Modular forms and algebraic K-theory
Journées arithmétiques de Genève - 9-13 septembre 1991, Astérisque no. 209  (1992), p. 85-97
@incollection{AST_1992__209__85_0,
     author = {Scholl, A. J.},
     title = {Modular forms and algebraic $K$-theory},
     booktitle = {Journ\'ees arithm\'etiques de Gen\`eve - 9-13 septembre 1991},
     editor = {Coray D. F. and P\'etermann Y.-F. S},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {209},
     year = {1992},
     pages = {85-97},
     language = {en},
     url = {http://www.numdam.org/item/AST_1992__209__85_0}
}
Scholl, A. J. Modular forms and algebraic $K$-theory, in Journées arithmétiques de Genève - 9-13 septembre 1991, Astérisque, no. 209 (1992), pp. 85-97. http://www.numdam.org/item/AST_1992__209__85_0/

[0] A. O. L. Atkin, H. P. F. Swinnerton-Dyer, Modular forms on noncon-gruence subgroups. Proc. Symp. Pure Math. AMS 19 (1971), 1-25

[1] A. A. Beilinson, Higher regulators and values of L-functions. J. Soviet Math. 30 (1985), 2036-2070

[2] A. A. Beilinson, Higher regulators of modular curves. Applications of algebraic K-theory to algebraic geometry and number theory (Contemporary Mathematics 5 (1986)), 1-34

[3] B. J. Birch, W. Kuyk (eds), Modular functions of one variable IV. Lect. notes in mathematics 476, 79-88 (Springer, 1975)

[4] S. Bloch, D. Grayson, K 2 and L-functions of elliptic curves: computer calculations. Applications of algebraic K-theory to algebraic geometry and number theory (Contemporary Mathematics 55 (1986)), 79-88

[5] A. Borel, Cohomologie de SL n et valeurs de fonctions zêta. Ann. Scuola Normale Superiore 7 (1974), 613-616

[6] P. Deligne, La conjecture de Weil I. Publ. Math. IHES 43 (1974), 272-307

[7] P. Deligne, Letter to C. Soulé. 20-1-1985

[8] P. Deligne, M. Rapoport, Les schémas de modules des courbes elliptiques. Modular functions of one variable II. Lect. notes in mathematics 349, 143-316 (Springer, 1973)

[9] C. Deninger, A. J. Scholl, The Beilinson Conjectures. In: L-functions and Arithmetic (ed. J. H. Coates, M. J. Taylor), Cambridge University Press (1991), 173-209

[10] H. Gillet, D. Grayson, On the loop space of the Q-construction. Illinois J. Math 31 (1987), 574-597

[11] G. Harder, Die Kohomologie S-arithmetischer Gruppen über Funktionenkörpern. Inventiones math. 42 (1977), 135-175

[12] N. M. Katz, B. Mazur, Arithmetic moduli of elliptic curves. Ann. of Math. Studies 108 (1985)

[13] J-F. Mestre, Courbes de Weil et courbes supersingulières. Séminaire de Théorie de Nombres de Bordeaux 1984-5, exposé 23

[14] J-F. Mestre, N. Schappacher, Séries de Kronecker et fonctions L des puissances symétriques de courbes elliptiques sur 𝐐. In: Arithmetic algebraic geometry (ed. G. van de Geer, F. Oort, J. Steenbrink), Birkhäuser (1991), 209-245

[15] J. Murre, The motive of an algebraic surface. J. reine angew. Math. 409 (1990), 190-204

[16] D. Quillen, Higher algebraic K-theory I. Lect. notes in mathematics 341 (1973), 85-147

[17] D. Ramakrishnan, Regulators, algebraic cycles, and values of L-functions. Contemporary Mathematics 83 (1989), 183-310

[18] M. Rapoport, N. Schappacher, P. Schneider (ed.), Beilinson's conjectures on special values of L-functions. Academic Press (1988)

[19] N. Schappacher, A. J. Scholl, Beilinson's theorem on modular curves. In [18].

[20] A. J. Scholl, The -adic representations attached to a certain noncon-gruence subgroup. J. reine angew. Math. 392 (1988), 1-15

[21] C. Soulé, Régulateurs. Séminaire Bourbaki, exposé 644. Astérisque 133/134 (1986), 237-253

[22] F. Waldhausen, Algebraic K-theory of spaces. Lect. notes in mathematics 1126 (1985), 318-419.