Rational parameter rays of the Mandelbrot set
Géométrie complexe et systèmes dynamiques - Colloque en l'honneur d'Adrien Douady Orsay, 1995, Astérisque no. 261  (2000), p. 405-443
@incollection{AST_2000__261__405_0,
     author = {Schleicher, Dierk},
     title = {Rational parameter rays of the Mandelbrot set},
     booktitle = {G\'eom\'etrie complexe et syst\`emes dynamiques - Colloque en l'honneur d'Adrien Douady Orsay, 1995},
     editor = {Flexor Marguerite and Sentenac Pierrette and Yoccoz Jean-Christophe},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {261},
     year = {2000},
     pages = {405-443},
     zbl = {0941.30015},
     mrnumber = {1755449},
     language = {en},
     url = {http://www.numdam.org/item/AST_2000__261__405_0}
}
Schleicher, Dierk. Rational parameter rays of the Mandelbrot set, in Géométrie complexe et systèmes dynamiques - Colloque en l'honneur d'Adrien Douady Orsay, 1995, Astérisque, no. 261 (2000), pp. 405-443. http://www.numdam.org/item/AST_2000__261__405_0/

[Bo] T. Bousch: Sur quelques problèmes de la dynamique holomorphe. Thèse, Université de Paris-Sud (1992).

[CG] L. Carleson, T. Gamelin: Complex dynamics. Universitext, Springer Verlag (1993). | MR 1230383 | Zbl 0782.30022

[DH1] A. Douady, J. Hubbard: Étude dynamique des polynômes complexes. Publications mathématiques d'Orsay 84-02 (1984) (première partie) | MR 762431 | Zbl 0552.30018

A. Douady, J. Hubbard: Étude dynamique des polynômes complexes. Publications mathématiques d'Orsay 85-04 (1985) (deuxième partie). | Zbl 0571.30026

[DH2] A. Douady, J. Hubbard: On the dynamics of polynomial-like mappings. Ann. Scient. Ec. Norm. Sup. 18 (1985), 287-343. | Article | Numdam | MR 816367 | Zbl 0587.30028

[ES] D. Eberlein, D. Schleicher: Rational parameter rays of Multibrot sets. Manuscript (1999). | Zbl 1349.37047

[GM] L. Goldberg, J. Milnor: Fixed points of polynomial maps I. Ann. Scient. Ec. Norm. Sup. 25 (1992). | Numdam | MR 1198093 | Zbl 0771.30027

L. Goldberg, J. Milnor: Fixed points of polynomial maps II. Ann. Scient. Ec. Norm. Sup. 26 (1993), 51-98. | Article | Numdam | MR 1209913 | Zbl 0771.30028

[HS] J. Hubbard, D. Schleicher: The spider algorithm. In: Complex dynamics: the mathematics behind the Mandelbrot and Julia sets. AMS, Proceedings in Applied Mathematics 49 (1994), 155-180. | MR 1315537 | Zbl 0853.58088

[Ke1] K. Keller: Symbolic dynamics for angle-doubling on the circle III. Sturmian sequences and the quadratic map. Ergod. Th. Dyn. Sys. 14 (1994), 787-805. | MR 1304142 | Zbl 0830.58011

[Ke2] K. Keller: Invariante Faktoren, Juliaäquivalenzen und die abstrakte Mandelbrotmenge. Habilitationsschrift, Universität Greifswald (1996).

[La1] P. Lavaurs: Une description combinatoire de l'involution définie par M sur les rationnels à dénominateur impair. Comptes Rendus Aca. Sci. Paris (4) 303 (1986) 143-146. | MR 853606 | Zbl 0663.58018

[La2] P. Lavaurs: Systèmes dynamiques holomorphes: explosion de points périodiques paraboliques. Thèse, Université de Paris-Sud (1989).

[LS] E. Lau, D. Schleicher: Internal addresses in the Mandelbrot set and irreducibility of polynomials. Preprint, Institute for Mathematical Sciences, Stony Brook, #19 (1994). | MR 2691195

[M1] J. Milnor: Dynamics in one complex variable: introductory lectures. Vieweg Verlag (1999). | MR 1721240 | Zbl 0972.30014 | Zbl 0946.30013

[M2] J. Milnor: Periodic orbits, external rays and the Mandelbrot set; an expository account. In this volume, 277-333. | MR 1755445 | Zbl 0941.30016

[McM] C. Mcmullen: The Mandelbrot set is universal. Preprint (1997). | MR 1765082 | Zbl 1062.37042

[NS] S. Nakane, D. Schleicher: On multicorns and unicorns I: antiholomorphic dynamics and hyperbolic components. In preparation. | Zbl 1057.37047

[Pr1] C. Penrose: On quotients of the shift associated with dendrite Julia sets of quadratic polynomials. Thesis, University of Coventry (1990).

[Pr2] C. Penrose: Quotients of the shift associated with dendrite Julia sets. Manuscript (1994).

[S1] D. Schleicher: Internal addresses in the Mandelbrot set and irreducibility of polynomials. Thesis, Cornell University (1994). | MR 2691195

[S2] D. Schleicher: On Fibers and Local Connectivity of the Mandelbrot and Multibrot Sets. Preprint, Institute for Mathematical Sciences, Stony Brook, #13 (1998). | MR 2112117 | Zbl 1074.30025

[T] W. Thurston: On the geometry and dynamics of iterated rational maps. Preprint, Princeton University (1985). | MR 2508255 | Zbl 1185.37111

[TY] Tan Lei and Yin Yongcheng: Local connectivity of the Julia set for geometrically finite rational maps. Science in China (Series A) 39 1 (1996), 39-47. | MR 1397233 | Zbl 0858.30021