@incollection{AST_2003__287__1_0, author = {Dedieu, Jean-Pierre and Shub, Mike}, title = {On random and mean exponents for unitarily invariant probability measures on $\mathbb{GL}_n (\mathbb{C})$}, booktitle = {Geometric methods in dynamics (II) : Volume in honor of Jacob Palis}, editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe}, series = {Ast\'erisque}, pages = {1--18}, publisher = {Soci\'et\'e math\'ematique de France}, number = {287}, year = {2003}, mrnumber = {2039997}, zbl = {1213.37083}, language = {en}, url = {http://archive.numdam.org/item/AST_2003__287__1_0/} }
TY - CHAP AU - Dedieu, Jean-Pierre AU - Shub, Mike TI - On random and mean exponents for unitarily invariant probability measures on $\mathbb{GL}_n (\mathbb{C})$ BT - Geometric methods in dynamics (II) : Volume in honor of Jacob Palis AU - Collectif ED - de Melo, Wellington ED - Viana, Marcelo ED - Yoccoz, Jean-Christophe T3 - Astérisque PY - 2003 SP - 1 EP - 18 IS - 287 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2003__287__1_0/ LA - en ID - AST_2003__287__1_0 ER -
%0 Book Section %A Dedieu, Jean-Pierre %A Shub, Mike %T On random and mean exponents for unitarily invariant probability measures on $\mathbb{GL}_n (\mathbb{C})$ %B Geometric methods in dynamics (II) : Volume in honor of Jacob Palis %A Collectif %E de Melo, Wellington %E Viana, Marcelo %E Yoccoz, Jean-Christophe %S Astérisque %D 2003 %P 1-18 %N 287 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2003__287__1_0/ %G en %F AST_2003__287__1_0
Dedieu, Jean-Pierre; Shub, Mike. On random and mean exponents for unitarily invariant probability measures on $\mathbb{GL}_n (\mathbb{C})$, dans Geometric methods in dynamics (II) : Volume in honor of Jacob Palis, Astérisque, no. 287 (2003), pp. 1-18. http://archive.numdam.org/item/AST_2003__287__1_0/
[1] Complexity and Real Computation, Springer, 1998. | DOI | MR | Zbl
, , ,[2] Products of Random Matrices with Applications to Schrödinger Operators, Progress in Probability and Statistics, Vol. 8, Birkhauser, 1985. | MR | Zbl
and[3] Recent Results about Stable Ergodicity, to appear in: Proceedings on Symposia in Pure Mathematics, the Seattle Conference of Smooth Ergodic Theory, AMS. | MR | Zbl
, , and ,[4] Lyapunov Indices of a Product of Random Matrices, Russian Math. Surveys 44:5 (1989), pp. 11-71. | DOI | Zbl
and ,[5] Propriétés de contraction d'un semi-groupe de matrices inversibles. Coefficients de Liapunoff d'un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989), pp. 165-196. | DOI | MR | Zbl
and ,[6] Positivity of the Exponent for Stationary Sequences of Matrices, in: Lyapunov Exponents, Proceedings, Bremen 1984, Arnold L. and V. Wihstutz Eds., Lectures Notes in Math. Vol. 1186. | Zbl
,[7] A Multiplicative Ergodic Theorern. Lyapunov Characteristic Numbers for Dynamical Systems, Trans. Moscow Math. Soc., 19, (1968), pp. 197-231. | MR | Zbl
,[8] Ergodic Theory of Differentiable Dynamical Systems, Publications Mathématiques de l'IHES, Volume 50, (1979), pp. 27-58. | DOI | EuDML | Numdam | MR | Zbl
,[9] Some Linearly Induced Morse-Smale Systems, the Algorithm and the Toda Lattice, in: The Legacy of Sonia Kovalevskaya, Linda Keen Ed., Contemporary Mathematics, Vol. 64, AMS, (1987), pp. 181-193. | DOI | MR | Zbl
and ,