Long range scattering and the Stark effect
Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque, no. 210 (1992), pp. 341-353.
@incollection{AST_1992__210__341_0,
     author = {White, Denis A. W.},
     title = {Long range scattering and the {Stark} effect},
     booktitle = {M\'ethodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)},
     series = {Ast\'erisque},
     pages = {341--353},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {210},
     year = {1992},
     mrnumber = {1221367},
     zbl = {0795.35074},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1992__210__341_0/}
}
TY  - CHAP
AU  - White, Denis A. W.
TI  - Long range scattering and the Stark effect
BT  - Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)
AU  - Collectif
T3  - Astérisque
PY  - 1992
SP  - 341
EP  - 353
IS  - 210
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1992__210__341_0/
LA  - en
ID  - AST_1992__210__341_0
ER  - 
%0 Book Section
%A White, Denis A. W.
%T Long range scattering and the Stark effect
%B Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)
%A Collectif
%S Astérisque
%D 1992
%P 341-353
%N 210
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1992__210__341_0/
%G en
%F AST_1992__210__341_0
White, Denis A. W. Long range scattering and the Stark effect, dans Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque, no. 210 (1992), pp. 341-353. http://archive.numdam.org/item/AST_1992__210__341_0/

[1] J. E. Avron and I. W. Herbst, Spectral and scattering theory for Schrödin-ger operators related to the Stark effect, Commun. Math. Phys. 52 (1977), 239-254. | DOI | MR | Zbl

[2] A. P. Calderón and R. Vaillancourt, A class of bounded pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185-1187. | DOI | MR | Zbl

[3] J. D. Dollard, Asymptotic convergence and the Coulomb interaction, J. Math. Phys. 5 (1964), 729-738. | DOI | MR

[4] V. Enss, Asymptotic completeness for quantum mechanical potential scattering, I. Short range potentials, Commun. Math. Phys. 61 (1978), 285-291. | DOI | MR | Zbl

[5] M. V. Fedoryuk, The stationary phase method and pseudodifferential operators, Russian Math. Surveys 26 (1971), 65-115. | DOI | Zbl

[6] G. M. Graf, A remark on long-range Stark scattering, Helv. Phys. Acta 64 (1991). 1167-1174. | MR

[7] L. Hörmander, The existence of wave operators in scattering theory, Math Z. 146 (1976), 69-91. | DOI | EuDML | MR | Zbl

[8] H. Isozaki and H. Kitada, Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sect. IA 32 (1985), 77-104. | MR | Zbl

[9] A. Jensen and T. Ozawa, Classical and quantum scattering for Stark Hamiltonians with slowly decaying potentials, Ann. Inst. Henri Poincaré, Phys. Théor., 54 (1991), 229-243. | EuDML | Numdam | MR | Zbl

[10] A. Jensen and K. Yajima, On the long range scattering for Stark Hamiltonians, J. reine angew. Math. 420 (1991), 179-193. | EuDML | MR | Zbl

[11] H. Kitada, A relation between the modified wave operators WJ ± and WD ±, Sci. Pap. Coll. Arts Sci. Univ. Tokyo 36 (1987), 91-105. | MR | Zbl

[12] H. Kitada and K. Yajima, A scattering theory for time-independent long-range potentials, Duke Math. J. 49 (1982), 341-376. | DOI | MR | Zbl

[13] T. Ozawa, Non-existence of wave operators for Stark effect Hamiltonians, Math Z. 207 (1991), 335-339. | DOI | EuDML | MR | Zbl

[14] P. A. Perry, Scattering theory by the Enss Method, Mathematical Reports, No.1, Harwood, New York, 1983. | MR | Zbl

[15] D. A. W. White, The Stark effect and long range scattering in two Hilbert spaces, Indiana Univ. Math. J. 39 (1990), 517-546. | DOI | MR | Zbl

[16] K. Yajima, Spectral and scattering theory for Schrödinger operators with Stark-effect, J. Fac. Sci. Univ. Tokyo, Sec IA, 26 (1979), 377-390 | MR | Zbl