Surfaces convexes dans un bord pseudoconvexe
Colloque d'analyse complexe et géométrie - Marseille, janvier 1992, Astérisque no. 217  (1993), p. 103-118
@incollection{AST_1993__217__103_0,
     author = {Duval, Julien},
     title = {Surfaces convexes dans un bord pseudoconvexe},
     booktitle = {Colloque d'analyse complexe et g\'eom\'etrie - Marseille, janvier 1992},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {217},
     year = {1993},
     pages = {103-118},
     language = {fr},
     url = {http://www.numdam.org/item/AST_1993__217__103_0}
}
Duval, Julien. Surfaces convexes dans un bord pseudoconvexe, in Colloque d'analyse complexe et géométrie - Marseille, janvier 1992, Astérisque, no. 217 (1993), pp. 103-118. http://www.numdam.org/item/AST_1993__217__103_0/

1. H. Alexander, Totally real sets in 2 , Proc. Amer. Math. Soc. 111 (1991), 131-133.

2. E. Bedford, W. Klingenberg, On the envelope of holomorphy of a 2-sphere in 2 , J. Amer. Math. Soc. 4 (1991), 623-656.

3. E. Bishop, Differentiable manifolds in complex Euclidean spaces, Duke Math. J. 32 (1965), 1-22.

4. J. Duval, Un exemple de disque polynômialement convexe, Math. Ann. 281 (1988), 583-588.

5. F. Forstneric, E. L. Stout, A new class of polynomially convex sets, Ark. för Mat. 29 (1991), 51-62.

6. B. Jöricke, Removable singularities of CR-functions, Arkiv for Mat. 26 (1988), 117-143.

7. J. Martinet, Singularities of smooth functions and maps, London Math. Soc. Lect. Note Series, n° 58, Cambridge U.P., 1982.

8. K. Oka, Sur les fonctions analytiques de plusieurs variables, Iwanami Shoten, Tokyo, Japon (1961), 1983.

9. H. Rossi, The local maximum modulus principle, Ann. of Math. 72 (1960), 1-11.

10. G. Stolzenberg, Polynomially and rationally convex sets, Acta Math. 109 (1963), 259-289.

11. E. L. Stout, Removable singularities for the boundary values of holomorphic functions, to appear in the proceedings of the Mittag-Leffler special year in several complex variables.