@incollection{AST_1992__210__75_0, author = {Boutet de Monvel-Berthier, Anne and Georgescu, Vladimir}, title = {Graded $C^\ast$-algebras and many-body perturbation theory : {II.} {The} {Mourre} estimate}, booktitle = {M\'ethodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)}, series = {Ast\'erisque}, pages = {75--96}, publisher = {Soci\'et\'e math\'ematique de France}, number = {210}, year = {1992}, language = {en}, url = {https://www.numdam.org/item/AST_1992__210__75_0/} }
TY - CHAP AU - Boutet de Monvel-Berthier, Anne AU - Georgescu, Vladimir TI - Graded $C^\ast$-algebras and many-body perturbation theory : II. The Mourre estimate BT - Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991) AU - Collectif T3 - Astérisque PY - 1992 SP - 75 EP - 96 IS - 210 PB - Société mathématique de France UR - https://www.numdam.org/item/AST_1992__210__75_0/ LA - en ID - AST_1992__210__75_0 ER -
%0 Book Section %A Boutet de Monvel-Berthier, Anne %A Georgescu, Vladimir %T Graded $C^\ast$-algebras and many-body perturbation theory : II. The Mourre estimate %B Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991) %A Collectif %S Astérisque %D 1992 %P 75-96 %N 210 %I Société mathématique de France %U https://www.numdam.org/item/AST_1992__210__75_0/ %G en %F AST_1992__210__75_0
Boutet de Monvel-Berthier, Anne; Georgescu, Vladimir. Graded $C^\ast$-algebras and many-body perturbation theory : II. The Mourre estimate, dans Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque, no. 210 (1992), pp. 75-96. https://www.numdam.org/item/AST_1992__210__75_0/
[ABG1] Notes on the
[ABG2] Notes on the
[BG1] Graded
[BG2] Graded
[BGM] Locally Smooth Operators and the Limiting Absorption Principle for N-Body Hamiltonians, Rev. in Math. Phys. (1992), to appear - preprint Universität Bielefeld, BIBOS, n°433/1990, p.1-101].
, and ,[C] On the Compactness of Commutators of Multiplications and Convolutions, and Boundedness of Pseudo-Differential Operators, J. Funct. Analysis, 18 (2) (1975), p.115-132.
,[D1] A New Proof of the Propagation Theorem for N-Body Quantum Systems, Comm. Math Phys., 122 (1989), p.203-231.
,[D2] The Mourre Estimate for Dispersive N-Body Schrödinger Operators, Preprint Virginia Polytechnic Institute, 1988.
,[C] The Mourre Estimate for Regular Dispersive Systems, Ann. Inst. Henri Poincaré, 54 (1) (1991), p.59-88.
,[FH] A New Proof of the Mourre Estimate, Duke Math J., 49 (1982), p.1075-1085.
and ,[HP] Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, R.I. 1957.
and ,
[PSS] Spectral Analysis of
[S] Geometric Methods in Multiparticle Quantum Systems, Comm. Math. Phys., 55 (1977), p.259-274.
,
[T] Propagation Estimates for