Long range scattering and the Stark effect
Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque no. 210  (1992), p. 341-353
@incollection{AST_1992__210__341_0,
     author = {White, Denis A. W.},
     title = {Long range scattering and the Stark effect},
     booktitle = {M\'ethodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {210},
     year = {1992},
     pages = {341-353},
     zbl = {0795.35074},
     mrnumber = {1221367},
     language = {en},
     url = {http://www.numdam.org/item/AST_1992__210__341_0}
}
White, Denis A. W. Long range scattering and the Stark effect, in Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque, no. 210 (1992), pp. 341-353. http://www.numdam.org/item/AST_1992__210__341_0/

[1] J. E. Avron and I. W. Herbst, Spectral and scattering theory for Schrödin-ger operators related to the Stark effect, Commun. Math. Phys. 52 (1977), 239-254. | Article | MR 468862 | Zbl 0351.47007

[2] A. P. Calderón and R. Vaillancourt, A class of bounded pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185-1187. | Article | MR 298480 | Zbl 0244.35074

[3] J. D. Dollard, Asymptotic convergence and the Coulomb interaction, J. Math. Phys. 5 (1964), 729-738. | Article | MR 163620

[4] V. Enss, Asymptotic completeness for quantum mechanical potential scattering, I. Short range potentials, Commun. Math. Phys. 61 (1978), 285-291. | Article | MR 523013 | Zbl 0389.47005

[5] M. V. Fedoryuk, The stationary phase method and pseudodifferential operators, Russian Math. Surveys 26 (1971), 65-115. | Article | Zbl 0226.47029

[6] G. M. Graf, A remark on long-range Stark scattering, Helv. Phys. Acta 64 (1991). 1167-1174. | MR 1149436

[7] L. Hörmander, The existence of wave operators in scattering theory, Math Z. 146 (1976), 69-91. | Article | MR 393884 | Zbl 0319.35059

[8] H. Isozaki and H. Kitada, Modified wave operators with time-independent modifiers, J. Fac. Sci. Univ. Tokyo Sect. IA 32 (1985), 77-104. | MR 783182 | Zbl 0582.35036

[9] A. Jensen and T. Ozawa, Classical and quantum scattering for Stark Hamiltonians with slowly decaying potentials, Ann. Inst. Henri Poincaré, Phys. Théor., 54 (1991), 229-243. | Numdam | MR 1122654 | Zbl 0768.47002

[10] A. Jensen and K. Yajima, On the long range scattering for Stark Hamiltonians, J. reine angew. Math. 420 (1991), 179-193. | MR 1124570 | Zbl 0736.35077

[11] H. Kitada, A relation between the modified wave operators WJ ± and WD ±, Sci. Pap. Coll. Arts Sci. Univ. Tokyo 36 (1987), 91-105. | MR 910667 | Zbl 0636.35067

[12] H. Kitada and K. Yajima, A scattering theory for time-independent long-range potentials, Duke Math. J. 49 (1982), 341-376. | Article | MR 659945 | Zbl 0499.35087

[13] T. Ozawa, Non-existence of wave operators for Stark effect Hamiltonians, Math Z. 207 (1991), 335-339. | Article | MR 1115167 | Zbl 0715.35060

[14] P. A. Perry, Scattering theory by the Enss Method, Mathematical Reports, No.1, Harwood, New York, 1983. | MR 752694 | Zbl 0529.35004

[15] D. A. W. White, The Stark effect and long range scattering in two Hilbert spaces, Indiana Univ. Math. J. 39 (1990), 517-546. | Article | MR 1089052 | Zbl 0695.35144

[16] K. Yajima, Spectral and scattering theory for Schrödinger operators with Stark-effect, J. Fac. Sci. Univ. Tokyo, Sec IA, 26 (1979), 377-390 | MR 560003 | Zbl 0429.35027