An analog of Freiman's theorem in groups
Structure theory of set addition, Astérisque no. 258  (1999), p. 323-326
@incollection{AST_1999__258__323_0,
     author = {Ruzsa, Imre Z.},
     title = {An analog of Freiman's theorem in groups},
     booktitle = {Structure theory of set addition},
     editor = {Deshouilliers Jean-Marc and Landreau Bernard and Yudin Alexander A.},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {258},
     year = {1999},
     pages = {323-326},
     zbl = {0946.11007},
     mrnumber = {1701207},
     language = {en},
     url = {http://www.numdam.org/item/AST_1999__258__323_0}
}
Ruzsa, Imre Z. An analog of Freiman's theorem in groups, in Structure theory of set addition, Astérisque, no. 258 (1999), pp. 323-326. http://www.numdam.org/item/AST_1999__258__323_0/

[1] Freiman G. A., Foundations of a structural theory of set addition, Translation of Math. Monographs vol. 37, Amer. Math. Soc., Providence, R. I., USA, 1973. | MR 360496 | Zbl 0271.10044

[2] Freiman G. A., What is the structure of K if K+K is small?, in : Lecture Notes in Mathematics 1240, Springer-Verlag, New York -Berlin, 1987, 109-134. | MR 894508 | Zbl 0625.10045

[3] Ruzsa I. Z., Arithmetical progressions and the number of sums, Periodica Math. Hung., 25, 1992, 104-111. | Article | MR 1200845 | Zbl 0761.11005

[4] Ruzsa I. Z., Generalized arithmetical progressions and sumsets, Acta Math. Hungar., 65, 1994, 379-388. | Article | MR 1281447 | Zbl 0816.11008