Pure spinors on Lie groups
From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 327 (2009), pp. 131-199.
@incollection{AST_2009__327__131_0,
     author = {Alekseev, A. and Bursztyn, H. and Meinrenken, E.},
     title = {Pure spinors on {Lie} groups},
     booktitle = {From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut},
     editor = {Dai Xianzhe and L\'eandre R\'emi and Xiaonan Ma and Zhang Weiping},
     series = {Ast\'erisque},
     pages = {131--199},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {327},
     year = {2009},
     mrnumber = {2642360},
     zbl = {1251.53052},
     language = {en},
     url = {http://archive.numdam.org/item/AST_2009__327__131_0/}
}
TY  - CHAP
AU  - Alekseev, A.
AU  - Bursztyn, H.
AU  - Meinrenken, E.
TI  - Pure spinors on Lie groups
BT  - From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut
AU  - Collectif
ED  - Dai Xianzhe
ED  - Léandre Rémi
ED  - Xiaonan Ma
ED  - Zhang Weiping
T3  - Astérisque
PY  - 2009
SP  - 131
EP  - 199
IS  - 327
PB  - Société mathématique de France
UR  - http://archive.numdam.org/item/AST_2009__327__131_0/
LA  - en
ID  - AST_2009__327__131_0
ER  - 
%0 Book Section
%A Alekseev, A.
%A Bursztyn, H.
%A Meinrenken, E.
%T Pure spinors on Lie groups
%B From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut
%A Collectif
%E Dai Xianzhe
%E Léandre Rémi
%E Xiaonan Ma
%E Zhang Weiping
%S Astérisque
%D 2009
%P 131-199
%N 327
%I Société mathématique de France
%U http://archive.numdam.org/item/AST_2009__327__131_0/
%G en
%F AST_2009__327__131_0
Alekseev, A.; Bursztyn, H.; Meinrenken, E. Pure spinors on Lie groups, dans From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut, Astérisque, no. 327 (2009), pp. 131-199. http://archive.numdam.org/item/AST_2009__327__131_0/

[1] A. Alekseev & Y. Kosmann-Schwarzbach - "Manin pairs and moment maps", J. Differential Geom. 56 (2000), p. 133-165. | DOI | MR | Zbl

[2] A. Alekseev, Y. Kosmann-Schwarzbach & E. Meinrenken - "Quasi-Poisson manifolds", Canad. J. Math. 54 (2002), p. 3-29. | DOI | MR | Zbl

[3] A. Alekseev, A. Malkin & E. Meinrenken - "Lie group valued moment maps", J. Differential Geom. 48 (1998), p. 445-495. | DOI | MR | Zbl

[4] A. Alekseev & E. Meinrenken - "The non-commutative Weil algebra", Invent. Math. 139 (2000), p. 135-172. | DOI | MR | Zbl

[5] A. Alekseev & E. Meinrenken, "Clifford algebras and the classical dynamical Yang-Baxter equation", Math. Res. Lett. 10 (2003), p. 253-268. | DOI | MR | Zbl

[6] A. Alekseev, E. Meinrenken & C. Woodward - "Group-valued equivariant localization", Invent. Math. 140 (2000), p. 327-350. | DOI | MR | Zbl

[7] A. Alekseev, E. Meinrenken & C. Woodward, "Linearization of Poisson actions and singular values of matrix products", Ann. Inst. Fourier (Grenoble) 51 (2001), p. 1691-1717. | DOI | EuDML | Numdam | MR | Zbl

[8] A. Alekseev, E. Meinrenken & C. Woodward, "Duistermaat-Heckman measures and moduli spaces of flat bundles over surfaces", Geom. Funct. Anal. 12 (2002), p. 1-31. | DOI | MR | Zbl

[9] A. Alekseev & P. Xu - "Derived brackets and Courant algebroids", unfinished manuscript, 2002.

[10] M. Bangoura & Y. Kosmann-Schwarzbach - "Équation de Yang-Baxter dynamique classique et algébroïdes de Lie", C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), p. 541-546. | DOI | MR | Zbl

[11] M. Van Den Bergh - "Double Poisson algebras", Trans. Amer. Math. Soc. 360 (2008), p. 5711-5769. | DOI | MR | Zbl

[12] N. Berline & M. Vergne - "Zéros d'un champ de vecteurs et classes caractéristiques équivariantes", Duke Math. J. 50 (1983), p. 539-549. | MR | Zbl

[13] P. Boalch - "Quasi-Hamiltonian geometry of meromorphic connections", Duke Math. J. 139 (2007), p. 369-405. | DOI | MR | Zbl

[14] H. Bursztyn & M. Crainic - "Dirac structures, momentum maps, and quasi-Poisson manifolds", in The breadth of symplectic and Poisson geometry, Progr. Math., vol. 232, Birkhäuser, 2005, p. 1-40. | MR | Zbl

[15] H. Bursztyn, M. Crainic, A. Weinstein & C. Zhu - "Integration of twisted Dirac brackets", Duke Math. J. 123 (2004), p. 549-607. | DOI | MR | Zbl

[16] H. Bursztyn & O. Radko - "Gauge equivalence of Dirac structures and symplectic groupoids", Ann. Inst. Fourier (Grenoble) 53 (2003), p. 309-337. | DOI | EuDML | Numdam | MR | Zbl

[17] É. Cartan - The theory of spinors, The M.I.T. Press, Cambridge, Mass., 1967. | MR

[18] V. Chari & A. Pressley - A guide to quantum groups, Cambridge University Press, 1995. | MR | Zbl

[19] C. C. Chevalley - The algebraic theory of spinors, Columbia University Press, 1954. | MR | Zbl

[20] T. J. Courant - "Dirac manifolds", Trans. Amer. Math. Soc. 319 (1990), p. 631-661. | DOI | MR | Zbl

[21] T. J. Courant & A. Weinstein - "Beyond Poisson structures", in Action hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, 1986), Travaux en Cours, vol. 27, Hermann, 1988, p. 39-49. | MR | Zbl

[22] P. Delorme - "Classification des triples de Manin pour les algèbres de Lie réductives complexes", J. Algebra 246 (2001), p. 97-174. | DOI | MR | Zbl

[23] V. G. Drinfel'D - "Quantum groups", in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., 1987, p. 798-820. | MR | Zbl

[24] J.-P. Dufour & N. T. Zung - Poisson structures and their normal forms, Progress in Mathematics, vol. 242, Birkhäuser, 2005. | MR | Zbl

[25] P. Etingof & A. Varchenko - "Geometry and classification of solutions of the classical dynamical Yang-Baxter equation", Comm. Math. Phys. 192 (1998), p. 77-120. | DOI | MR | Zbl

[26] S. Evens & J.-H. Lu - "Poisson harmonic forms, Kostant harmonic forms, and the S 1 -equivariant cohomology of K/T" Adv. Math. 142 (1999), p. 171-220. | DOI | MR | Zbl

[27] S. Evens & J.-H. Lu,"On the variety of Lagrangian subalgebras. II", Ann. Sci. École Norm. Sup. 39 (2006), p. 347-379. | DOI | EuDML | Numdam | MR | Zbl

[28] M. Gualtieri - "Generalized complex geometry", Ph.D. Thesis, Oxford University, 2004, arXiv:math.DG/0401221.

[29] M. Gualtieri, "Generalized complex geometry", preprint arXiv:math.DG/0703298. | DOI | MR | Zbl

[30] V. Guillemin & S. Sternberg - "Some problems in integral geometry and some related problems in microlocal analysis", Amer. J. Math. 101 (1979), p. 915-955. | DOI | MR | Zbl

[31] K. Guruprasad, J. Huebschmann, L. Jeffrey & A. Weinstein - "Group systems, groupoids, and moduli spaces of parabolic bundles", Duke Math. J. 89 (1997), p. 377-412. | MR | Zbl

[32] N. Hitchin - "Generalized Calabi-Yau manifolds", Q. J. Math. 54 (2003), p. 281-308. | DOI | MR | Zbl

[33] S. Hu & B. Uribe - "Extended manifolds and extended equivariant cohomology", J. Geom. Phys. 59 (2009), p. 104-131. | DOI | MR | Zbl

[34] E. Karolinsky - "A classification of Poisson homogeneous spaces of complex reductive Poisson-Lie groups", in Poisson geometry (Warsaw, 1998), Banach Center Publ., vol. 51, Polish Acad. Sci., 2000, p. 103-108. | EuDML | MR | Zbl

[35] C. Klimčík & T. Strobl - "WZW-Poisson manifolds", J. Geom. Phys. 43 (2002), p. 341-344. | DOI | MR | Zbl

[36] Y. Kosmann-Schwarzbach - "Derived brackets", Lett. Math. Phys. 69 (2004), p. 61-87. | DOI | MR | Zbl

[37] Y. Kosmann-Schwarzbach & C. Laurent-Gengoux - "The modular class of a twisted Poisson structure", in Travaux mathématiques. Fasc. XVI, Trav. Math., XVI, Univ. Luxemb., Luxembourg, 2005, p. 315-339. | MR | Zbl

[38] B. Kostant & S. Sternberg - "Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras", Ann. Physics 176 (1987), p. 49-113. | DOI | MR | Zbl

[39] A. Kotov, P. Schaller & T. Strobl - "Dirac sigma models", Comm. Math. Phys. 260 (2005), p. 455-480. | DOI | MR | Zbl

[40] Z.-J. Liu, A. Weinstein & P. Xu - "Manin triples for Lie bialgebroids", J. Differential Geom. 45 (1997), p. 547-574. | DOI | MR | Zbl

[41] Z.-J. Liu & P. Xu - "Dirac structures and dynamical r-matrices", Ann. Inst. Fourier (Grenoble) 51 (2001), p. 835-859. | DOI | EuDML | Numdam | MR | Zbl

[42] J.-H. Lu - "Momentum mappings and reduction of Poisson actions", in Symplectic geometry, groupoids, and integrable systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., vol. 20, Springer, 1991, p. 209-226. | DOI | MR | Zbl

[43] K. C. H. Mackenzie - General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, vol. 213, Cambridge University Press, 2005. | MR | Zbl

[44] K. C. H. Mackenzie & P. Xu - "Lie bialgebroids and Poisson groupoids", Duke Math. J. 73 (1994), p. 415-452. | DOI | MR | Zbl

[45] E. Meinrenken - "The basic gerbe over a compact simple Lie group", Enseign. Math. 49 (2003), p. 307-333. | MR | Zbl

[46] E. Meinrenken, "Lie groups and Clifford algebras", lecture notes, University of Toronto, http://www.math.toronto.edu/mein/teaching/clif1.pdf, 2005.

[47] E. Meinrenken, "Lectures on pure spinors and moment maps", in Poisson geometry in mathematics and physics, Contemp. Math., vol. 450, Amer. Math. Soc., 2008, p. 199-222. | DOI | MR | Zbl

[48] D. Roytenberg - "Courant algebroids, derived brackets and even symplectic super-manifolds", Ph.D. Thesis, University of Berkeley, 1999, arXiv:math.DG/9910078. | MR

[49] M. A. Semenov-Tian-Shansky - "Dressing transformations and Poisson group actions", Publ. Res. Inst. Math. Sci. 21 (1985), p. 1237-1260. | DOI | MR | Zbl

[50] P. Ševera & A. Weinstein - "Poisson geometry with a 3-form background", Progr. Theoret. Phys. Suppl. 144 (2001), p. 145-154. | DOI | MR | Zbl

[51] A. Cannas Da Silva - Lectures on symplectic geometry, Lecture Notes in Math., vol. 1764, Springer, 2001. | MR | Zbl

[52] S. Sternberg - "Lie algebras", lecture notes http://www.math.harvard.edu/~shlomo/ docs/lie_algebras.pdf.

[53] M. Stiénon & P. Xu - "Reduction of generalized complex structures", J. Geom. Phys. 58 (2008), p. 105-121. | DOI | MR | Zbl

[54] A. Weinstein - Lectures on symplectic manifolds, CBMS Regional Conference Series in Mathematics, vol. 29, Amer. Math. Soc, 1979. | MR

[55] A. Weinstein, "The symplectic structure on moduli space", in The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, 1995, p. 627-635. | DOI | MR | Zbl

[56] A. Weinstein, "The modular automorphism group of a Poisson manifold", J. Geom. Phys. 23 (1997), p. 379-394. | DOI | MR | Zbl

[57] P. Xu - "Momentum maps and Morita equivalence", J. Differential Geom. 67 (2004), p. 289-333. | DOI | MR | Zbl