@incollection{AST_2011__339__91_0, author = {Klainerman, Sergiu}, title = {Linear stability of black holes [d'apr\`es {M.} {Dafermos} et {I.} {Rodnianski]}}, booktitle = {S\'eminaire Bourbaki, volume 2009/2010, expos\'es 1012-1026}, series = {Ast\'erisque}, note = {talk:1015}, pages = {91--135}, publisher = {Soci\'et\'e math\'ematique de France}, number = {339}, year = {2011}, language = {en}, url = {http://archive.numdam.org/item/AST_2011__339__91_0/} }
TY - CHAP AU - Klainerman, Sergiu TI - Linear stability of black holes [d'après M. Dafermos et I. Rodnianski] BT - Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026 AU - Collectif T3 - Astérisque N1 - talk:1015 PY - 2011 SP - 91 EP - 135 IS - 339 PB - Société mathématique de France UR - http://archive.numdam.org/item/AST_2011__339__91_0/ LA - en ID - AST_2011__339__91_0 ER -
%0 Book Section %A Klainerman, Sergiu %T Linear stability of black holes [d'après M. Dafermos et I. Rodnianski] %B Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026 %A Collectif %S Astérisque %Z talk:1015 %D 2011 %P 91-135 %N 339 %I Société mathématique de France %U http://archive.numdam.org/item/AST_2011__339__91_0/ %G en %F AST_2011__339__91_0
Klainerman, Sergiu. Linear stability of black holes [d'après M. Dafermos et I. Rodnianski], dans Séminaire Bourbaki, volume 2009/2010, exposés 1012-1026, Astérisque, no. 339 (2011), Exposé no. 1015, 45 p. http://archive.numdam.org/item/AST_2011__339__91_0/
[1] Uniqueness of smooth stationary black holes in vacuum: small perturbations of the Kerr spaces", Comm. Math. Phys. 299 (2010), p. 89-127. | DOI | MR | Zbl
, & - "[2] Hawking's local rigidity theorem without analyticity", preprint arXiv:0902.1173. | DOI | MR | Zbl
, & , "[3] Energy multipliers for perturbations of the Schwarzschild metric", Comm. Math. Phys. 288 (2009), p. 199-224. | DOI | MR | Zbl
- "[4] Hidden symmetries and decay for the wave equation on the Kerr spacetime", preprint arXiv:0908.2265. | DOI | MR
& - "[5] An extension of the stability theorem of the Minkowski space in general relativity", Ph.D. Thesis, ETH, Zürich, 2007.
- "[6] Semilinear wave equations on the schwarzschild manifold. I. Local decay estimates", preprint arXiv:gr-qc/0310091. | MR | Zbl
& - "[7] Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space", Comm. Math. Phys. 268 (2006), p. 481-504. | DOI | MR | Zbl
& - "[8] Hamilton-Jacobi and Schrödinger separable solutions of Einstein's equations", Comm. Math. Phys. 10 (1968), p. 280-310. | DOI | MR | Zbl
- "[9] The mathematical theory of black holes, International Series of Monographs on Physics, vol. 69, The Clarendon Press, Oxford Univ. Press, 1983. | MR | Zbl
-[10] Global aspects of the Cauchy problem in general relativity", Comm. Math. Phys. 14 (1969), p. 329-335. | DOI | MR | Zbl
& - "[11] The formation of black holes in general relativity, EMS Monographs in Math., European Mathematical Society (EMS), Zürich, 2009. | MR | Zbl
-[12] The global nonlinear stability of the Minkowski space, Princeton Math. Series, vol. 41, Princeton Univ. Press, 1993. | MR | Zbl
& -[13] On completeness of orbits of Killing vector fields", Classical Quantum Gravity 10 (1993), p. 2091-2101. | DOI | MR | Zbl
- "[14] On uniqueness of stationary vacuum black holes", Astérisque 321 (2008), p. 195-265. | Numdam | MR | Zbl
& - "[15] Maximal hypersurfaces in stationary asymptotically flat spacetimes", Comm. Math. Phys. 163 (1994), p. 561-604. | DOI | MR | Zbl
& - "[16] The red-shift effect and radiation decay on black hole spacetimes", Comm. Pure Appl. Math. 62 (2009), p. 859-919. | DOI | MR | Zbl
& - "[17] Lectures on black holes and linear waves", preprint arXiv:0811.0354. | MR
& , "[18] A new physical space approach to decay for the wave equation with application to black hole spacetimes", preprint arXiv:0910.4957. | DOI | MR | Zbl
& , "[19] A note on energy currents and decay for the wave equation on a Schwarzschild background", preprint arXiv:0710.017.
& , "[20] A proof of uniform boundedness of solutions to wave equations on slowly rotating Kerr backgrounds", preprint arXiv:0805.4309. | DOI | MR | Zbl
& , "[21] A proof of Price's law on Schwarzschild black hole manifolds for all angular momenta", preprint arXiv:gr-qc/0908.4292. | DOI | MR | Zbl
, & - "[22] Decay of solutions of the wave equation in the Kerr geometry", Comm. Math. Phys. 264 (2006), p. 465-503. | DOI | MR | Zbl
, , & - "[23] Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires", Acta Math. 88 (1952), p. 141-225. | DOI | MR | Zbl
- "[24] The large scale structure of space-time, Cambridge Monographs on Math. Physics, vol. 1, Cambridge Univ. Press, 1973. | MR | Zbl
& -[25] Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity", Arch. Rational Mech. Anal. 63 (1976), p. 273-294. | DOI | MR | Zbl
, & - "[26] On the uniqueness of smooth, stationary black holes in vacuum", Invent. Math. 175 (2009), p. 35-102. | DOI | MR | Zbl
& - "[27] Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation -sphere", Classical Quantum Gravity 4 (1987), p. 893-898. | DOI | MR | Zbl
& - "[28] Uniform decay estimates and the Lorentz invariance of the classical wave equation", Comm. Pure Appl. Math. 38 (1985), p. 321-332. | DOI | MR | Zbl
- "[29] The null condition and global existence to nonlinear wave equations", in Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), Lectures in Appl. Math., vol. 23, Amer. Math. Soc., 1986, p. 293-326. | MR | Zbl
, "[30] The evolution problem in general relativity, Progress in Math. Physics, vol. 25, Birkhäuser, 2003. | MR | Zbl
& -[31] The Cauchy problem for the wave equation in the Schwarzschild geometry", J. Math. Phys. 47 (2006), 042501, 29. | DOI | MR | Zbl
- "[32] Global existence for the Einstein vacuum equations in wave coordinates", Comm. Math. Phys. 256 (2005), p. 43-110. | DOI | MR | Zbl
& - "[33] Improved decay for solutions to the linear wave equation on a Schwarzschild black hole", preprint arXiv:0906.5588. | MR | Zbl
- "[34] Decay of solutions to the wave equation on a spherically symmetric background", preprint.
& - "[35] Strichartz estimates on Schwarzschild black hole backgrounds", Comm. Math. Phys. 293 (2010), p. 37-83. | DOI | MR | Zbl
, , & - "[36] Gravitational collapse: the role of general relativity", Nuovo Cimento 1 (1969), p. 252-276. | MR | Zbl
- "[37] Singularities and time asymmetry in general relativity - an Einstein Centenary survey, Cambridge Univ. Press, 1979.
,[38] Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric", Astrophys. J. 185 (1973), p. 649-673. | DOI
& - "[39] Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations", Phys. Rev. D 5 (1972), p. 2419-2438. | MR
- "[40] Stability of a Schwarzschild singularity", Phys. Rev. 108 (1957), p. 1063-1069. | DOI | MR | Zbl
& - "[41] Amplification of waves during reflection from a rotating black hole", Sov. Phys. JETP 37 (1973), p. 28-32.
- "[42] Local decay of waves on asymptotically flat stationary spacetimes", preprint arXiv:0910.5290. | Zbl
- "[43] Local energy estimate on Kerr Black hole backgrounds", preprint arXiv:0810.5766. | DOI | MR | Zbl
& - "[44] Amplification of cylindrical electromagnetic waves from a rotating body", Sov. Phys. JETP 35 (1972), p. 1085-1087.
- "[45] Gravitational field of a particle falling in a Schwarzschild geometry analyzed in tensor harmonics", Phys. Rev. D 2 (1970), p. 2141-2160. | MR | Zbl
- "