Le théorème de la sphère différentiable [d'après Brendle-Schoen]
Séminaire Bourbaki : volume 2008/2009 exposés 997-1011 - Avec table par noms d'auteurs de 1848/49 à 2008/09, Astérisque, no. 332 (2010), Exposé no. 1003, 21 p.
@incollection{AST_2010__332__161_0,
     author = {Besson, G\'erard},
     title = {Le th\'eor\`eme de la sph\`ere diff\'erentiable [d'apr\`es Brendle-Schoen]},
     booktitle = {S\'eminaire Bourbaki : volume 2008/2009 expos\'es 997-1011  - Avec table par noms d'auteurs de 1848/49 \`a 2008/09},
     author = {Collectif},
     series = {Ast\'erisque},
     note = {talk:1003},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {332},
     year = {2010},
     zbl = {1220.53043},
     mrnumber = {2648678},
     language = {fr},
     url = {http://archive.numdam.org/item/AST_2010__332__161_0/}
}
Besson,  Gérard. Le théorème de la sphère différentiable [d'après Brendle-Schoen], dans Séminaire Bourbaki : volume 2008/2009 exposés 997-1011  - Avec table par noms d'auteurs de 1848/49 à 2008/09, Astérisque, no. 332 (2010), Exposé no. 1003, 21 p. http://archive.numdam.org/item/AST_2010__332__161_0/

[1] M. Berger - Les variétés Riemanniennes ( 1 / 4 ) -pincées, Ann. Scuola Norm. Sup. Pisa 14 (1960), p. 161-170. | EuDML 83244 | Numdam | MR 140054 | Zbl 0096.15502

[2] M. Berger, Sur quelques variétés riemanniennes suffisamment pincées, Bull. Soc. Math. France 88 (1960), p. 57-71. | Article | EuDML 86993 | Numdam | MR 133781 | Zbl 0096.15503

[3] M. Berger, Sur les variétés riemanniennes pincées juste au-dessous de 1/4, Ann. Inst. Fourier (Grenoble) 33 (1983), p. 135-150. | Article | EuDML 74580 | Numdam | MR 699491 | Zbl 0497.53044

[4] M. Berger, A panoramic view of Riemannian geometry, Springer, 2003. | Article | MR 2002701 | Zbl 1038.53002

[5] G. Besson - Preuve de la conjecture de Poincaré en déformant la métrique par la courbure de Ricci (d'après G. Perel'man), Séminaire Bourbaki, vol. 2004/2005, exposé n° 947, Astérisque 307 (2006), p. 309-347. | EuDML 252178 | Numdam | MR 2296423 | Zbl 1181.53055

[6] C. Böhm & B. Wilking - Manifolds with positive curvature operators are space forms, Ann. of Math. 167 (2008), p. 1079-1097. | Article | MR 2415394 | Zbl 1185.53073

[7] S. Brendle - Einstein manifolds with nonnegative isotropic curvature are locally symmetric, prépublication arXiv:0812.0335, 2008. | MR 2573825 | Zbl 1189.53042

[8] S. Brendle, A general convergence result for the Ricci flow in higher dimensions, Duke Math. J. 145 (2008), p. 585-601. | Article | MR 2462114 | Zbl 1161.53052

[9] S. Brendle, Ricci flow and the sphere theorem, Graduate Studies in Math., vol. 111, Amer. Math. Soc., 2010. | Article | MR 2583938 | Zbl 1196.53001

[10] S. Brendle & R. M. Schoen - Classification of manifolds with weakly 1/4-pinched curvatures, Acta Math. 200 (2008), p. 1-13. | Article | MR 2386107 | Zbl 1157.53020

[11] S. Brendle & R. M. Schoen, Manifolds with 1/4-pinched curvature are space forms, J. Amer. Math. Soc. 22 (2009), p. 287-307. | Article | MR 2449060 | Zbl 1251.53021

[12] S. Brendle & R. M. Schoen, Sphere theorems in geometry, in Surveys in differential geometry. Vol. XIII. Geometry, analysis, and algebraic geometry : forty years of the Journal of Differential Geometry, Surv. Differ. Geom., vol. 13, Int. Press, Somerville, MA, 2009, p. 49-84. | Article | MR 2537082 | Zbl 1184.53037

[13] B.-L. Chen & X.-P. Zhu - Ricci flow with surgery on four-manifolds with positive isotropic curvature, J. Differential Geom. 74 (2006), p. 177-264. | Article | MR 2258799 | Zbl 1103.53036

[14] H. Chen - Pointwise 1 4-pinched 4-manifolds, Ann. Global Anal. Geom. 9 (1991), p. 161-176. | Article | MR 1136125 | Zbl 0752.53021

[15] B. Chow et al. - The Ricci flow : techniques and applications. Part I, Math. Surveys and Monographs, vol. 135, Amer. Math. Soc., 2007. | MR 2302600 | Zbl 1157.53034

[16] B. Chow et al., The Ricci flow : techniques and applications. Part II, Math. Surveys and Monographs, vol. 144, Amer. Math. Soc., 2008. | Article | MR 2365237 | Zbl 1157.53035

[17] B. Chow & D. Knopf - The Ricci flow : an introduction, Math. Surveys and Monographs, vol. 110, Amer. Math. Soc., 2004. | Article | MR 2061425 | Zbl 1086.53085

[18] A. M. Fraser - Fundamental groups of manifolds with positive isotropic curvature, Ann. of Math. 158 (2003), p. 345-354. | Article | MR 1999925 | Zbl 1044.53023

[19] A. M. Fraser & J. Wolfson - The fundamental group of manifolds of positive isotropic curvature and surface groups, Duke Math. J. 133 (2006), p. 325-334. | Article | MR 2225695 | Zbl 1110.53027

[20] S. Gadgil & H. Seshadri - On the topology of manifolds with positive isotropic curvature, Proc. Amer. Math. Soc. 137 (2009), p. 1807-1811. | Article | MR 2470841 | Zbl 1166.53026

[21] S. Gallot, D. Hulin & J. Lafontaine - Riemannian geometry, 3e ed., Universitext, Springer, 2004. | MR 2088027

[22] R. S. Hamilton - Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), p. 255-306. | Article | MR 664497 | Zbl 0504.53034

[23] R. S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), p. 153-179. | Article | MR 862046 | Zbl 0628.53042

[24] R. S. Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995), p. 545-572. | Article | MR 1333936 | Zbl 0840.53029

[25] R. S. Hamilton, The formation of singularities in the Ricci flow, in Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995, p. 7-136. | MR 1375255 | Zbl 0867.53030

[26] R. S. Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997), p. 1-92. | Article | MR 1456308 | Zbl 0892.53018

[27] L. Hernandez - Kähler manifolds and 1/4-pinching, Duke Math. J. 62 (1991), p. 601-611. | Article | MR 1104810 | Zbl 0725.53068

[28] G. Huisken - Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom. 21 (1985), p. 47-62. | Article | MR 806701 | Zbl 0606.53026

[29] W. Klingenberg - Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comment. Math. Helv. 35 (1961), p. 47-54. | Article | EuDML 139206 | MR 139120 | Zbl 0133.15005

[30] C. Margerin - A sharp characterization of the smooth 4-sphere in curvature terms, Comm. Anal. Geom. 6 (1998), p. 21-65. | Article | MR 1619838 | Zbl 0966.53022

[31] M. J. Micallef & J. D. Moore - Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. 127 (1988), p. 199-227. | Article | MR 924677 | Zbl 0661.53027

[32] M. J. Micallef & M. Y. Wang - Metrics with nonnegative isotropic curvature, Duke Math. J. 72 (1993), p. 649-672. | Article | MR 1253619 | Zbl 0804.53058

[33] H. Nguyen - Isotropic curvature and the Ricci flow, prépublication, 2007. | Zbl 1190.53068

[34] S. Nishikawa - Deformation of Riemannian metrics and manifolds with bounded curvature ratios, in Geometric measure theory and the calculus of variations (Areata, Calif., 1984), Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., 1986, p. 343-352. | Article | MR 840284 | Zbl 0589.53046

[35] G. Perelman - The entropy formula for the Ricci flow and its geometric applications, prépublication arXiv:math.DG/0211159, 2002. | Zbl 1130.53001

[36] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, prépublication arXiv:math.DG/0307245, 2003. | Zbl 1130.53003

[37] G. Perelman, Ricci flow with surgery on three-manifolds, prépublication arXiv:math.DG/0303109, 2003. | Zbl 1130.53002

[38] P. Petersen & T. Tao - Classification of almost quarter-pinched manifolds, Proc. Amer. Math. Soc. 137 (2009), p. 2437-2440. | Article | MR 2495279 | Zbl 1168.53020

[39] P. Petersen & F. Wilhelm - An exotic sphere with positive sectional curvature, prépublication arXiv:0805.0812, 2008.

[40] H. E. Rauch - A contribution to differential geometry in the large, Ann. of Math. 54 (1951), p. 38-55. | Article | MR 42765 | Zbl 0043.37202

[41] H. Seshadri - Manifolds with nonnegative isotropic curvature, prépublication arXiv:0707.3894, 2008. | MR 2601346 | Zbl 1197.53047

[42] A. Besse - Einstein manifolds, Ergebnisse Math. Grenzg. (3), vol. 10, Springer, 1987. | MR 867684 | Zbl 0613.53001

[43] S.-T. Yau & F. Zheng - Negatively 1 4-pinched Riemannian metric on a compact Kähler manifold, Invent. Math. 103 (1991), p. 527-535. | Article | EuDML 143868 | MR 1091617 | Zbl 0792.53064