Compensation of small denominators and ramified linearisation of local objects
Complex analytic methods in dynamical systems - IMPA, January 1992, Astérisque no. 222  (1994), p. 135-199
@incollection{AST_1994__222__135_0,
     author = {Ecalle, Jean},
     title = {Compensation of small denominators and ramified linearisation of local objects},
     booktitle = {Complex analytic methods in dynamical systems - IMPA, January 1992},
     editor = {Camacho C. and Lins Neto A. and Moussu R. and Sad P.},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {222},
     year = {1994},
     pages = {135-199},
     language = {en},
     url = {http://www.numdam.org/item/AST_1994__222__135_0}
}
Ecalle, Jean. Compensation of small denominators and ramified linearisation of local objects, in Complex analytic methods in dynamical systems - IMPA, January 1992, Astérisque, no. 222 (1994), pp. 135-199. http://www.numdam.org/item/AST_1994__222__135_0/

[B] A. D. Bruno, Analytic form of differential equations, Trans. Moscow Math. Soc., Vol. 25 (1971).

[D] A. Douady, Disques de Siegel et anneaux de Herman, Sém. Bourbaki, n° 677, 1986-87.

[E.1] J. Ecalle, Algèbres de fonctions résurgentes, Publ. Math. d'Orsay, Vol. 05 (1981).

[E.2] J. Ecalle, Les fonctions résurgentes appliquées l'itération, Publ. Math. d'Orsay, Vol. 06 (1981).

[E.3] J. Ecalle, L'équation du pont et la classification analytique des objets locaux, Publ. Math. d'Orsay, Vol. 05 (1985).

[E.4] J. Ecalle, Finitude des cycles-limite et accéléro-sommation de l'application de retour, in : Bifurcations of Planar Vector fields, Proceed. Luminy 1989, Lecture Notes in Math. 1455, Springer (p. 74-159).

[E.5] J. Ecalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, in : Actualités Mathématiques; Hermann Publ. (1992).

[E.6] J. Ecalle, The Acceleration Operators and their applications, (p. 1249-1269), Proceed, of the Int. Cong, of Math., Kyoto, 1990, Vol. 2, Springer.

[E.7] J. Ecalle, The Bridge Equation and its applications to local geometry, in : Adv. Series in Dyn. Systems, Vol. 9, Proceed. of the Int. Conf. on Dyn. Systems, Sept. 1990, Nagoya, Ed. K. Shiraiwa.

[E.8] J. Ecalle, Singularités non abordables par la géométrie, in : Ann. de l'Inst. Fourier, 1992, Vol. 42, (p. 73-164).

[El1] L. H. Eliason, Absolutely convergent series expansions for quasiperiodic motions, Preprint Univ. of Stockholm, Mat. Insitutionen, 1988, n° 2.

[El2] L. H. Eliason, Generalization of an estimate of small divisors by Siegel, Analysis et cetera (p. 283), 1990, Academic Press.

[PM] R. Perez-Marco, Solution complètedu problème de Siegel de linéarisation d'une application holomorphe au voisinage d'un point fixe (d'après J.-C. Yoccoz), Sém. Bourbaki, n° 753, 1991-92.

[R1] H. Rüssmann, Über die Iteration analytischer Funktionen, J. Math. Mech. 17, (p. 523-532).

[R2] H. Rüssmann, On the convergence of power series transformations of analytic mappings near a fixed point into a normal form, Preprint IHES, Paris, 1977.