Semiclassical expansions of the thermodynamic limit for a Schrödinger equation
Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque no. 210  (1992), p. 135-181
@incollection{AST_1992__210__135_0,
     author = {Helffer, B. and Sj\"ostrand, J.},
     title = {Semiclassical expansions of the thermodynamic limit for a Schr\"odinger equation},
     booktitle = {M\'ethodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {210},
     year = {1992},
     pages = {135-181},
     language = {en},
     url = {http://www.numdam.org/item/AST_1992__210__135_0}
}
Helffer, B.; Sjöstrand, J. Semiclassical expansions of the thermodynamic limit for a Schrödinger equation, in Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque, no. 210 (1992), pp. 135-181. http://www.numdam.org/item/AST_1992__210__135_0/

[Ag] S. Agmon Lectures on exponential decay of solutions of second order elliptic equations, Math. Notes, t.29, Princeton University Press.

[Bra-Li] H. J. Brascamp, E. Lieb : On extensions of the Brunn-Minkovski and Prekopa-Leindler Theorems, including inequalities for Log concave functions, and with an application to diffusion equation Journal of functional analysis 22 (1976), pp.366-389

[Bru-He] M. Brunaud, B. Helffer : Un problème de double puits provenant de la théorie statistico-mécanique des changements de phase (ou relecture d'un cours de M.Kac), Preprint de l'ENS (Mars 1991).

[Di] J. Dieudonné : Calcul infinitésimal, Hermann ; collection méthodes

[Gl-Ja] J. Glimm, A. Jaffe Quantum Physics (second edition), A functional integral point of view. Springer Verlag

[Ha] E. M. Harrell, On the rate of asymptotic eigenvalue degeneracy Comm. in Math. Phys., t.75, 1980, p.239-261

[He] B. Helffer : Décroissance exponentielle des fonctions propres de l'opérateur de Kac : cas de la dimension >1. Manuscrit, Mars 1991

[He-Sj] B. Helffer, J. Sjostrand: [1] Multiple wells in the semi-classical limit I Comm. in PDE, 9(4), 337-408 (1984)

B. Helffer, J. Sjostrand: [2] Puits multiples en limite semi-classique II Interaction moléculaire. Symétries. Perturbation Ann. Inst. Henri Poincaré Vol. 42, n°2, 1985, p.127-212

B. Helffer, J. Sjostrand: [3] Multiple wells in the semi-classical limit III Math. Nachrichte 124 (1985) p.263-313

B. Helffer, J. Sjostrand: [4] Analyse semi-classique pour l'équation de Harper Mémoire de la SMF n°34 ; Tome 116, Fasc.4 (1988)

[Ka] M. Kac [1] Statistical mechanics of some one-dimensional systems Studies in mathematical analysis and related topics : essays in honor of Georges Polya (Stanford Univ. Press, Stanford, California 1962), p.165-169

M. Kac [2] Mathematical mechanisms of phase transitions Brandeis lectures (1966), Gordon and Breach, New York

[Ka-Th] M. Kac, C. J. Thomson Phase transition and eigenvalue degeneracy of a one dimensional anharmonic oscillator Studies in Applied Mathematics 48 (1969) 257-264

[Ki-Si] W. Kirsch, B. Simon : Comparison theorems for the gap of Schrödinger operators JFA, Vol.75, n°2, Dec.1987, p.396-410

[PPW] L. E. Payne, G. Polya, H. F. Weinberger : On the ratio of consecutive eigenvalues, Journal of Math, and Physics, 35, n°3 (Oct.56), pp.289-298

[Ru] D. Ruelle : Statistical mechanics Math. physics monograph series, WA. Benjamin, Inc. 1969

[Si] B. Simon [1] Instantons, double wells and large deviations Bull. AMS., t.8, 1983 p.323-326

B. Simon [2] Semi-classical analysis of low lying eigenvalues I Ann. Inst. Poincaré, t.38, 1983, p.295-307

B. Simon [3] Semi-classical analysis of low lying eigenvalues II tunneling, Ann. of Math. 120, p. 89-118 (1984)

[SWYY] I. M. Singer, B. Wong, Shing-Tung Yau, Stephen S.-T. Yau : An estimate of the gap of the first two eigenvalues in the Schrbdinger operator. Ann. d. Scuola Norm. Sup. di Pisa, Série IV Vol. XII, 2, p.319-333

[Sj] J. Sjöstrand : [1] Potential wells in high dimensions I (to appear in Annales de l'IHP, Section Physique Théorique)

J. Sjöstrand : [2] Potential wells in high dimensions II, more about the one well case, (to appear in Annales de l'IHP, Section Physique Théorique)

[Th] Colin J. Thompson Mathematical statistical mechanics, The Macmillan company New York (1972)