La classification des groupes p-compacts [d'après Andersen, Grodal, M0ller, et Viruel]
Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026, Astérisque, no. 339 (2011), Exposé no. 1020, 19 p.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez le site de la revue.
@incollection{AST_2011__339__239_0,
     author = {Oliver, Bob},
     title = {La classification des groupes <span class="mathjax-formula">$p$</span>-compacts [d'apr\`es Andersen, Grodal, M0ller, et Viruel]},
     booktitle = {S\'eminaire Bourbaki, volume 2009/2010, expos\'es 1012-1026},
     author = {Collectif},
     series = {Ast\'erisque},
     note = {talk:1020},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {339},
     year = {2011},
     zbl = {1359.55001},
     mrnumber = {2906356},
     language = {fr},
     url = {archive.numdam.org/item/AST_2011__339__239_0/}
}
Oliver, Bob. La classification des groupes $p$-compacts [d'après Andersen, Grodal, M0ller, et Viruel], dans Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026, Astérisque, no. 339 (2011), Exposé no. 1020, 19 p. http://archive.numdam.org/item/AST_2011__339__239_0/

[1] J. Aguadé - Constructing modular classifying spaces, Israel J. Math. 66 (1989), p. 23-40. | Article | MR 1017153 | Zbl 0697.55002

[2] K. K. S. Andersen - The normalizer splitting conjecture for p-compact groups, Fund. Math. 161 (1999), p. 1-16. | EuDML 212400 | MR 1713198 | Zbl 0938.55015

[3] K. K. S. Andersen, T. Bauer, J. Grodal & E. K. Pedersen - A finite loop space not rationally equivalent to a compact Lie group, Invent. Math. 157 (2004), p. 1-10. | Article | MR 2135183 | Zbl 1054.55009

[4] K. K. S. Andersen & J. Grodal - Automorphisms of p-compact groups and their root data, Geom. Topol. 12 (2008), p. 1427-1460. | Article | MR 2421132 | Zbl 1152.55006

[5] K. K. S. Andersen & J. Grodal, The classification of 2-compact groups, J. Amer. Math. Soc. 22 (2009), p. 387-436. | Article | MR 2476779 | Zbl 1360.55014

[6] K. K. S. Andersen, J. Grodal, J. M. Møller & A. Viruel - The classification of p-compact groups for p odd, Ann. of Math. 167 (2008), p. 95-210. | Article | MR 2373153 | Zbl 1149.55011

[7] T. Bauer, N. Kitchloo, D. Notbohm & E. K. Pedersen - Finite loop spaces are manifolds, Acta Math. 192 (2004), p. 5-31. | Article | MR 2079597 | Zbl 1055.55009

[8] N. Bourbaki - Éléments de mathématique : groupes et algèbres de Lie, Chapitre 9, Masson, 1982 ; réimpression Springer, 2007. | MR 682756 | Zbl 1123.22005

[9] A. Clark & J. Ewing - The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), p. 425-434. | Article | MR 367979 | Zbl 0333.55002

[10] W. G. Dwyer & C. W. Wilkerson - A new finite loop space at the prime two, J. Amer. Math. Soc. 6 (1993), p. 37-64. | Article | MR 1161306 | Zbl 0769.55007

[11] W. G. Dwyer & C. W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. 139 (1994), p. 395-442. | Article | MR 1274096 | Zbl 0801.55007

[12] W. G. Dwyer & C. W. Wilkerson, The center of a p-compact group, in The Čech centennial (Boston, MA, 1993), Contemp. Math., vol. 181, Amer. Math. Soc., 1995, p. 119-157. | MR 1320990 | Zbl 0828.55009

[13] W. G. Dwyer & C. W. Wilkerson, Product splittings for p-compact groups, Fund. Math. 147 (1995), p. 279-300. | EuDML 212089 | MR 1348723 | Zbl 0847.55005

[14] S. Jackowski & J. Mcclure - Homotopy decomposition of classifying spaces via elementary abelian subgroups, Topology 31 (1992), p. 113-132. | Article | MR 1153240 | Zbl 0754.55014

[15] S. Jackowski, J. Mcclure & B. Oliver - Homotopy classification of self-maps of BG via G-actions. I, Ann. of Math. 135 (1992), p. 183-226. | Article | MR 1147962 | Zbl 0758.55004

[16] S. Jackowski, J. Mcclure & B. Oliver, Homotopy classification of self-maps of BG via G-actions. II, Ann. of Math. 135 (1992), p. 227-270. | Article | MR 1154593 | Zbl 0771.55003

[17] J. Lannes - Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire, Publ. Math. I.H.É.S. 75 (1992), p. 135-244. | Article | EuDML 104079 | Numdam | MR 1179079 | Zbl 0857.55011

[18] J. M. Møller - N-determined 2-compact groups. I, Fund. Math. 195 (2007), p. 11-84. | Article | EuDML 282940 | MR 2314074 | Zbl 1136.55006

[19] J. M. Møller, N-determined 2-compact groups. II, Fund. Math. 196 (2007), p. 1-90. | Article | EuDML 283030 | MR 2338539 | Zbl 1136.55011

[20] D. Notbohm - Topological realization of a family of pseudoreflection groups, Fund. Math. 155 (1998), p. 1-31. | EuDML 212240 | MR 1487985 | Zbl 0896.55013

[21] D. Notbohm, Spaces with polynomial mod-p cohomology, Math. Proc. Cambridge Philos. Soc. 126 (1999), p. 277-292. | Article | MR 1670237 | Zbl 0926.55014

[22] B. Oliver - Higher limits via Steinberg representations, Comm. Algebra 22 (1994), p. 1381-1393. | Article | MR 1261265 | Zbl 0815.55003

[23] D. Quillen - On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. 96 (1972), p. 552-586. | Article | MR 315016 | Zbl 0249.18022

[24] J-P. Serre - Représentations linéaires des groupes finis, Hermann, 1971. | MR 352231 | Zbl 0223.20003

[25] G. C. Shephard & J. A. Todd - Finite unitary reflection groups, Canadian J. Math. 6 (1954), p. 274-304. | Article | MR 59914 | Zbl 0055.14305

[26] J. D. Stasheff - Manifolds of the homotopy type of (non-Lie) groups, Bull. Amer. Math. Soc. 75 (1969), p. 998-1000. | Article | MR 246319 | Zbl 0181.26404

[27] Z. Wojtkowiak - On maps from ho lim F to 𝐙 to 𝐙, in Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, 1987, p. 227-236. | MR 928836 | Zbl 0641.55014

[28] A. Zabrodsky - On the realization of invariant subgroups of π * (X), Trans. Amer. Math. Soc. 285 (1984), p. 467-496. | MR 752487 | Zbl 0576.55009