Variétés carquois de Nakajima [d'après Nakajima, Lusztig, Varagnolo, Vasserot, Crawley-Boevey, ...]
Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981, Astérisque no. 317  (2008), Talk no. 976, p. 295-344
@incollection{AST_2008__317__295_0,
     author = {Schiffmann, Olivier},
     title = {Vari\'et\'es carquois de Nakajima [d'apr\`es Nakajima, Lusztig, Varagnolo, Vasserot, Crawley-Boevey, ...]},
     booktitle = {S\'eminaire Bourbaki - Volume 2006/2007  - Expos\'es 967-981},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {317},
     year = {2008},
     note = {talk:976},
     pages = {295-344},
     zbl = {1151.14026},
     mrnumber = {2487738},
     language = {fr},
     url = {http://www.numdam.org/item/AST_2008__317__295_0}
}
Schiffmann, Olivier. Variétés carquois de Nakajima [d'après Nakajima, Lusztig, Varagnolo, Vasserot, Crawley-Boevey, ...], in Séminaire Bourbaki - Volume 2006/2007  - Exposés 967-981, Astérisque, no. 317 (2008), Talk no. 976, pp. 295-344. http://www.numdam.org/item/AST_2008__317__295_0/

[1] M. F. Atiyah, N. J. Hitchin, V. G. Drinfel'D & Y. I. Manin - Construction of instantons, Phys. Lett. A 65 (1978), p. 185-187. | Article | MR 598562 | Zbl 0424.14004

[2] V. Baranovsky, V. Ginzburg & A. Kuznetsov - Quiver varieties and a noncommutative 2 , Compositio Math. 134 (2002), p. 283-318. | Article | MR 1943905 | Zbl 1048.14001

[3] R. Bezrukavnikov, I. Mirković & D. Rumynin - Localization of modules for a semisimple Lie algebra in prime characteristic, à paraître dans Ann. of Math. | MR 2415389 | Zbl 1220.17009

[4] A. Braverman & D. Gaitsgory - Crystals via the affine Grassmannian, Duke Math. J. 107 (2001), p. 561-575. | Article | MR 1828302 | Zbl 1015.20030

[5] J. Briançon - Description de Hilb n C{x,y}, Invent. Math. 41 (1977), p. 45-89. | Article | MR 457432 | Zbl 0353.14004

[6] V. Chari & A. Pressley - Quantum affine algebras and their representations, in Representations of groups (Banff, AB, 1994), CMS Conf. Proc., vol. 16, Amer. Math. Soc., 1995, p. 59-78. | MR 1357195 | Zbl 0855.17009

[7] N. Chriss & V. Ginzburg - Representation theory and complex geometry, Birkhäuser, 1997. | MR 1433132 | Zbl 0879.22001

[8] W. Crawley-Boevey - Geometry of the moment map for representations of quivers, Compositio Math. 126 (2001), p. 257-293. | Article | MR 1834739 | Zbl 1037.16007

[9] W. Crawley-Boevey, Normality of Marsden-Weinstein reductions for representations of quivers, Math. Ann. 325 (2003), p. 55-79. | Article | MR 1957264 | Zbl 1063.16016

[10] W. Crawley-Boevey & M. P. Holland - Noncommutative deformations of Kleinian singularities, Duke Math. J. 92 (1998), p. 605-635. | Article | MR 1620538 | Zbl 0974.16007

[11] V. G. Drinfel'D - A new realization of Yangians and of quantum affine algebras, Dokl. Akad. Nauk SSSR 296 (1987), p. 13-17. | MR 914215 | Zbl 0667.16004

[12] G. Ellingsrud & S. A. Stromme - On the homology of the Hilbert scheme of points in the plane, Invent. Math. 87 (1987), p. 343-352. | Article | MR 870732 | Zbl 0625.14002

[13] J. Fogarty - Algebraic families on an algebraic surface, Amer. J. Math 90 (1968), p. 511-521. | Article | MR 237496 | Zbl 0176.18401

[14] E. Frenkel & N. Reshetikhin - The q-characters of representations of quantum affine algebras and deformations of 𝒲-algebras, in Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), Contemp. Math., vol. 248, Amer. Math. Soc;, 1999, p. 163-205. | Article | MR 1745260 | Zbl 0973.17015

[15] I. Frenkel, M. Khovanov & O. Schiffmann - Homological realization of Nakajima varieties and Weyl group actions, Compos. Math. 141 (2005), p. 1479-1503. | Article | MR 2188446 | Zbl 1095.17002

[16] V. Ginzburg - Deligne-Langlands conjecture and representations of affine Hecke algebras, prépublication Moscow Univ., 1985.

[17] V. Ginzburg & M. Kapranov - Hilbert schemes and Nakajima's quiver varieties, non publié, 1995.

[18] V. Ginzburg &, É. Vasserot - Langlands reciprocity for affine quantum groups of type A n , Internat. Math. Res. Notices 3 (1993), p. 67-85. | Article | MR 1208827 | Zbl 0785.17014

[19] G. Gonzalez-Sprinberg & J.-L. Verdier - Construction géométrique de la correspondance de McKay, Ann. Sci. École Norm. Sup. (4) 16 (1983), p. 409-449 (1984). | Numdam | MR 740077 | Zbl 0538.14033

[20] L. Göttsche - The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990), p. 193-207. | Article | MR 1032930 | Zbl 0679.14007

[21] I. Grojnowski - Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996), p. 275-291. | Article | MR 1386846 | Zbl 0879.17011

[22] G. Hatayama, A. Kuniba, M. Okado, T. Takagi & Z. Tsuboi - Paths, crystals and fermionic formulae, in MathPhys odyssey, 2001, Prog. Math. Phys., vol. 23, Birkhäuser, 2002, p. 205-272. | Article | MR 1903978 | Zbl 1016.17011

[23] T. Hausel - Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform, Proc. Natl. Acad. Sci. USA 103 (2006), p. 6120-6124. | Article | MR 2221039 | Zbl 1160.53374

[24] D. Hernandez - Algebraic approach to q,t-characters, Adv. Math. 187 (2004), p. 1-52. | Article | MR 2074171 | Zbl 1098.17009

[25] D. Hernandez, The Kirillov-Reshetikhin conjecture and solutions of T-systems, J. reine angew. Math. 596 (2006), p. 63-87. | MR 2254805 | Zbl 1160.17010

[26] D. Hernandez & H. Nakajima - Level 0 monomial crystals, Nagoya Math. J. 184 (2006), p. 85-153. | Article | MR 2285232 | Zbl 1201.17008

[27] J. Hong & S.-J. Kang - Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, vol. 42, American Mathematical Society, 2002. | Article | MR 1881971 | Zbl 1134.17007

[28] Y. Ito & I. Nakamura - McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), p. 135-138. | Article | MR 1420598 | Zbl 0881.14002

[29] A. Joseph - Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 29, Springer, 1995. | MR 1315966 | Zbl 0808.17004

[30] V. Kac - Infinite-dimensional Lie algebras, third éd., Cambridge University Press, 1990. | MR 1104219 | Zbl 0716.17022

[31] V. Kac & A. K. Raina - Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, vol. 2, World Scientific Publishing Co. Inc., 1987. | MR 1021978 | Zbl 0668.17012

[32] J. Kamnitzer - Crystal structures on Mirković-Vilonen polytopes, prépublication arXiv:math.QA/0505398, 2005.

[33] M. Kapranov - Eisenstein series and quantum affine algebras, J. Math. Sci. (New York) 84 (1997), p. 1311-1360, Algebraic geometry, 7. | Article | MR 1465518 | Zbl 0929.11015

[34] M. Kashiwara - Bases cristallines des groupes quantiques, Cours Spécialisés, vol. 9, Société Mathématique de France, 2002, Edited by Charles Cochet. | MR 1997677 | Zbl 1066.17007

[35] M. Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), p. 117-175. | Article | MR 1890649 | Zbl 1033.17017

[36] M. Kashiwara, Realizations of crystals, in Combinatorial and geometric representation theory (Seoul, 2001), Contemp. Math., vol. 325, Amer. Math. Soc., 2003, p. 133-139. | Article | MR 1988989 | Zbl 1066.17006

[37] M. Kashiwara & Y. Saito - Geometric construction of crystal bases, Duke Math. J. 89 (1997), p. 9-36. | Article | MR 1458969 | Zbl 0901.17006

[38] D. Kazhdan & G. Lusztig - Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), p. 153-215. | Article | MR 862716 | Zbl 0613.22004

[39] A. N. Kirillov & N. Reshetikhin - Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160 (1987), p. 211-221, 301. | MR 906858 | Zbl 0637.16007

[40] P. Kronheimer - The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), p. 665-683. | Article | MR 992334 | Zbl 0671.53045

[41] P. Kronheimer & H. Nakajima - Yang-Mills instantons on ALE gravitational instantons, Math. Ann. 288 (1990), p. 263-307. | Article | MR 1075769 | Zbl 0694.53025

[42] A. Kuniba, T. Nakanishi & J. Suzuki - Functional relations in solvable lattice models. I. Functional relations and representation theory, Internat. J. Modem Phys. A 9 (1994), p. 5215-5266. | Article | MR 1304818 | Zbl 0985.82501

[43] M. Lehn & C. Sorger - Symmetric groups and the cup product on the cohomology of Hilbert schemes, Duke Math. J. 110 (2001), p. 345-357. | Article | MR 1865244 | Zbl 1093.14008

[44] P. Littelmann - Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), p. 499-525. | Article | MR 1356780 | Zbl 0858.17023

[45] G. Lusztig - Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), p. 365-421. | Article | MR 1088333 | Zbl 0738.17011

[46] G. Lusztig, Affine quivers and canonical bases, Publ. Math. I.H.É.S. 76 (1992), p. 111-163. | Article | Numdam | MR 1215594 | Zbl 0776.17013

[47] G. Lusztig, Bases in equivariant K-theory, Represent. Theory 2 (1998), p. 298-369. | Article | MR 1637973 | Zbl 0901.20034

[48] G. Lusztig, Fermionic forms and Betti numbers, prépublication arXiv:math.QA/0005010, 2000.

[49] G. Lusztig, Quiver varieties and Weyl group actions, Ann. Inst. Fourier (Grenoble) 50 (2000), p. 461-489. | Article | Numdam | MR 1775358 | Zbl 0958.20036

[50] G. Lusztig, Remarks on quiver varieties, Duke Math. J. 105 (2000), p. 239-265. | Article | MR 1793612 | Zbl 1017.20040

[51] G. Lusztig, Semicanonical bases arising from enveloping algebras, Adv. Math. 151 (2000), p. 129-139. | Article | MR 1758244 | Zbl 0983.17009

[52] A. Maffei - Quiver varieties of type A, Comment. Math. Helv. 80 (2005), p. 1-27. | Article | MR 2130242 | Zbl 1095.16008

[53] A. Malkin - Tensor product varieties and crystals : the ADE case, Duke Math. J. 116 (2003), p. 477-524. | Article | MR 1958096 | Zbl 1048.20029

[54] I. Mirković & K. Vilonen - Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett. 7 (2000), p. 13-24. | Article | MR 1748284 | Zbl 0987.14015

[55] I. Mirković & M. Vybornov - On quiver varieties and affine Grassmannians of type A, C. R. Math. Acad. Sci. Paris 336 (2003), p. 207-212. | Article | MR 1968260 | Zbl 1068.14056

[56] S. Mozgovoy - Fermionic forms and quiver varieties, prépublication arXiv:math.QA/0610084, 2006.

[57] S. Mozgovoy, On the multiplicities of the irreducible highest weight modules over Kac-Moody algebras, prépublication arXiv:math.RT/0609349, 2006.

[58] D. Mumford, J. Fogarty & F. Kirwan - Geometric invariant theory, third éd., Ergebnisse der Mathematik und ihrer Grenzgebiete, 2. Folge, vol. 34, Springer, 1994. | MR 1304906 | Zbl 0797.14004

[59] H. Nakajima - A geometric construction of algebras, Lectures at the University of Hong Kong http://www.math.kyoto-u.ac.jp/~nakajima/bibli.html.

[60] H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), p. 365-416. | MR 1302318 | Zbl 0826.17026

[61] H. Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. (2) 145 (1997), p. 379-388. | Article | MR 1441880 | Zbl 0915.14001

[62] H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), p. 515-560. | Article | MR 1604167 | Zbl 0970.17017

[63] H. Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series, vol. 18, American Mathematical Society, 1999. | Article | MR 1711344 | Zbl 0949.14001

[64] H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), p. 145-238. | Article | MR 1808477 | Zbl 0981.17016

[65] H. Nakajima, Quiver varieties and McKay correspondence, Lectures at Hokkaido University http://www.math.kyoto-u.ac.jp/~nakajima/bibli.html, 2001.

[66] H. Nakajima, Quiver varieties and tensor products, Invent. Math. 146 (2001), p. 399-449. | Article | MR 1865400 | Zbl 1023.17008

[67] H. Nakajima, Reflection functors for quiver varieties and Weyl group actions, Math. Ann. 327 (2003), p. 671-721. | Article | MR 2023313 | Zbl 1060.16017

[68] H. Nakajima, t-analogs of q-characters of quantum affine algebras of type An,Dn, in Combinatorial and geometric representation theory (Seoul, 2001), Contemp. Math., vol. 325, Amer. Math. Soc., 2003, p. 141-160. | MR 1988990 | Zbl 1098.17013

[69] H. Nakajima, Quiver varieties and t-analogs of q-characters of quantum affine algebras, Ann. of Math. (2) 160 (2004), p. 1057-1097. | Article | MR 2144973 | Zbl 1140.17015

[70] C. Okonek, M. Schneider & H. Spindler - Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, 1980. | MR 561910 | Zbl 0438.32016

[71] C. M. Ringel - Hall algebras and quantum groups, Invent. Math. 101 (1990), p. 583-591. | Article | MR 1062796 | Zbl 0735.16009

[72] Y. Saito - Crystal bases and quiver varieties, Math. Ann. 324 (2002), p. 675-688. | Article | MR 1942245 | Zbl 1041.17018

[73] O. Schiffmann - Noncommutative projective curves and quantum loop algebras, Duke Math. J. 121 (2004), p. 113-168. | Article | MR 2031167 | Zbl 1054.17021

[74] P. Slodowy - Simple singularities and simple algebraic groups, Lecture Notes in Mathematies, vol. 815, Springer, 1980. | MR 584445 | Zbl 0441.14002

[75] C. Vafa & E. Witten - A strong coupling test of S-duality, Nuclear Phys. B 431 (1994), p. 3-77. | Article | MR 1305096 | Zbl 0964.81522

[76] M. Varagnolo - Quiver varieties and Yangians, Lett. Math. Phys. 53 (2000), p. 273-283. | Article | MR 1818101 | Zbl 0972.17010

[77] M. Varagnolo & É. Vasserot - On the K-theory of the cyclic quiver variety, Internat. Math. Res. Notices 18 (1999), p. 1005-1028. | Article | MR 1722361 | Zbl 1014.17017

[78] M. Varagnolo & É. Vasserot, Standard modules of quantum affine algebras, Duke Math. J. 111 (2002), p. 509-533. | Article | MR 1885830 | Zbl 1011.17012

[79] M. Varagnolo & É. Vasserot, Canonical bases and quiver varieties, Represent. Theory 7 (2003), p. 227-258. | Article | MR 1990661 | Zbl 1055.17007

[80] M. Varagnolo & É. Vasserot, Perverse sheaves and quantum Grothendieck rings, in Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., vol. 210, Birkhäuser, 2003, p. 345-365. | Article | MR 1985732 | Zbl 1162.17307

[81] É. Vasserot - Affine quantum groups and equivariant K-theory, Transform. Groups 3 (1998), p. 269-299. | Article | MR 1640675 | Zbl 0969.17009

[82] É. Vasserot, Sur l'anneau de cohomologie du schéma de Hilbert de 𝐂 2 , C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), p. 7-12. | Article | MR 1805619 | Zbl 0991.14001