@incollection{AST_1991__198-199-200__259_0, author = {Nakada, Hitoshi and Wagner, Gerold}, title = {Duffin-Schaeffer theorem of diophantine approximation for complex numbers}, booktitle = {Journ\'ees arithm\'etiques de Luminy 17-21 Juillet 1989}, editor = {Lachaud Gilles}, series = {Ast\'erisque}, pages = {259--263}, publisher = {Soci\'et\'e math\'ematique de France}, number = {198-199-200}, year = {1991}, mrnumber = {1144329}, zbl = {0749.11034}, language = {en}, url = {http://archive.numdam.org/item/AST_1991__198-199-200__259_0/} }
TY - CHAP AU - Nakada, Hitoshi AU - Wagner, Gerold TI - Duffin-Schaeffer theorem of diophantine approximation for complex numbers BT - Journées arithmétiques de Luminy 17-21 Juillet 1989 AU - Collectif ED - Lachaud Gilles T3 - Astérisque PY - 1991 SP - 259 EP - 263 IS - 198-199-200 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1991__198-199-200__259_0/ LA - en ID - AST_1991__198-199-200__259_0 ER -
%0 Book Section %A Nakada, Hitoshi %A Wagner, Gerold %T Duffin-Schaeffer theorem of diophantine approximation for complex numbers %B Journées arithmétiques de Luminy 17-21 Juillet 1989 %A Collectif %E Lachaud Gilles %S Astérisque %D 1991 %P 259-263 %N 198-199-200 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1991__198-199-200__259_0/ %G en %F AST_1991__198-199-200__259_0
Nakada, Hitoshi; Wagner, Gerold. Duffin-Schaeffer theorem of diophantine approximation for complex numbers, in Journées arithmétiques de Luminy 17-21 Juillet 1989, Astérisque, no. 198-199-200 (1991), pp. 259-263. http://archive.numdam.org/item/AST_1991__198-199-200__259_0/
[1] Khintchine's problem in metric diophantine approximation, Duke Math.J., 8 (1941), pp. 243-255. | DOI | MR | Zbl
and ,[2] Approximation by reduced fractions, J. Math. Soc. Japan, 13 (1961), pp. 342-345. | DOI | MR | Zbl
,[3] On metrical theory of diophantine approximation over imaginary quadratic field, Acta Arith., 51 (1988), 393-403. | DOI | EuDML | MR | Zbl
,[4] The -dimensional Duffin and Schaeffer conjecture, Séminaire de Théorie des Nombres Bordeaux, ser.2, 1 (1989), 81-87. | DOI | EuDML | Numdam | MR | Zbl
and ,[5] Metric theory of diophantine approximations, V.H.Winston & Sons, Washington, D.C., 1979. | MR | Zbl
,