A problem of ideals
Colloque d'analyse complexe et géométrie - Marseille, janvier 1992, Astérisque no. 217  (1993), p. 9-12
@incollection{AST_1993__217__9_0,
     author = {Amar, Eric},
     title = {A problem of ideals},
     booktitle = {Colloque d'analyse complexe et g\'eom\'etrie - Marseille, janvier 1992},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {217},
     year = {1993},
     pages = {9-12},
     language = {en},
     url = {http://www.numdam.org/item/AST_1993__217__9_0}
}
Amar, Eric. A problem of ideals, in Colloque d'analyse complexe et géométrie - Marseille, janvier 1992, Astérisque, no. 217 (1993), pp. 9-12. http://www.numdam.org/item/AST_1993__217__9_0/

[1] M. Catlin: Boundary behavior of holomorphic functions on weakly pseudoconvex domains. Thesis, Princeton University

[2] U. Cegrell: Representing measures in the Spectrum of H (Ω) Proceedings of the International Workshop, Wuppertal 1990 Aspects of Mathematics

[3] M. Christ: Regularity properties of the ¯ b -equation on weakly pseudoconvex CR manifolds of dimension three. J. Am. Math. Soc. 1, 587-646 (1988)

[4] K. Diederich, J. E. Fornaess, M. Wiegerinck: Sharp Hölder estimates for ¯ on ellipsoids. Manuscr. Math. 56, 399-413 (1986)

[5] C. Fefferman, J. J. Kohn: Hölder estimates on domains in two complex dimensions and on three dimensional CR manifolds. Adv. Math. 69, 233-303 (1988)

[6] H. Grauert, I. Lieb: Das Ramirezsche Integral und die Lösung der Gleichung f=α im Bereich der beschränkten Formen. Rice Univ. Studies 56, 26-50 (1970)

[7] M. Hakim, N. Sibony: Spectre de A(Omega ¯) pour des domaines bornés faiblement pseudoconvexes régulier. J. Functional Analysis 37, 127-135 (1980)

[8] G. Henkin: Boundary properties of holomorphic functions of several variables. J. Soviet Math. 5, 612-687 (1976)

[9] L. Hörmander: Generators for some rings of analytic functions. Bull. Amer. Math. Soc. 73, 943-949 (1967)

[10] J. J. Kohn: Global regularity for ¯ on weakly pseudoconvex manifolds. Trans. Amer. Math. Soc. 181, 273-292 (1973)

[11] M. Range: Integral kernels and Hölder estimates for ¯ on pseudoconvex domains of finite type in 2 Math. Ann. 288, 63-74 (1990)