Characterization of the Radon-Nikodym property in terms of inverse limits
Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon, Astérisque, no. 321 (2008), pp. 129-138.
@incollection{AST_2008__321__129_0,
     author = {Cheeger, Jeff and Kleiner, Bruce},
     title = {Characterization of the {Radon-Nikodym} property in terms of inverse limits},
     booktitle = {G\'eom\'etrie diff\'erentielle, physique math\'ematique, math\'ematiques et soci\'et\'e (I) : Volume en l'honneur de Jean Pierre Bourguignon},
     editor = {Hijazi Oussama},
     series = {Ast\'erisque},
     pages = {129--138},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {321},
     year = {2008},
     mrnumber = {2521646},
     zbl = {1191.46016},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2008__321__129_0/}
}
TY  - CHAP
AU  - Cheeger, Jeff
AU  - Kleiner, Bruce
TI  - Characterization of the Radon-Nikodym property in terms of inverse limits
BT  - Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon
AU  - Collectif
ED  - Hijazi Oussama
T3  - Astérisque
PY  - 2008
SP  - 129
EP  - 138
IS  - 321
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2008__321__129_0/
LA  - en
ID  - AST_2008__321__129_0
ER  - 
%0 Book Section
%A Cheeger, Jeff
%A Kleiner, Bruce
%T Characterization of the Radon-Nikodym property in terms of inverse limits
%B Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon
%A Collectif
%E Hijazi Oussama
%S Astérisque
%D 2008
%P 129-138
%N 321
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_2008__321__129_0/
%G en
%F AST_2008__321__129_0
Cheeger, Jeff; Kleiner, Bruce. Characterization of the Radon-Nikodym property in terms of inverse limits, in Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon, Astérisque, no. 321 (2008), pp. 129-138. http://archive.numdam.org/item/AST_2008__321__129_0/

[1] Y. Benyamini & J. Lindenstrauss - Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloauium Publications, vol. 48, Amer. Math. Soc., 2000. | MR | Zbl

[2] J. Bourgain - New classes of p -spaces, Lecture Notes in Math., vol. 889, Springer, 1981. | MR | Zbl

[3] R. D. Bourgin - Geometric aspects of convex sets with the Radon-Nikodym property, Lecture Notes in Math., vol. 993, Springer, 1983. | MR | Zbl

[4] J. Cheeger - "Differentiability of Lipschitz functions on metric measure spaces", Geom. Fund. Anal. 9 (1999), p. 428-517. | DOI | MR | Zbl

[5] J. Cheeger & B. Kleiner - "On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces", in Inspired by S. S. Chern, Nankai Tracts Math., vol. 11, World Sci. Publ., Hackensack, NJ, 2006, p. 129-152. | DOI | MR | Zbl

[6] J. Cheeger & B. Kleiner, "Differentiability of Lipschitz maps from metric measure spaces to Banach spaces with the Radon-Nikodym Property", preprint, 2008. | Zbl

[7] I. M. Gelfand - "Abstrakte Funktionen und lineare Operatoren", Mat. Sbornik 46 (1938), p. 235-284. | JFM | Zbl

[8] N. Ghoussoub & B. Maurey - "The asymptotic-norming and the Radon-Nikodým properties are equivalent in separable Banach spaces", Proc. Amer. Math. Soc. 94 (1985), p. 665-671. | MR | Zbl

[9] J. Heinonen & P. Koskela - "From local to global in quasiconformal structures", Proc. Nat Acad. Sci. U.S.A. 93 (1996), p. 554-556. | DOI | MR | Zbl

[10] R. C. James & A. Ho - "The asymptotic-norming and Radon-Nikodym properties for Banach spaces", Ark. Mat. 19 (1981), p. 53-70. | DOI | MR | Zbl

[11] M. Ĭ. Kadec' - "On the connection between weak and strong convergence", Dopovidi Akad. Nauk Ukraïn. RSR 1959 (1959), p. 949-952. | MR | Zbl

[12] V. Klee - "Mappings into normed linear spaces", Fund. Math. 49 (1960/1961), p. 25-34. | DOI | EuDML | MR | Zbl

[13] P. W. Mccartney & R. C. O'Brien - "A separable Banach space with the Radon-Nikodým property that is not isomorphic to a subspace of a separable dual", Proc. Amer. Math. Soc. 78 (1980), p. 40-42. | MR | Zbl