Non-trivial projections of the trivial knot
Algorithmique, topologie et géométrie algébriques - Sévilla,1987, Toulouse 1988, Astérisque no. 192  (1990), p. 7-10
@incollection{AST_1990__192__7_0,
     author = {Ochiai, Mitsuyuki},
     title = {Non-trivial projections of the trivial knot},
     booktitle = {Algorithmique, topologie et g\'eom\'etrie alg\'ebriques - S\'evilla,1987, Toulouse 1988},
     editor = {Hayat-Legrand Claude and Sergeraert Francis},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {192},
     year = {1990},
     pages = {7-10},
     language = {en},
     url = {http://www.numdam.org/item/AST_1990__192__7_0}
}
Ochiai, Mitsuyuki. Non-trivial projections of the trivial knot, in Algorithmique, topologie et géométrie algébriques - Sévilla,1987, Toulouse 1988, Astérisque, no. 192 (1990), pp. 7-10. http://www.numdam.org/item/AST_1990__192__7_0/

[C] S. Chernicoff, Macintosh Revealed Vol. I, II, Haydon Book Company, 1985.

[CF] R.H. Crowell and R.H. Fox, Introduction to Knot Theory, Ginn and Company, New York 1963.

[DW] C.H. Dowker and M.B. Thistlethwaite, Classification of knot projections, Topology and its Applications, 16 (1983) 19-31.

[FYHLMO] P. Freyd, D. Yetter, J. Hoste, W. Lickorish and A. Ocneanu, A new polynomial invariant of knots and links, Bull. A.M.S., 12 (1985) 239-246.

[HO] T. Homma and M. Ochiai, On Relations of Heegaard-Diagrams and Knots, Math. Sem. Notes of Kobe Univ., 6 (1978) 383-393.

[HOT] T. Homma, M. Ochiai and M. Takahashi, An algorithm for recognizing S 3 in 3-manifolds with Heegaard splittings of genus two, Osaka J. Math., 17 (1980) 625-648.

[J] V.F.R. Jones, A polynomial invariant for links via von Neumann algebras, Bull. A.M.S., 12 (1985) 103-112.

[Mo] O. Morikawa, A counterexample to a conjecture of Whitehead, Math. Sem. Notes of Kobe Univ., 8 (1980) 295-298.