Density of integral and rational points on varieties
Columbia university number theory seminar - New-York, 1992, Astérisque, no. 228 (1995), pp. 183-187.
@incollection{AST_1995__228__183_0,
     author = {Pila, J.},
     title = {Density of integral and rational points on varieties},
     booktitle = {Columbia university number theory seminar - New-York, 1992},
     series = {Ast\'erisque},
     pages = {183--187},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {228},
     year = {1995},
     mrnumber = {1330933},
     zbl = {0834.11028},
     language = {en},
     url = {http://archive.numdam.org/item/AST_1995__228__183_0/}
}
TY  - CHAP
AU  - Pila, J.
TI  - Density of integral and rational points on varieties
BT  - Columbia university number theory seminar - New-York, 1992
AU  - Collectif
T3  - Astérisque
PY  - 1995
SP  - 183
EP  - 187
IS  - 228
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_1995__228__183_0/
LA  - en
ID  - AST_1995__228__183_0
ER  - 
%0 Book Section
%A Pila, J.
%T Density of integral and rational points on varieties
%B Columbia university number theory seminar - New-York, 1992
%A Collectif
%S Astérisque
%D 1995
%P 183-187
%N 228
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_1995__228__183_0/
%G en
%F AST_1995__228__183_0
Pila, J. Density of integral and rational points on varieties, in Columbia university number theory seminar - New-York, 1992, Astérisque, no. 228 (1995), pp. 183-187. http://archive.numdam.org/item/AST_1995__228__183_0/

1. Bombieri, E. and Pila, J., The number of integral points on arcs and ovals, Duke Math. J. 59 (1989), 337-357. | DOI | MR | Zbl

2. Cohen, S. D., The distribution of Galois groups and Hilbert's irreducibility theorem, Proc. London Math. Soc. 43 (1981), 227-250. | DOI | MR | Zbl

3. Duke, W., Rudnick, Z., and Sarnak, P., Density of integer points on affine homogeneous varieties, manuscript 1991. | Zbl

4. Fujiwara, M., Distribution of rational points on varieties over finite fields, Mathematika 35 (1988), 155-171. | DOI | MR | Zbl

5. Lang, S. and Weil, A., Number of points of varieties in finite fields, Am. J. Math. 76 (1954), 819-827. | DOI | MR | Zbl

6. Pila, J., Geometric postulation of a smooth function and the number of rational points, Duke Math. J. 63 (1991), 449-463. | MR | Zbl

7. Schmidt, W. M., Integer points on curves and surfaces, Monatsh. Math. 99 (1985), 45-72. | DOI | EuDML | MR | Zbl

8. Schmidt, W. M., Integer points on hypersurfaces, Monatsh. Math. 102 (1986), 27-58. | DOI | EuDML | MR | Zbl

9. Serre, J.-P., Lectures on the Mordell-Weil theorem, Vieweg, Braunschweig 1989. | MR | Zbl

10. Shparlinskii, I. E., and Skorobogatov, A. N., Exponential sums and rational points on complete intersections, Mathematika 37 (1990), 201-208. | DOI | MR | Zbl

11. Skorobogatov, A. N., Exponential sums, the geometry of hyperplane sections, and some Diophantine problems, Israel J. Math. 80 (1992), 359-379. | DOI | MR | Zbl