications on Morava $K$-theories and their liftings %B Théorie de l'homotopie %A Collectif %E Miller H.-R. %E Lemaire J.-M. %E Schwartz L. %S Astérisque %D 1990 %P 35-43 %N 191 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1990__191__35_0/ %G en %F AST_1990__191__35_0
Baker, Andrew. Exotic multiplications on Morava $K$-theories and their liftings, dans Théorie de l'homotopie, Astérisque, no. 191 (1990), pp. 35-43. http://archive.numdam.org/item/AST_1990__191__35_0/
[1] Stable Homotopy and Generalised Homology," University of Chicago Press, 1974. | MR | Zbl
, "[2] On the homotopy type of the spectrum representing elliptic cohomology, Proc. Amer. Math. Soc. 107 (1989), 537-548. | DOI | MR | Zbl
,
[3]
[4] Liftings of formal group laws and the Artinian completion of
[5] Global methods in homotopy theory, in Proc. Conf. on Homotopy theory, Durham 1985, LMS Lecture Note Series 117 (1987), 73-96. | MR | Zbl
,
[6] Homological properties of comodules over
[7] Complex Cobordism and the Stable Homotopy Groups of spheres," Academic Press, 1986. | MR | Zbl
, "
[8] Obstruction theory and the associativity of Morava
[9] Derived tensor products in stable homotopy theory, Topology 22 (1983), 1-18. | DOI | MR | Zbl
,[10] Spectra of derived module homomorphisms, Math. Proc. Camb. Phil. Soc. 101 (1987), 249-257. | DOI | MR | Zbl
,
[11] Composition products in
[12] On a class of
[13] The Steenrod algebra of Morava
[14] The exact functor theorem for