@incollection{AST_2011__339__239_0, author = {Oliver, Bob}, title = {La classification des groupes $p$-compacts [d'apr\`es {Andersen,} {Grodal,} {M0ller,} et {Viruel]}}, booktitle = {S\'eminaire Bourbaki, volume 2009/2010, expos\'es 1012-1026}, series = {Ast\'erisque}, note = {talk:1020}, pages = {239--257}, publisher = {Soci\'et\'e math\'ematique de France}, number = {339}, year = {2011}, mrnumber = {2906356}, zbl = {1359.55001}, language = {fr}, url = {http://archive.numdam.org/item/AST_2011__339__239_0/} }
TY - CHAP AU - Oliver, Bob TI - La classification des groupes $p$-compacts [d'après Andersen, Grodal, M0ller, et Viruel] BT - Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026 AU - Collectif T3 - Astérisque N1 - talk:1020 PY - 2011 SP - 239 EP - 257 IS - 339 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2011__339__239_0/ LA - fr ID - AST_2011__339__239_0 ER -
%0 Book Section %A Oliver, Bob %T La classification des groupes $p$-compacts [d'après Andersen, Grodal, M0ller, et Viruel] %B Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026 %A Collectif %S Astérisque %Z talk:1020 %D 2011 %P 239-257 %N 339 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2011__339__239_0/ %G fr %F AST_2011__339__239_0
Oliver, Bob. La classification des groupes $p$-compacts [d'après Andersen, Grodal, M0ller, et Viruel], in Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026, Astérisque, no. 339 (2011), Talk no. 1020, 19 p. http://archive.numdam.org/item/AST_2011__339__239_0/
[1] Constructing modular classifying spaces, Israel J. Math. 66 (1989), p. 23-40. | DOI | MR | Zbl
-[2] The normalizer splitting conjecture for -compact groups, Fund. Math. 161 (1999), p. 1-16. | EuDML | MR | Zbl
-[3] A finite loop space not rationally equivalent to a compact Lie group, Invent. Math. 157 (2004), p. 1-10. | DOI | MR | Zbl
, , & -[4] Automorphisms of -compact groups and their root data, Geom. Topol. 12 (2008), p. 1427-1460. | DOI | MR | Zbl
& -[5] The classification of -compact groups, J. Amer. Math. Soc. 22 (2009), p. 387-436. | DOI | MR | Zbl
& ,[6] The classification of -compact groups for odd, Ann. of Math. 167 (2008), p. 95-210. | DOI | MR | Zbl
, , & -[7] Finite loop spaces are manifolds, Acta Math. 192 (2004), p. 5-31. | DOI | MR | Zbl
, , & -[8] Éléments de mathématique : groupes et algèbres de Lie, Chapitre 9, Masson, 1982 ; réimpression Springer, 2007. | MR | Zbl
-[9] The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), p. 425-434. | DOI | MR | Zbl
& -[10] A new finite loop space at the prime two, J. Amer. Math. Soc. 6 (1993), p. 37-64. | DOI | MR | Zbl
& -[11] Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. 139 (1994), p. 395-442. | DOI | MR | Zbl
& ,[12] The center of a -compact group, in The Čech centennial (Boston, MA, 1993), Contemp. Math., vol. 181, Amer. Math. Soc., 1995, p. 119-157. | MR | Zbl
& ,[13] Product splittings for -compact groups, Fund. Math. 147 (1995), p. 279-300. | EuDML | MR | Zbl
& ,[14] Homotopy decomposition of classifying spaces via elementary abelian subgroups, Topology 31 (1992), p. 113-132. | DOI | MR | Zbl
& -[15] Homotopy classification of self-maps of via -actions. I, Ann. of Math. 135 (1992), p. 183-226. | DOI | MR | Zbl
, & -[16] Homotopy classification of self-maps of via -actions. II, Ann. of Math. 135 (1992), p. 227-270. | DOI | MR | Zbl
, & ,[17] Sur les espaces fonctionnels dont la source est le classifiant d'un -groupe abélien élémentaire, Publ. Math. I.H.É.S. 75 (1992), p. 135-244. | DOI | EuDML | Numdam | MR | Zbl
-[18] -determined -compact groups. I, Fund. Math. 195 (2007), p. 11-84. | DOI | EuDML | MR | Zbl
-[19] -determined -compact groups. II, Fund. Math. 196 (2007), p. 1-90. | DOI | EuDML | MR | Zbl
,[20] Topological realization of a family of pseudoreflection groups, Fund. Math. 155 (1998), p. 1-31. | EuDML | MR | Zbl
-[21] Spaces with polynomial mod- cohomology, Math. Proc. Cambridge Philos. Soc. 126 (1999), p. 277-292. | DOI | MR | Zbl
,[22] Higher limits via Steinberg representations, Comm. Algebra 22 (1994), p. 1381-1393. | DOI | MR | Zbl
-[23] On the cohomology and -theory of the general linear groups over a finite field, Ann. of Math. 96 (1972), p. 552-586. | DOI | MR | Zbl
-[24] Représentations linéaires des groupes finis, Hermann, 1971. | MR | Zbl
-[25] Finite unitary reflection groups, Canadian J. Math. 6 (1954), p. 274-304. | DOI | MR | Zbl
& -[26] Manifolds of the homotopy type of (non-Lie) groups, Bull. Amer. Math. Soc. 75 (1969), p. 998-1000. | DOI | MR | Zbl
-[27] On maps from ho to to , in Algebraic topology, Barcelona, 1986, Lecture Notes in Math., vol. 1298, Springer, 1987, p. 227-236. | MR | Zbl
-[28] On the realization of invariant subgroups of , Trans. Amer. Math. Soc. 285 (1984), p. 467-496. | MR | Zbl
-