@incollection{AST_2013__352__389_0, author = {Wolf, Julia}, title = {Arithmetic and polynomial progressions in the primes [after Gowers, Green, Tao and Ziegler]}, booktitle = {S\'eminaire Bourbaki volume 2011/2012 expos\'es 1043-1058}, author = {Collectif}, series = {Ast\'erisque}, note = {talk:1054}, publisher = {Soci\'et\'e math\'ematique de France}, number = {352}, year = {2013}, zbl = {1295.11099}, language = {en}, url = {archive.numdam.org/item/AST_2013__352__389_0/} }
Wolf, Julia. Arithmetic and polynomial progressions in the primes [after Gowers, Green, Tao and Ziegler], dans Séminaire Bourbaki volume 2011/2012 exposés 1043-1058, Astérisque, no. 352 (2013), Exposé no. 1054, 39 p. http://archive.numdam.org/item/AST_2013__352__389_0/
[1] Combinatorial Nullstellensatz", Combin. Probab. Comput. 8 (1999), nos. 1-2, p. 7-29. | Article | Zbl 0920.05026
- "[2] A heuristic asymptotic formula concerning the distribution of prime numbers", Math. Comp. 16 (1962), p. 363-367. | Article | Zbl 0105.03302
& - "[3] On sets of integers which contain no three terms in arithmetical progression", Proc. Nat. Acad. Sci. U. S. A. 32 (1946), p. 331-332. | Article | Zbl 0060.10302
- "[4] Weakly mixing PET", Ergodic Theory Dynam. Systems 7 (1987), no. 3, p. 337-349. | Article | Zbl 0645.28012
- "[5] Multiple recurrence and nilsequences", Invent. Math. 160 (2005), no. 2, p. 261-303. | Article | Zbl 1087.28007
, & - "[6] Polynomial extensions of van der Waerden's and Szemerédi's theorems", J. Amer. Math. Soc. 9 (1996), no. 3, p. 725-753. | Article | Zbl 0870.11015
& - "[7] On triples in arithmetic progression", Geom. Funct. Anal. 9 (1999), no. 5, p. 968-984. | Article | Zbl 0959.11004
- "[8] Combinatorial theorems in sparse random sets", preprint arXiv:1011.4310. | Article | Zbl 1351.05204
& - "[9] Irreducible values of polynomials: a non-analogy", in Number fields and function fields-two parallel worlds, Progr. Math., vol. 239, Birkhäuser, 2005, p. 71-85. | Article | Zbl 1114.11024
- "[10] Sur un théorème ergodique pour des mesures diagonales", C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 12, p. 491-493. | Zbl 0641.28010
& - "[11] Über Summen von Primzahlen und Primzahlquadraten", Math. Ann. 116 (1939), p. 1-50. | Article | EuDML 159991 | JFM 64.0132.01 | Zbl 0019.19602
- "[12] On Some Sequences of Integers", J. London Math. Soc. S1-11, no. 4, p. 261-264. | Article | JFM 62.1126.01
& - "[13] Foundations of a structural theory of set addition, Translations of Mathematical Monographs, vol. 37, Amer. Math. Soc, 1973. | Zbl 0271.10044
-[14] Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions", J. Analyse Math. 31 (1977), p. 204-256. | Article | Zbl 0347.28016
- "[15] A mean ergodic theorem for ", in Convergence in ergodic theory and probability (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., vol. 5, de Gruyter, 1996, p. 193-227. | Zbl 0869.28010
& - "[16] Higher correlations of divisor sums related to primes. III. Small gaps between primes", Proc. Lond. Math. Soc. 95 (2007), no. 3, p. 653-686. | Article | Zbl 1134.11034
& - "[17] A new proof of Szemerédi's theorem", Geom. Funct. Anal. 11 (2001), no. 3, p. 465-588. | Article | Zbl 1028.11005
- "[18] Decompositions, approximate structure, transference, and the Hahn-Banach theorem", Bull. Lond. Math. Soc. 42 (2010), no. 4, p. 573-606. | Article | Zbl 1233.05198
, "[19] The true complexity of a system of linear equations", Proc. Lond. Math. Soc. 100 (2010), no. 1, p. 155-176. | Article | Zbl 1243.11010
& - "[20] Linear forms and quadratic uniformity for functions on ", J. Anal. Math. 115 (2011), p. 121-186. | Article | Zbl 1310.11016
& , "[21] On arithmetic structures in dense sets of integers", Duke Math. J. 114 (2002), no. 2, p. 215-238. | Article | Zbl 1020.11010
- "[22] Roth's theorem in the primes", Ann. of Math. 161 (2005), no. 3, p. 1609-1636. | Article | Zbl 1160.11307
, "[23] Long arithmetic progressions of primes", in Analytic number theory, Clay Math. Proc, vol. 7, Amer. Math. Soc., 2007, p. 149-167. | Zbl 1214.11106
, "[24] An inverse theorem for the Gowers norm", Proc. Edinb. Math. Soc. 51 (2008), no. 1, p. 73-153. | Article | Zbl 1202.11013
& - "[25] The primes contain arbitrarily long arithmetic progressions", Ann. of Math. 167 (2008), no. 2, p. 481-547. | Article | Zbl 1191.11025
& , "[26] New bounds for Szemerédi's theorem. II. A new bound for ", in Analytic number theory, Cambridge Univ. Press, 2009, p. 180-204. | Zbl 1158.11007
& , "[27] An arithmetic regularity lemma, an associated counting lemma, and applications", in An irregular mind, Bolyai Soc. Math. Stud., vol. 21, János Bolyai Math. Soc., 2010, p. 261-334. | Article | Zbl 1222.11015
& , "[28] The Möbius function is strongly orthogonal to nilsequences", Ann. of Math. 175 (2012), no. 2, p. 541-566. | Article | Zbl 1347.37019
& , "[29] An inverse theorem for the Gowers -norm", Electron. Res. Announc. Math. Sci. 18 (2011), p. 69-90. | Zbl 1247.11017
, & - "[30] An inverse theorem for the Gowers -norm", Ann. of Math. 176 (2012), no. 2, p. 1231-1372. | Article | Zbl 1282.11007
, & , "[31] Linear equations in primes", Ann. of Math. 171 (2010), no. 3, p. 1753-1850. | Article | Zbl 1242.11071
& - "[32] Arithmetic structures in random sets", Integers 8 (2008), p. A04, 21. | EuDML 116953 | Zbl 1195.11037
& - "[33] Progressions arithmétiques dans les nombres premiers (d'après B. Green et T. Tao)", Séminaire Bourbaki, vol. 2004/2005, exposé n° 944, Astérisque 307 (2006), p. 229-246. | EuDML 252161 | Numdam | Zbl 1175.11052
- "[34] Nonconventional ergodic averages and nilmanifolds", Ann. of Math. 161 (2005), no. 1, p. 397-488. | Article | Zbl 1077.37002
& - "[35] Arithmetic progressions of length three in subsets of a random set", Acta Arith. 75 (1996), no. 2, p. 133-163. | Article | EuDML 206867 | Zbl 0858.11009
, & - "[36] The Green-Tao theorem on arithmetic progressions in the primes: an ergodic point of view", Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 1, p. 3-23. | Article | Zbl 1208.11112
- "[37] Green-Tao theorem in function fields", Acta Arith. 147 (2011), no. 2, p. 129-152. | Article | EuDML 279441 | Zbl 1273.11023
- "[38] On sets of natural numbers whose difference set contains no squares", J. London Math. Soc. 37 (1988), no. 2, p. 219-231. | Article | Zbl 0651.10031
, & - "[39] Additive properties of dense subsets of sifted sequences", J. Théor. Nombres Bordeaux 13 (2001), no. 2, p. 559-581. | Article | EuDML 248692 | Numdam | Zbl 0996.11057
& - "[40] Dense subsets of pseudorandom sets", in 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), Philadephia, 2008, p. 76-85.
, , & - "[41] On certain sets of integers", J. London Math. Soc. 28 (1953), p. 104-109. | Article | Zbl 0050.04002
- "[42] Generalized arithmetical progressions and sumsets", Acta Math. Hungar. 65 (1994), no. 4, p. 379-388. | Article | Zbl 0816.11008
- "[43] On Roth's theorem on progressions", Ann. of Math. 174 (2011), no. 1, p. 619-636. | Article | Zbl 1264.11004
- "[44] On the Bogolyubov-Ruzsa lemma", Anal. PDE 5 (2012), no. 3, p. 627-655. | Article | Zbl 1320.11009
, "[45] On difference sets of sequences of integers. I", Acta Math. Acad. Sci. Hungar. 31 (1978), nos. 1-2, p. 125-149. | Article | Zbl 0387.10033
- "[46] Roth's theorem in many variables", preprint arXiv:1106.1601. | Article | Zbl 1370.11023
& - "[47] On sets of integers containing no elements in arithmetic progression", Acta Arith. 27 (1975), p. 199-245. | Article | EuDML 205339 | Zbl 0303.10056
- "[48] The dichotomy between structure and randomness, arithmetic progressions, and the primes", in International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, p. 581-608. | MR 2334204 | Zbl 1183.11008
- "[49] A remark on Goldston-Yildirim correlation estimates", .
, "[50] The primes contain arbitrarily long polynomial progressions", Acta Math. 201 (2008), no. 2, p. 213-305. | Article | MR 2461509 | Zbl 1230.11018
& - "[51] Regularity, boosting, and efficiently simulating every high-entropy distribution", in 24th Annual IEEE Conference on Computational Complexity, Paris, 2009, p. 126-136. | MR 2932461
, & - "[52] On certain sets of positive density", J. London Math. Soc. 34 (1959), p. 358-360. | Article | MR 106865 | Zbl 0088.25702
- "[53] Some theorems concerning the primes", Mat. Sbornik 2 (1937), p. 179-195. | EuDML 64898 | Zbl 0017.19803
- "[54] Combinatorial proofs of the polynomial van der Waerden theorem and the polynomial Hales-Jewett theorem", J. London Math. Soc. 61 (2000), no. 1, p. 1-12. | Article | MR 1745405 | Zbl 0948.05056
- "[55] Universal characteristic factors and Furstenberg averages", J. Amer. Math. Soc. 20 (2007), no. 1, p. 53-97. | Article | MR 2257397 | Zbl 1198.37014
- "