@incollection{AST_1992__210__247_0, author = {Nakamura, Shu}, title = {Resolvent estimates and time-decay in the semiclassical limit}, booktitle = {M\'ethodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)}, series = {Ast\'erisque}, pages = {247--262}, publisher = {Soci\'et\'e math\'ematique de France}, number = {210}, year = {1992}, language = {en}, url = {http://archive.numdam.org/item/AST_1992__210__247_0/} }
TY - CHAP AU - Nakamura, Shu TI - Resolvent estimates and time-decay in the semiclassical limit BT - Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991) AU - Collectif T3 - Astérisque PY - 1992 SP - 247 EP - 262 IS - 210 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_1992__210__247_0/ LA - en ID - AST_1992__210__247_0 ER -
%0 Book Section %A Nakamura, Shu %T Resolvent estimates and time-decay in the semiclassical limit %B Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991) %A Collectif %S Astérisque %D 1992 %P 247-262 %N 210 %I Société mathématique de France %U http://archive.numdam.org/item/AST_1992__210__247_0/ %G en %F AST_1992__210__247_0
Nakamura, Shu. Resolvent estimates and time-decay in the semiclassical limit, dans Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque, no. 210 (1992), pp. 247-262. http://archive.numdam.org/item/AST_1992__210__247_0/
[BCD] On the location of resonances for Schrödinger operators in the semiclassical limit. II. Barrier top resonances. Comm. P. D. E. 12, 201-222 (1987).
, , :[CFKS] Schrödinger Operators, with Applications to Quantum Mechanics and Global Geometry. 1987, Springer-Verlag.
, , , :[G] Semiclassical resolvent estimates for two- and three-body Schrödinger operators. Comm. P. D. E. 15, 1161-1178 (1990)
:[GM] Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée. C. R. Acad. Sci. Paris 306, 121-123 (1989).
, :[H] The Analysis of Partial Differential Operators. Vol. 3. 1985, Springer Verlag.
:[HN] Semiclassical resolvent estimates. Ann. Inst. H. Poincaré 51, 187-198 (1989).
, :[J1] Propagation estimates for Schrödinger-type operators. Trans. A. M. S. 291, 129-144 (1985).
:[J2] High energy estimates for generalized many-body Schrödinger operators. Publ. R. I. M. S., Kyoto Univ. 25, 155-167 (1989).
:[JMP] Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré 41, 207-225 (1984).
, , :[N1] Shape resonances for distortion analytic Schrödinger operators. Comm. P. D. E. 14, 1383-1419 (1989).
:[N2] Semiclassical resolvent estimates for the barrier top energy, Comm. P. D. E. 16, 873-883 (1991).
:[M] Absence of singular continuous spectrum for certain self-adjoint operators. Comm. Math. Phys. 78, 391-408 (1981).
:[PSS] Spectral analysis of N-body Schrödinger operators. Ann. Math. 114, 519-567 (1981).
, , :[R] Autour de l'approximation semiclassique. 1983, Birkhauser.
:[RS] Methods of Modern Mathematical Physics. Vol. 3. Scattering Theory. Academic Press, 1979.
, :[RT1] Semiclassical bounds for resolvents for Schrödinger operators and asymptotics for scattering phases, Comm. P. D. E. 9, 1017-1058 (1984).
, :[RT2] Semiclassical bounds for resolvents and asymptotics for total cross-sections. Ann. Inst. H. Poincaré 46, 415-442 (1987).
, :[RT3] Semiclassical asymptotics for local spectral density and time-delay problems in scattering processes. J. Funct. Anal. 80, 124-147 (1988).
, :[RT4] Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits. Ann. Inst. Fourier, Grenoble 39, 124-147 (1989).
, :[S] Semiclassical resonances generated by non-degenerate critical points. Springer Lecture Notes in Math. 1256, 402-429 (1987).
:[W1] Time-decay of scattering solutions and resolvent estimates for semiclassical Schrödinger operators, J. Diff. Eq. 71, 348-395 (1988).
:[W2] Semiclassical resolvent estimates for N-body Schrödinger operators. J. Funct. Anal. 97, 466-483 (1991).
:[Y] The eikonal approximation and the asymptotics of the total cross-section for the Schrödinger equations. Ann. Inst. H. Poincaré 44, 397-425 (1986).
: