@incollection{AST_2008__321__5_0, author = {Hitchin, Nigel}, title = {Einstein metrics and magnetic monopoles}, booktitle = {G\'eom\'etrie diff\'erentielle, physique math\'ematique, math\'ematiques et soci\'et\'e (I) : Volume en l'honneur de Jean Pierre Bourguignon}, editor = {Hijazi Oussama}, series = {Ast\'erisque}, pages = {5--29}, publisher = {Soci\'et\'e math\'ematique de France}, number = {321}, year = {2008}, mrnumber = {2521642}, zbl = {1180.53051}, language = {en}, url = {http://archive.numdam.org/item/AST_2008__321__5_0/} }
TY - CHAP AU - Hitchin, Nigel TI - Einstein metrics and magnetic monopoles BT - Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon AU - Collectif ED - Hijazi Oussama T3 - Astérisque PY - 2008 SP - 5 EP - 29 IS - 321 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2008__321__5_0/ LA - en ID - AST_2008__321__5_0 ER -
%0 Book Section %A Hitchin, Nigel %T Einstein metrics and magnetic monopoles %B Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon %A Collectif %E Hijazi Oussama %S Astérisque %D 2008 %P 5-29 %N 321 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2008__321__5_0/ %G en %F AST_2008__321__5_0
Hitchin, Nigel. Einstein metrics and magnetic monopoles, in Géométrie différentielle, physique mathématique, mathématiques et société (I) : Volume en l'honneur de Jean Pierre Bourguignon, Astérisque, no. 321 (2008), pp. 5-29. http://archive.numdam.org/item/AST_2008__321__5_0/
[1] Magnetic monopoles in hyperbolic spaces", in Vector bundles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., 1987, p. 1-33. | MR | Zbl
- "[2] The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton University Press, 1988. | MR | Zbl
& -[3] Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 10, Springer, 1987. | MR | Zbl
-[4] Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, 2008. | MR | Zbl
& -[5] Gravitational instantons of type ", Comm. Math. Phys. 260 (2005), p. 299-317. | DOI | MR | Zbl
& - "[6] Singular monopoles and gravitational instantons", Comm. Math. Phys. 203 (1999), p. 713-728. | DOI | MR | Zbl
& - "[7] Nahm's equations and hyper-Kähler geometry", Comm. Math. Phys. 158 (1993), p. 545-568. | DOI | MR | Zbl
- "[8] A family of hyper-Kähler manifolds", Quart. J. Math. Oxford Ser. 45 (1994), p. 463-478. | DOI | MR | Zbl
, "[9] Positive sectional curvature on -Sasakian manifolds", Ann. Global Anal. Geom. 25 (2004), p. 59-72. | DOI | MR | Zbl
- "[10] Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices", Phys. Lett. A 272 (2000), p. 236-244. | DOI | MR | Zbl
& - "[11] Positively curved cohomogeneity one manifolds and -Sasakian geometry", J. Differential Geom. 78 (2008), p. 33-111. | DOI | MR | Zbl
, & - "[12] The self-duality equations on a Riemann surface", Proc. London Math. Soc. 55 (1987), p. 59-126. | DOI | MR | Zbl
- "[13] Poncelet polygons and the Painlevé equations", in Geometry and analysis (Bombay, 1992), Tata Inst. Fund. Res., 1995, p. 151-185. | MR | Zbl
, "[14] A new family of Einstein metrics", in Manifolds and geometry (Pisa, 1993), Sympos. Math., XXXVI, Cambridge Univ. Press, 1996, p. 190-222. | MR | Zbl
, "[15] Electric-magnetic duality and the geometric Langlands program", Commun. Number Theory Phys. 1 (2007), p. 1-236. | DOI | MR | Zbl
& - "[16] Metrics on the moduli spaces of instantons over Euclidean -space", Comm.. Math. Phys. 135 (1991), p. 467-482. | DOI | MR | Zbl
- "[17] Hyperbolic monopoles and holomorphic spheres", Ann. Global Anal. Geom. 23 (2003), p. 101-128. | DOI | MR | Zbl
, & - "[18] A new approach to monopole moduli spaces", Nonlinearity 20 (2007), 1645-1675. | DOI | MR | Zbl
- "[19] Singular hyperbolic monopoles", Comm. Math. Phys. 277 (2008), p. 161-187. | DOI | MR | Zbl
, "[20] Differential geometry of quaternionic manifolds", Ann. Sci. Ecole Norm. Sup. 19 (1986), p. 31-55. | DOI | EuDML | Numdam | MR | Zbl
- "[21] Vector bundles on the projective plane", Proc. London Math. Soc. 11 (1961), p. 623-640. | DOI | MR | Zbl
- "[22] The Atiyah-Hitchin bracket and the open Toda lattice", J. Geom. Phys. 46 (2003), p. 283-307. | DOI | MR | Zbl
- "[23] The Atiyah-Hitchin bracket and the cubic nonlinear Schrodinger equation", IMRP Int. Math. Res. Pap. (2006), p. 17683, 1-60. | MR | Zbl
, "[24] A new type of a positively curved manifold", preprint arXiv:0809.2304v2.
- "