Graded C * -algebras and many-body perturbation theory : II. The Mourre estimate
Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque no. 210  (1992), p. 75-96
@incollection{AST_1992__210__75_0,
     author = {Boutet de Monvel-Berthier, Anne and Georgescu, Vladimir},
     title = {Graded $C^\ast$-algebras and many-body perturbation theory : II. The Mourre estimate},
     booktitle = {M\'ethodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {210},
     year = {1992},
     pages = {75-96},
     language = {en},
     url = {http://www.numdam.org/item/AST_1992__210__75_0}
}
Boutet de Monvel-Berthier, Anne; Georgescu, Vladimir. Graded $C^\ast$-algebras and many-body perturbation theory : II. The Mourre estimate, in Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque, no. 210 (1992), pp. 75-96. http://www.numdam.org/item/AST_1992__210__75_0/

[ABG1] Amrein W. O., Boutet De Monvel-Berthier A. and Georgescu V., Notes on the N-Body Problem, I, Preprint Université de Genève, UGVA-DPT 1988/11-598.

[ABG2] Amrein W. O., Boutet De Monvel-Berthier A. and Georgescu V., Notes on the N-Body Problem, II, Preprint Université de Genève, UGVA-DPT 1991/04-718, p.164-424.

[BG1] Boutet De Monvel-Berthier A. and Georgescu V., Graded C * -Algebras and Many-Body Perturbation Theory. I. The N-Body Problem, C. R. Acad. Sci. Paris, 312, Serie I, p.477-482, 1991.

[BG2] Boutet De Monvel-Berthier A. and Georgescu V., Graded C * -Algebras in the N-Body Problem, J. Math. Phys., 32, n° 11 (1991), p.3101-3110.

[BGM] Boutet De Monvel-Berthier A., Georgescu V. and Mantoiu M., Locally Smooth Operators and the Limiting Absorption Principle for N-Body Hamiltonians, Rev. in Math. Phys. (1992), to appear - preprint Universität Bielefeld, BIBOS, n°433/1990, p.1-101].

[C] Cordes H. O., On the Compactness of Commutators of Multiplications and Convolutions, and Boundedness of Pseudo-Differential Operators, J. Funct. Analysis, 18 (2) (1975), p.115-132.

[D1] Derezinski J., A New Proof of the Propagation Theorem for N-Body Quantum Systems, Comm. Math Phys., 122 (1989), p.203-231.

[D2] Derezinski J., The Mourre Estimate for Dispersive N-Body Schrödinger Operators, Preprint Virginia Polytechnic Institute, 1988.

[C] Gerard C., The Mourre Estimate for Regular Dispersive Systems, Ann. Inst. Henri Poincaré, 54 (1) (1991), p.59-88.

[FH] Froese R. G. and Herbst I., A New Proof of the Mourre Estimate, Duke Math J., 49 (1982), p.1075-1085.

[HP] Hille E. and Phillips R. S., Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, R.I. 1957.

[PSS] Perry P., Sigal. I. M. and Simon B., Spectral Analysis of N-Body Schrödinger Operators, Ann. Math., 114 (1981), p.519-567.

[S] Simon B., Geometric Methods in Multiparticle Quantum Systems, Comm. Math. Phys., 55 (1977), p.259-274.

[T] Tamura R., Propagation Estimates for N-body Quantum Systems, Bull. Fac. Sci. Ibaraki Univ., 22 (1990), p.29-48.