Normal forms for local families and nonlocal bifurcations
Complex analytic methods in dynamical systems - IMPA, January 1992, Astérisque no. 222  (1994), p. 233-258
@incollection{AST_1994__222__233_0,
     author = {Ilyashenko, Yu. S.},
     title = {Normal forms for local families and nonlocal bifurcations},
     booktitle = {Complex analytic methods in dynamical systems - IMPA, January 1992},
     editor = {Camacho C. and Lins Neto A. and Moussu R. and Sad P.},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {222},
     year = {1994},
     pages = {233-258},
     language = {en},
     url = {http://www.numdam.org/item/AST_1994__222__233_0}
}
Ilyashenko, Yu. S. Normal forms for local families and nonlocal bifurcations, in Complex analytic methods in dynamical systems - IMPA, January 1992, Astérisque, no. 222 (1994), pp. 233-258. http://www.numdam.org/item/AST_1994__222__233_0/

[A] V. I. Arnold, Supplementary chapters of the theory of the differential equations, Nauka, Moscow, 1978.

[AAIS] V. I. Arnold, V. S. Afraimovich, Yu. S. Ilyashenko, L. P. Shilnikov, Bifurcation theory, Dynamical system V, VINITI, Moscow, 1986.

[B] G. R. Belitski, Equivalence and normal forms of germs of smooth maps, Russian Math. Surveys 1 (1978), 91-155.

[Bo] R. I. Bogdanov, Local orbital normal forms of vector fields in the plane, Proceeding of the Seminar of I. G. Petrovskii 5 (1986), Moscow, 51-84.

[Br] A. D. Bruno, Local method of nonlinear analysis of differential equations, Nauka, Moscow, 1979.

[G] A. M. Gabrielov, Projections of semianalitic sets. Funct. Anal. and appl. 2 (1978), no. 4.

[I] Yu. S. Ilyashenko (ed.), Around Hilbert 16th problem, Collection of papers by Yu. S. Ilyashenko, O. A. Kleban, A. Yu. Kotova. S. I. Trifonov, S. Yu. Yakovenko (to appear).

[IY1] Yu. S. Ilyashenko, S. Yu. Yakovenko, Smooth norm,al forms of local families of diffeomorphismes and vector fields. Russian Math. Surveys 46 (1991), no. 1, 3-39.

[IY2] Yu. S. Ilyashenko, S. Yu. Yakovenko, Stokes phenomena in smooth classification problem, Nonlinear Stokes phenomena (Yu. S. Ilyashenko, ed.), AMS (to appear).

[IY3] Yu. S. Ilyashenko, S. Yu. Yakovenko, Hilbert-Arnold problem for elementary polycycles, Around Hilbert 16th problem (to appear).

[Kh] A. G. Khovanskii, Funomials, AMS, Providence RI, 1991.

[K] V. P. Kostov, Versal deformations of differential forms of degree α on the line, Funct. Anal. and appl. 18 (1984), 81-82.

[KS] A. Yu. Kotova, V. Stanzo, Bifurcations on planar polycycles in generic two and three parameter families: systematizations and some new effects, to appear.

[M] J. N. Mather, Stratifications and mapping, Dynamic Systems (Pieixoto, eds.), Acad. Press, NY and London, 1973, pp. 195-232.

[R] R. Roussarie, On the number of limit cycles which appear be perturbation of separatrix loop of planar vector fields, Bol. Coc. Math. Brasil 17 (1986), 67-101.

[S] V. S. Samovol, Equivalence system of differential equations in the neighborhood of a singular point, Proceedings of Moscow Math. Society 44 (1982), 213-234.

[T] F. Takens, Partially hyperbolic fixed points, Topology 10 (1971), 133-147.

[W] H. Whitney, Local properties of analytic varieties. Differential and Combinatorial Topology, Princepton, 1965.