Duffin-Schaeffer theorem of diophantine approximation for complex numbers
Journées arithmétiques de Luminy 17-21 Juillet 1989, Astérisque, no. 198-199-200 (1991), pp. 259-263.
@incollection{AST_1991__198-199-200__259_0,
     author = {Nakada, Hitoshi and Wagner, Gerold},
     title = {Duffin-Schaeffer theorem of diophantine approximation for complex numbers},
     booktitle = {Journ\'ees arithm\'etiques de Luminy 17-21 Juillet 1989},
     editor = {Lachaud Gilles},
     series = {Ast\'erisque},
     pages = {259--263},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {198-199-200},
     year = {1991},
     mrnumber = {1144329},
     zbl = {0749.11034},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1991__198-199-200__259_0/}
}
TY  - CHAP
AU  - Nakada, Hitoshi
AU  - Wagner, Gerold
TI  - Duffin-Schaeffer theorem of diophantine approximation for complex numbers
BT  - Journées arithmétiques de Luminy 17-21 Juillet 1989
AU  - Collectif
ED  - Lachaud Gilles
T3  - Astérisque
PY  - 1991
SP  - 259
EP  - 263
IS  - 198-199-200
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1991__198-199-200__259_0/
LA  - en
ID  - AST_1991__198-199-200__259_0
ER  - 
%0 Book Section
%A Nakada, Hitoshi
%A Wagner, Gerold
%T Duffin-Schaeffer theorem of diophantine approximation for complex numbers
%B Journées arithmétiques de Luminy 17-21 Juillet 1989
%A Collectif
%E Lachaud Gilles
%S Astérisque
%D 1991
%P 259-263
%N 198-199-200
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1991__198-199-200__259_0/
%G en
%F AST_1991__198-199-200__259_0
Nakada, Hitoshi; Wagner, Gerold. Duffin-Schaeffer theorem of diophantine approximation for complex numbers, dans Journées arithmétiques de Luminy 17-21 Juillet 1989, Astérisque, no. 198-199-200 (1991), pp. 259-263. http://archive.numdam.org/item/AST_1991__198-199-200__259_0/

[1] Duffin, R. J. and A. C. Schaeffer, Khintchine's problem in metric diophantine approximation, Duke Math.J., 8 (1941), pp. 243-255. | DOI | MR | Zbl

[2] Gallagher, P. X., Approximation by reduced fractions, J. Math. Soc. Japan, 13 (1961), pp. 342-345. | DOI | MR | Zbl

[3] Nakada, H., On metrical theory of diophantine approximation over imaginary quadratic field, Acta Arith., 51 (1988), 393-403. | DOI | EuDML | MR | Zbl

[4] Pollington, A. D. and R. C. Vaughan, The k-dimensional Duffin and Schaeffer conjecture, Séminaire de Théorie des Nombres Bordeaux, ser.2, 1 (1989), 81-87. | DOI | EuDML | Numdam | MR | Zbl

[5] Sprindžuk, V. G., Metric theory of diophantine approximations, V.H.Winston & Sons, Washington, D.C., 1979. | MR | Zbl