@incollection{AST_2010__332__405_0, author = {Maillot, Sylvain}, title = {Vari\'et\'es hyperboliques de petit volume [d'apr\`es {D.} {Gabai,} {R.} {Meyerhoff,} {P.} {Milley,} ...]}, booktitle = {S\'eminaire Bourbaki : volume 2008/2009 expos\'es 997-1011 - Avec table par noms d'auteurs de 1848/49 \`a 2008/09}, series = {Ast\'erisque}, note = {talk:1011}, pages = {405--417}, publisher = {Soci\'et\'e math\'ematique de France}, number = {332}, year = {2010}, zbl = {1208.57001}, language = {fr}, url = {http://archive.numdam.org/item/AST_2010__332__405_0/} }
TY - CHAP AU - Maillot, Sylvain TI - Variétés hyperboliques de petit volume [d'après D. Gabai, R. Meyerhoff, P. Milley, ...] BT - Séminaire Bourbaki : volume 2008/2009 exposés 997-1011 - Avec table par noms d'auteurs de 1848/49 à 2008/09 AU - Collectif T3 - Astérisque N1 - talk:1011 PY - 2010 SP - 405 EP - 417 IS - 332 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2010__332__405_0/ LA - fr ID - AST_2010__332__405_0 ER -
%0 Book Section %A Maillot, Sylvain %T Variétés hyperboliques de petit volume [d'après D. Gabai, R. Meyerhoff, P. Milley, ...] %B Séminaire Bourbaki : volume 2008/2009 exposés 997-1011 - Avec table par noms d'auteurs de 1848/49 à 2008/09 %A Collectif %S Astérisque %Z talk:1011 %D 2010 %P 405-417 %N 332 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2010__332__405_0/ %G fr %F AST_2010__332__405_0
Maillot, Sylvain. Variétés hyperboliques de petit volume [d'après D. Gabai, R. Meyerhoff, P. Milley, ...], dans Séminaire Bourbaki : volume 2008/2009 exposés 997-1011 - Avec table par noms d'auteurs de 1848/49 à 2008/09, Astérisque, no. 332 (2010), Exposé no. 1011, 13 p. http://archive.numdam.org/item/AST_2010__332__405_0/
[1] The noncompact hyperbolic -manifold of minimal volume, Proc. Amer. Math. Soc. 100 (1987), p. 601-606. | Zbl
-[2] Volume change under drilling, Geom. Topol. 6 (2002), p. 905-916 (électronique). | DOI | EuDML | Zbl
-[3] Dehn surgery, homology and hyperbolic volume, Algebr. Geom. Topol. 6 (2006), p. 2297-2312. | DOI | Zbl
, & -[4] Lower bounds on volumes of hyperbolic Haken -manifolds, avec un appendice de N. Dunfield, J. Amer. Math. Soc. 20 (2007), p. 1053-1077(électronique). | DOI | Zbl
, & -[5] Géométrisation of -manifolds, à paraître dans Tracts of the E.M.S. | DOI | Zbl
, , -[6] Three-dimensional orbifolds and their geometric structures, Panoramas et Synthèses, vol. 15, Soc. Math. France, 2003. | Zbl
, & -[7] Volume rigidity for finite volume manifolds, Amer. J. Math. 127 (2005), p. 535-550. | DOI | Zbl
, & -[8] Collars in Kleinian groups, Duke Math. J. 49 (1982), p. 163-182. | DOI | Zbl
& -[9] On Cheeger's inequality , in Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., 1980, p. 29-77. | Zbl
-[10] The orientable cusped hyperbolic -manifolds of minimum volume, Invent. Math. 146 (2001), p. 451-478. | DOI | Zbl
& -[11] A complete proof of the Poincaré and geometrization conjectures-application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10 (2006), p. 165-492. | DOI | Zbl
& -[12] A complete proof of the Poincaré and geometrization conjectures-application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10 (2006), p. 663-664. | DOI | Zbl
& , Erratum to [11],[13] The first Betti number of the smallest closed hyperbolic -manifold, Topology 37 (1998), p. 805-849. | DOI | Zbl
, & -[14] The smallest hyperbolic -manifolds, Electron. Res. Announc. Amer. Math. Soc. 11 (2005), p. 40-46. | DOI | EuDML | Zbl
, & -[15] Dehn filling, volume, and the Jones polynomial, J. Differential Geom. 78 (2008), p. 429-464. | DOI | Zbl
, & -[16] Volumes of tubes in hyperbolic -manifolds, J. Differential Geom. 57 (2001), p. 23-46. | DOI | Zbl
, & -[17] Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc. 22 (2009), p. 1157-1215. | DOI | Zbl
, & ,[18] Mom technology and hyperbolic -manifolds, à paraître aux Proceedings of the fourth Ahlfors-Bers Colloquium. | Zbl
, & ,[19] Mom technology and volumes of hyperbolic -manifolds, prépublication arXiv:math.GT/0606072. | Zbl
, & ,[20] Homotopy hyperbolic -manifolds are hyperbolic, Ann. of Math. 157 (2003), p. 335-431. | DOI | Zbl
, & -[21] A -dimensional hyperbolic collar lemma, in Kleinian groups and related topics (Oaxtepec, 1981), Lecture Notes in Math., vol. 971, Springer, 1983, p. 31-35. | DOI | Zbl
-[22] Inequalities for Möbius transformations and discrete groups, J. reine angew. Math. 418 (1991), p. 31-76. | EuDML | Zbl
& -[23] Precisely invariant collars and the volume of hyperbolic -folds, J. Differential Geom. 49 (1998), p. 411-435. | DOI | Zbl
& ,[24] The volume of hyperbolic -folds with -torsion, , Quart. J. Math. Oxford Ser. 50 (1999), p. 1-12. | DOI | Zbl
& ,[25] Hyperbolic manifolds (according to Thurston and Jϕrgensen), Séminaire Bourbaki, vol. 1979/80, exposé n° 546, Lecture Notes in Math. 842 (1981), p. 40-53. | DOI | EuDML | Numdam | Zbl
-[26] L'inégalité de Penrose (d'après H. Bray, G. Huisken et T. II-manen,...), Séminaire Bourbaki, vol. 2000/01, exposé n° 883, Astérisque 282 (2002), p. 85-111. | EuDML | Numdam | Zbl
-[27] The cusped hyperbolic orbifolds of minimal volume in dimensions less than ten, J. Algebra 313 (2007), p. 208-222. | DOI | Zbl
-[28] The FCC lattice and the cusped hyperbolic -orbifold of minimal volume, J. Lond. Math. Soc. 75 (2007), p. 677-689. | DOI | Zbl
& -[29] Symmetries, isometries and length spectra of closed hyperbolic three-manifolds, Experiment. Math. 3 (1994), p. 261-274. | DOI | EuDML | Zbl
& -[30] A proof of Selberg's hypothesis, Mat. Sbornik 75 (1998), p. 163-168.
& -[31] Volumes of cusped hyperbolic manifolds, Topology 37 (1998), p. 719-734. | DOI | Zbl
-[32] The Gauss-Bonnet formula for hyperbolic manifolds of finite volume, Geom. Dedicata 84 (2001), p. 49-62. | DOI | Zbl
& -[33] Notes on Perelman's papers, Geom. Topol. 12 (2008), p. 2587-2855. | DOI | Zbl
& -[34] Deformations of hyperbolic -cone-manifolds, J. Differential Geom. 49 (1998), p. 469-516. | DOI | Zbl
-[35] Volumes of hyperbolic -manifolds. Notes on a paper of D. Gabai, R. Meyerhoff, and P. Milley ([16]), Conform. Geom. Dyn. 7 (2003), p. 34-48 (électronique). | DOI | Zbl
& -[36] Isoenergetic surfaces of Hamiltonian systems, the enumeration of three-dimensional manifolds in order of growth of their complexity, and the calculation of the volumes of closed hyperbolic manifolds, Russian Math. Surveys 43 (1988), p. 3-24. | DOI | Zbl
& -[37] Sphere-packing and volume in hyperbolic -space, Comment. Math. Helv. 61 (1986), p. 271-278. | DOI | EuDML | Zbl
-[38] A lower bound for the volume of hyperbolic -manifolds, Canad. J. Math. 39 (1987), p. 1038-1056. | DOI | Zbl
,[39] Minimum volume hyperbolic -manifolds, J. Topol. 2 (2009), p. 181-192. | DOI | Zbl
-[40] Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs, vol. 3, Amer. Math. Soc., 2007. | Zbl
& -[41] Volumes of hyperbolic three-manifolds, Topology 24 (1985), p. 307-332. | DOI | Zbl
& -[42] The spectral theory of amenable actions and invariants of discrete groups, Geom. Dedicata 100 (2003), p. 187-218. | DOI | Zbl
-[43] Ricci flow with surgery on three-manifolds, prépublication arXiv:math.DG/0303109. | Zbl
-[44] Tubes in hyperbolic -manifolds, Topology Appl. 128 (2003), p. 103-122. | DOI | MR | Zbl
-[45] Density of tube packings in hyperbolic space, Pacific J. Math. 214 (2004), p. 127-144. | DOI | MR | Zbl
,[46] A universal upper bound on density of tube packings in hyperbolic space, J. Differential Geom. 72 (2006), p. 113-127. | DOI | MR | Zbl
,[47] Covolume des groupes -arithmétiques et faux plans projectifs (d'après Mumford, Prasad, Klingler, Yeung, Prasad-Yeung), Séminaire Bourbaki, vol. 2007/08, exposé n° 984, Astérisque 326 (2009), p. 83-130. | Numdam | MR | Zbl
-[48] An inscribed ball for Kleinian groups, Bull. London Math. Soc. 16 (1984), p. 525-530. | DOI | MR | Zbl
-