@incollection{AST_2011__339__357_0, author = {Serfaty, Sylvia}, title = {Lois de conservation et r\'egularit\'e par compensation pour les syst\`emes antisym\'etriques et les surfaces de {Willmore} [d'apr\`es {Tristan} {Rivi\`ere]}}, booktitle = {S\'eminaire Bourbaki, volume 2009/2010, expos\'es 1012-1026}, series = {Ast\'erisque}, note = {talk:1024}, pages = {357--370}, publisher = {Soci\'et\'e math\'ematique de France}, number = {339}, year = {2011}, mrnumber = {2906360}, zbl = {1360.58013}, language = {fr}, url = {http://archive.numdam.org/item/AST_2011__339__357_0/} }
TY - CHAP AU - Serfaty, Sylvia TI - Lois de conservation et régularité par compensation pour les systèmes antisymétriques et les surfaces de Willmore [d'après Tristan Rivière] BT - Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026 AU - Collectif T3 - Astérisque N1 - talk:1024 PY - 2011 SP - 357 EP - 370 IS - 339 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2011__339__357_0/ LA - fr ID - AST_2011__339__357_0 ER -
%0 Book Section %A Serfaty, Sylvia %T Lois de conservation et régularité par compensation pour les systèmes antisymétriques et les surfaces de Willmore [d'après Tristan Rivière] %B Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026 %A Collectif %S Astérisque %Z talk:1024 %D 2011 %P 357-370 %N 339 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2011__339__357_0/ %G fr %F AST_2011__339__357_0
Serfaty, Sylvia. Lois de conservation et régularité par compensation pour les systèmes antisymétriques et les surfaces de Willmore [d'après Tristan Rivière], dans Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026, Astérisque, no. 339 (2011), Exposé no. 1024, 14 p. http://archive.numdam.org/item/AST_2011__339__357_0/
[1] A note on Riesz potentials, Duke Math. J. 42 (1975), p. 765-778. | DOI | MR | Zbl
-[2] Local Palais-Smale sequences for the Willmore functional, prépublication arXiv : 0904.0360. | DOI | MR | Zbl
& -[3] Un résultat de régularité pour les solutions de l'équation de surfaces à courbure moyenne prescrite, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), p. 1003-1007. | MR | Zbl
-[4] On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993), p. 417-443. | DOI | EuDML | MR | Zbl
,[5] Vorlesungen über differentiale Geometrie III, Springer, 1929.
-[6] Compensated compactness and hardy spaces, J. Math. Pures Appl. 72 (1993), p. 247-286. | MR | Zbl
, , & -[7] Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), p. 611-635. | DOI | MR | Zbl
, & -[8] -commutator estimates and the regularity of -harmonic maps into spheres, prépublication arXiv : 0901.2533. | MR | Zbl
& -[9] The regularity of solutions to critical non-local Schrödinger systems on the line with antisymmetric potential and applications, prépublication.
& ,[10] Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991), p. 101-113. | DOI | MR | Zbl
-[11] A discontinuous solution of a mildly nonlinear elliptic system, Math. Z. 134 (1973), p. 229-230. | DOI | EuDML | MR | Zbl
-[12] Conformally invariant variational integrals and the removability of isolated singularities, Manuscripta Math. 47 (1984), p. 85-104. | DOI | EuDML | MR | Zbl
-[13] Harmonic maps, conservation laws and moving frames, 2e éd., Cambridge Tracts in Math., vol. 150, Cambridge Univ. Press, 2002. | MR | Zbl
-[14] Conservation laws for conformally invariant variational problems, Invent. Math. 168 (2007), p. 1-22. | DOI | MR | Zbl
-[15] Analysis aspects of Willmore surfaces, Invent. Math. 174 (2008), p. 1-45. | DOI | MR | Zbl
,[16]
, en préparation.[17] Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom. 1 (1993), p. 281-326. | DOI | MR | Zbl
-[18] Über konforme Geometrie, I. Grundlagen der konformen Flächentheorie, Abh. Math. Sem. Hamburg 3 (1923), p. 31-56. | DOI | JFM | MR
-[19] Connections with bounds on curvature, Comm. Math. Phys. 83 (1982), p. 31-42. | DOI | MR | Zbl
-[20] An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969), p. 318-344. | DOI | MR | Zbl
-[21] Riemannian geometry, Oxford Science Publications, The Clarendon Press Oxford Univ. Press, 1993. | MR | Zbl
-