Resolvent estimates and time-decay in the semiclassical limit
Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque no. 210  (1992), p. 247-262
@incollection{AST_1992__210__247_0,
     author = {Nakamura, Shu},
     title = {Resolvent estimates and time-decay in the semiclassical limit},
     booktitle = {M\'ethodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {210},
     year = {1992},
     pages = {247-262},
     language = {en},
     url = {http://www.numdam.org/item/AST_1992__210__247_0}
}
Nakamura, Shu. Resolvent estimates and time-decay in the semiclassical limit, in Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque, no. 210 (1992), pp. 247-262. http://www.numdam.org/item/AST_1992__210__247_0/

[BCD] Briet, Ph., Combes, J. M., Duclos, P. : On the location of resonances for Schrödinger operators in the semiclassical limit. II. Barrier top resonances. Comm. P. D. E. 12, 201-222 (1987).

[CFKS] Cycon, H. L., Froese, R. G., Kirsch, W., Simon, B.: Schrödinger Operators, with Applications to Quantum Mechanics and Global Geometry. 1987, Springer-Verlag.

[G] Gérard, Ch. : Semiclassical resolvent estimates for two- and three-body Schrödinger operators. Comm. P. D. E. 15, 1161-1178 (1990)

[GM] Gérard, Ch., Martinez, A.: Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée. C. R. Acad. Sci. Paris 306, 121-123 (1989).

[H] Hörmander, L.: The Analysis of Partial Differential Operators. Vol. 3. 1985, Springer Verlag.

[HN] Hislop, P. D., Nakamura, S.: Semiclassical resolvent estimates. Ann. Inst. H. Poincaré 51, 187-198 (1989).

[J1] Jensen, A. : Propagation estimates for Schrödinger-type operators. Trans. A. M. S. 291, 129-144 (1985).

[J2] Jensen, A. : High energy estimates for generalized many-body Schrödinger operators. Publ. R. I. M. S., Kyoto Univ. 25, 155-167 (1989).

[JMP] Jensen, A., Mourre, E., Perry, P.: Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré 41, 207-225 (1984).

[N1] Nakamura, S. : Shape resonances for distortion analytic Schrödinger operators. Comm. P. D. E. 14, 1383-1419 (1989).

[N2] Nakamura, S. : Semiclassical resolvent estimates for the barrier top energy, Comm. P. D. E. 16, 873-883 (1991).

[M] Mourre, E.: Absence of singular continuous spectrum for certain self-adjoint operators. Comm. Math. Phys. 78, 391-408 (1981).

[PSS] Perry, P., Sigal, I. M., Simon, B. : Spectral analysis of N-body Schrödinger operators. Ann. Math. 114, 519-567 (1981).

[R] Robert, D.: Autour de l'approximation semiclassique. 1983, Birkhauser.

[RS] Reed, M., Simon, B. : Methods of Modern Mathematical Physics. Vol. 3. Scattering Theory. Academic Press, 1979.

[RT1] Robert, D., Tamura, H. : Semiclassical bounds for resolvents for Schrödinger operators and asymptotics for scattering phases, Comm. P. D. E. 9, 1017-1058 (1984).

[RT2] Robert, D., Tamura, H. : Semiclassical bounds for resolvents and asymptotics for total cross-sections. Ann. Inst. H. Poincaré 46, 415-442 (1987).

[RT3] Robert, D., Tamura, H. : Semiclassical asymptotics for local spectral density and time-delay problems in scattering processes. J. Funct. Anal. 80, 124-147 (1988).

[RT4] Robert, D., Tamura, H. : Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits. Ann. Inst. Fourier, Grenoble 39, 124-147 (1989).

[S] Sjöstrand, J. : Semiclassical resonances generated by non-degenerate critical points. Springer Lecture Notes in Math. 1256, 402-429 (1987).

[W1] Wang, X. P. : Time-decay of scattering solutions and resolvent estimates for semiclassical Schrödinger operators, J. Diff. Eq. 71, 348-395 (1988).

[W2] Wang, X. P. : Semiclassical resolvent estimates for N-body Schrödinger operators. J. Funct. Anal. 97, 466-483 (1991).

[Y] Yafaev, D. R. : The eikonal approximation and the asymptotics of the total cross-section for the Schrödinger equations. Ann. Inst. H. Poincaré 44, 397-425 (1986).