@article{CCIRM_2018__6_1_A3_0, author = {Robertz, Daniel}, title = {Formal methods for systems of partial differential equations}, booktitle = {Journ\'ees Nationales de Calcul Formel. 22 {\textendash} 26 Janvier 2018}, series = {Les cours du CIRM}, note = {talk:3}, pages = {1--37}, publisher = {CIRM}, number = {1}, year = {2018}, doi = {10.5802/ccirm.28}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ccirm.28/} }
TY - JOUR AU - Robertz, Daniel TI - Formal methods for systems of partial differential equations BT - Journées Nationales de Calcul Formel. 22 – 26 Janvier 2018 AU - Collectif T3 - Les cours du CIRM N1 - talk:3 PY - 2018 SP - 1 EP - 37 IS - 1 PB - CIRM UR - http://archive.numdam.org/articles/10.5802/ccirm.28/ DO - 10.5802/ccirm.28 LA - en ID - CCIRM_2018__6_1_A3_0 ER -
%0 Journal Article %A Robertz, Daniel %T Formal methods for systems of partial differential equations %B Journées Nationales de Calcul Formel. 22 – 26 Janvier 2018 %A Collectif %S Les cours du CIRM %Z talk:3 %D 2018 %P 1-37 %N 1 %I CIRM %U http://archive.numdam.org/articles/10.5802/ccirm.28/ %R 10.5802/ccirm.28 %G en %F CCIRM_2018__6_1_A3_0
Robertz, Daniel. Formal methods for systems of partial differential equations, in Journées Nationales de Calcul Formel. 22 – 26 Janvier 2018, Les cours du CIRM, no. 1 (2018), Talk no. 3, 37 p. doi : 10.5802/ccirm.28. http://archive.numdam.org/articles/10.5802/ccirm.28/
[AL94] Adams, W.W., Loustaunau, P.: An introduction to Gröbner bases, Graduate Studies in Mathematics, vol. 3. American Mathematical Society, Providence, RI (1994) | DOI | Zbl
[ALMM99] Aubry, P., Lazard, D., Moreno Maza, M.: On the theories of triangular sets. J. Symbolic Comput. 28(1-2), 105–124 (1999). Polynomial elimination—algorithms and applications | DOI | MR
[Ape98] Apel, J.: The theory of involutive divisions and an application to Hilbert function computations. J. Symbolic Comput. 25(6), 683–704 (1998) | DOI | MR | Zbl
[Bar01] Barakat, M.: Jets. A MAPLE-package for formal differential geometry. In: V.G. Ganzha, E.W. Mayr, E.V. Vorozhtsov (eds.) Computer algebra in scientific computing (Konstanz, 2001), pp. 1–12. Springer, Berlin (2001) | DOI | Zbl
[BC80] Bullough, R.K., Caudrey, P.J.: The soliton and its history. In: R.K. Bullough, P.J. Caudrey (eds.) Solitons, Topics in Current Physics, vol. 17, pp. 1–64. Springer (1980) | DOI
[BCA10] Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of symmetry methods to partial differential equations, Applied Mathematical Sciences, vol. 168. Springer, New York (2010) | DOI | Zbl
[BCG+03a] Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The MAPLE Package “Janet”: I. Polynomial Systems. In: V.G. Ganzha, E.W. Mayr, E.V. Vorozhtsov (eds.) Proceedings of the 6th International Workshop on Computer Algebra in Scientific Computing, Passau (Germany), pp. 31–40 (2003)
[BCG+03b] Blinkov, Y.A., Cid, C.F., Gerdt, V.P., Plesken, W., Robertz, D.: The MAPLE Package “Janet”: II. Linear Partial Differential Equations. In: V.G. Ganzha, E.W. Mayr, E.V. Vorozhtsov (eds.) Proceedings of the 6th International Workshop on Computer Algebra in Scientific Computing, Passau (Germany), pp. 41–54 (2003) | DOI
[Ber78] Bergman, G.M.: The diamond lemma for ring theory. Adv. in Math. 29(2), 178–218 (1978) | DOI | MR | Zbl
[BG08] Blinkov, Y.A., Gerdt, V.P.: The specialized computer algebra system GINV. Programmirovanie 34(2), 67–80 (2008). http://invo.jinr.ru | DOI | MR | Zbl
[BG94] Bachmair, L., Ganzinger, H.: Buchberger’s algorithm: a constraint-based completion procedure. In: J.P. Jouannaud (ed.) Constraints in computational logics (Munich, 1994), Lecture Notes in Comput. Sci., vol. 845, pp. 285–301. Springer, Berlin (1994) | DOI
[BGL+10] Bächler, T., Gerdt, V.P., Lange-Hegermann, M., Robertz, D.: Thomas Decomposition of Algebraic and Differential Systems. In: V.P. Gerdt, W. Koepf, E.W. Mayr, E.H. Vorozhtsov (eds.) Computer Algebra in Scientific Computing, 12th International Workshop, CASC 2010, Tsakhkadzor, Armenia, Lecture Notes in Comput. Sci., vol. 6244, pp. 31–54. Springer (2010) | DOI | Zbl
[BGL+12] Bächler, T., Gerdt, V.P., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas decomposition of algebraic and differential systems. J. Symbolic Comput. 47(10), 1233–1266 (2012) | DOI | MR | Zbl
[Bjö79] Björk, J.E.: Rings of differential operators, North-Holland Mathematical Library, vol. 21. North-Holland Publishing Co., Amsterdam (1979) | DOI
[BKRM01] Bouziane, D., Kandri Rody, A., Maârouf, H.: Unmixed-dimensional decomposition of a finitely generated perfect differential ideal. J. Symbolic Comput. 31(6), 631–649 (2001) | DOI | MR | Zbl
[BLH] Bächler, T., Lange-Hegermann, M.: AlgebraicThomas and DifferentialThomas: Implementation of Thomas decomposition for algebraic and differential systems
[BLMM10] Boulier, F., Lemaire, F., Moreno Maza, M.: Computing differential characteristic sets by change of ordering. J. Symbolic Comput. 45(1), 124–149 (2010) | DOI | MR | Zbl
[BLOP09] Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Engrg. Comm. Comput. 20(1), 73–121 (2009) | DOI | MR | Zbl
[BLOP95] Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: A.H.M. Levelt (ed.) Proceedings of ISSAC’95, pp. 158–166. ACM, New York, NY, USA (1995) | DOI | Zbl
[Bou] Boulier, F.: BLAD – Bibliothèques Lilloises d’Algèbre Différentielle. Available online at http://www.lifl.fr/~boulier/
[Bro87] Brownawell, W.D.: Bounds for the degrees in the Nullstellensatz. Ann. of Math. (2) 126(3), 577–591 (1987) | DOI | MR | Zbl
[Buc06] Buchberger, B.: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symbolic Comput. 41(3-4), 475–511 (2006). Translated from the 1965 German original by M. P. Abramson | DOI | Zbl
[Buc79] Buchberger, B.: A criterion for detecting unnecessary reductions in the construction of Gröbner-bases. In: E.W. Ng (ed.) Symbolic and algebraic computation (EUROSAM ’79, Internat. Sympos., Marseille, 1979), Lecture Notes in Comput. Sci., vol. 72, pp. 3–21. Springer, Berlin (1979) | DOI | Zbl
[Buc87] Buchberger, B.: History and basic features of the critical-pair/completion procedure. J. Symbolic Comput. 3(1-2), 3–38 (1987). Rewriting techniques and applications (Dijon, 1985) | DOI | MR | Zbl
[BW93] Becker, T., Weispfenning, V.: Gröbner bases, Graduate Texts in Mathematics, vol. 141. Springer-Verlag, New York (1993). A computational approach to commutative algebra. In cooperation with Heinz Kredel | DOI | Zbl
[Bäc14] Bächler, T.: Counting Solutions of Algebraic Systems via Triangular Decomposition. Ph.D. thesis, RWTH Aachen University, Germany (2014). Available online at http://publications.rwth-aachen.de/record/444946
[CF07] Carrà Ferro, G.: A survey on differential Gröbner bases. In: M. Rosenkranz, D. Wang (eds.) Gröbner bases in symbolic analysis, Radon Ser. Comput. Appl. Math., vol. 2, pp. 77–108. Walter de Gruyter, Berlin (2007) | DOI | Zbl
[Chy98] Chyzak, F.: Fonctions holonomes en calcul formel. Ph.D. thesis, Ecole Polytechnique, Palaiseau, France (1998)
[CJ84] Castro-Jiménez, F.J.: Théorème de division pour les opérateurs differentiels et calcul des multiplicités. Ph.D. thesis, Université Paris VII, France (1984)
[CJMF03] Castro-Jiménez, F.J., Moreno-Frías, M.A.: Janet bases, -bases and Gröbner bases in . In: Comptes rendus de la première recontre maroco-andalouse sur les algèbres et leurs applications (Tétouan, 2001), pp. 108–116. Univ. Abdelmalek Essaâdi. Fac. Sci. Tétouan, Tétouan (2003)
[CLO15] Cox, D.A., Little, J., O’Shea, D.: Ideals, varieties, and algorithms, Undergraduate Texts in Mathematics, fourth edn. Springer, Cham (2015). An introduction to computational algebraic geometry and commutative algebra | DOI
[Cou95] Coutinho, S.C.: A primer of algebraic -modules, London Mathematical Society Student Texts, vol. 33. Cambridge University Press, Cambridge (1995) | Zbl
[CQ08] Cluzeau, T., Quadrat, A.: Factoring and decomposing a class of linear functional systems. Linear Algebra Appl. 428(1), 324–381 (2008) | DOI | MR | Zbl
[CQ09] Cluzeau, T., Quadrat, A.: OreMorphisms: a homological algebraic package for factoring, reducing and decomposing linear functional systems. In: J.J. Loiseau, W. Michiels, S.I. Niculescu, R. Sipahi (eds.) Topics in time delay systems, Lecture Notes in Control and Inform. Sci., vol. 388, pp. 179–194. Springer, Berlin (2009). Cf. also http://www-sop.inria.fr/members/Alban.Quadrat/OreMorphisms or http://perso.ensil.unilim.fr/~cluzeau/OreMorphisms | DOI
[CQR05] Chyzak, F., Quadrat, A., Robertz, D.: Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Engrg. Comm. Comput. 16(5), 319–376 (2005) | DOI | MR | Zbl
[CQR07] Chyzak, F., Quadrat, A., Robertz, D.: OreModules: a symbolic package for the study of multidimensional linear systems. In: J. Chiasson, J.J. Loiseau (eds.) Applications of time delay systems, Lecture Notes in Control and Inform. Sci., vol. 352, pp. 233–264. Springer, Berlin (2007) | DOI | Zbl
[CS98] Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput. 26(2), 187–227 (1998) | DOI | MR | Zbl
[CTvB95] Cheb-Terrab, E.S., von Bülow, K.: A computational approach for the analytic solving of partial differential equations. Computer Physics Communications 90, 102–116 (1995) | DOI | Zbl
[Dar73] Darboux, G.: Sur les solutions singulières des équations aux dérivées ordinaires du premier ordre. Bulletin des sciences mathématiques et astronomiques 4, 158–176 (1873). http://www.numdam.org/item?id=BSMA_1873__4__158_0 | Numdam
[Dio92] Diop, S.: Differential-algebraic decision methods and some applications to system theory. Theoret. Comput. Sci. 98(1), 137–161 (1992). Second Workshop on Algebraic and Computer-theoretic Aspects of Formal Power Series (Paris, 1990) | DOI | MR | Zbl
[DJS14] D’Alfonso, L., Jeronimo, G., Solernó, P.: Effective differential Nullstellensatz for ordinary DAE systems with constant coefficients. J. Complexity 30(5), 588–603 (2014) | DOI | MR | Zbl
[Dub90] Dubé, T.W.: The structure of polynomial ideals and Gröbner bases. SIAM J. Comput. 19(4), 750–775 (1990) | Zbl
[Eis95] Eisenbud, D.: Commutative algebra, Graduate Texts in Mathematics, vol. 150. Springer-Verlag, New York (1995). With a view toward algebraic geometry | DOI | Zbl
[Eva10] Evans, L.C.: Partial differential equations, Graduate Studies in Mathematics, vol. 19, second edn. American Mathematical Society, Providence, RI (2010) | DOI | Zbl
[EW07] Evans, G.A., Wensley, C.D.: Complete involutive rewriting systems. J. Symbolic Comput. 42(11-12), 1034–1051 (2007) | DOI | MR | Zbl
[Fau99] Faugère, J.C.: A new efficient algorithm for computing Gröbner bases . J. Pure Appl. Algebra 139(1-3), 61–88 (1999). Effective methods in algebraic geometry (Saint-Malo, 1998) | DOI | Zbl
[FLMR95] Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and defect of non-linear systems: introductory theory and examples. Internat. J. Control 61(6), 1327–1361 (1995) | DOI | MR | Zbl
[Gal85] Galligo, A.: Some algorithmic questions on ideals of differential operators. In: B.F. Caviness (ed.) EUROCAL ’85, Vol. 2 (Linz, 1985), Lecture Notes in Comput. Sci., vol. 204, pp. 413–421. Springer, Berlin (1985) | DOI | Zbl
[GB98a] Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput. Simulation 45(5-6), 519–541 (1998). Simplification of systems of algebraic and differential equations with applications | DOI | MR | Zbl
[GB98b] Gerdt, V.P., Blinkov, Y.A.: Minimal involutive bases. Math. Comput. Simulation 45(5-6), 543–560 (1998). Simplification of systems of algebraic and differential equations with applications | DOI | MR
[GC08] Grigorʼev, D.Y., Chistov, A.L.: Complexity of the standard basis of a -module. Algebra i Analiz 20(5), 41–82 (2008) | DOI | MR
[Ger05] Gerdt, V.P.: Involutive algorithms for computing Gröbner bases. In: S. Cojocaru, G. Pfister, V. Ufnarovski (eds.) Computational commutative and non-commutative algebraic geometry, NATO Sci. Ser. III Comput. Syst. Sci., vol. 196, pp. 199–225. IOS, Amsterdam (2005) | Zbl
[Ger08] Gerdt, V.P.: On decomposition of algebraic PDE systems into simple subsystems. Acta Appl. Math. 101(1-3), 39–51 (2008) | DOI | MR | Zbl
[Ger09] Gerdt, V.P.: Algebraically simple involutive differential systems and Cauchy problem. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 373(Teoriya Predstavlenii, Dinamicheskie Sistemy, Kombinatornye Metody. XVII), 94–103, 347 (2009) | DOI | MR
[GKO16] Gustavson, R., Kondratieva, M., Ovchinnikov, A.: New effective differential Nullstellensatz. Adv. Math. 290, 1138–1158 (2016) | DOI | MR | Zbl
[GKOS09] Golubitsky, O., Kondratieva, M., Ovchinnikov, A., Szanto, A.: A bound for orders in differential Nullstellensatz. J. Algebra 322(11), 3852–3877 (2009) | DOI | MR | Zbl
[GL11] Gallego, C., Lezama, O.: Gröbner bases for ideals of extensions. Comm. Algebra 39(1), 50–75 (2011) | DOI | Zbl
[GLR19] Gerdt, V.P., Lange-Hegermann, M., Robertz, D.: The MAPLE package TDDS for computing Thomas decompositions of systems of nonlinear PDEs, Comput. Phys. Commun. 234, 202–215 (2019) | DOI | MR
[GMO91] Gallo, G., Mishra, B., Ollivier, F.: Some constructions in rings of differential polynomials. In: H.F. Mattson, T. Mora, T.R.N. Rao (eds.) Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991), Lecture Notes in Comput. Sci., vol. 539, pp. 171–182. Springer, Berlin (1991) | DOI
[GR06] Gerdt, V.P., Robertz, D.: A Maple Package for Computing Gröbner Bases for Linear Recurrence Relations. Nuclear Instruments and Methods in Physics Research, A: Accelerators, Spectrometers, Detectors and Associated Equipment 559(1), 215–219 (2006) | DOI
[GR10] Gerdt, V.P., Robertz, D.: Consistency of Finite Difference Approximations for Linear PDE Systems and its Algorithmic Verification. In: S.M. Watt (ed.) Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, TU München, Germany, pp. 53–59 (2010) | DOI | Zbl
[GR12] Gerdt, V.P., Robertz, D.: Computation of Difference Gröbner Bases. Comput. Sci. J. Moldova 20(2 (59)), 203–226 (2012) | Zbl
[GR16] Gerdt, V.P., Robertz, D.: Lagrangian Constraints and Differential Thomas Decomposition. Adv. in Appl. Math. 72, 113–138 (2016) | DOI | MR | Zbl
[Gri89] Grigorʼev, D.Y.: Complexity of quantifier elimination in the theory of ordinary differentially closed fields. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 176(Teor. Slozhn. Vychisl. 4), 53–67, 152 (1989) | DOI | MR
[Gri91] Grigorʼev, D.Y.: Complexity of the solution of systems of linear equations in rings of differential operators. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 192(Teor. Slozhn. Vychisl. 5), 47–59, 174 (1991) | DOI
[Ham93] Hamburger, M.: Über die singulären Lösungen der algebraischen Differentialgleichungen erster Ordnung. J. Reine und Angew. Math. 112, 205–246 (1893) | DOI | Zbl
[Her26] Hermann, G.: Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann. 95(1), 736–788 (1926) | DOI | MR | Zbl
[Her96] Hereman, W.: Symbolic Software for Lie Symmetry Analysis. In: N.H. Ibragimov (ed.) CRC Handbook of Lie Group Analysis of Differential Equations, Volume 3: New Trends in Theoretical Developments and Computational Methods, CRC Press, Boca Raton, Florida, pp. 367–413, (1996)
[HS02] Hausdorf, M., Seiler, W.M.: Involutive Bases in MuPAD I: Involutive Divisions. mathPAD 11, 51–56 (2002)
[HSS02] Hausdorf, M., Seiler, W.M., Steinwandt, R.: Involutive bases in the Weyl algebra. J. Symbolic Comput. 34(3), 181–198 (2002) | DOI | MR | Zbl
[Hub00] Hubert, E.: Factorization-free decomposition algorithms in differential algebra. J. Symbolic Comput. 29(4-5), 641–662 (2000). Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998). www-sop.inria.fr/members/Evelyne.Hubert/diffalg | DOI | MR | Zbl
[Hub97] Hubert, E.: Algebra and algorithms for singularities of implicit differential equations. Ph.D. thesis, Institute National Polytechnique de Grenoble, France (1997)
[Hub99] Hubert, E.: Essential components of an algebraic differential equation. J. Symbolic Comput. 28(4-5), 657–680 (1999). Differential algebra and differential equations | DOI | MR | Zbl
[Hub03a] Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms. I. Polynomial systems. In: F. Winkler, U. Langer (eds.) Symbolic and numerical scientific computation (Hagenberg, 2001), Lecture Notes in Comput. Sci., vol. 2630, pp. 1–39. Springer, Berlin (2003) | DOI | Zbl
[Hub03b] Hubert, E.: Notes on triangular sets and triangulation-decomposition algorithms. II. Differential systems. In: F. Winkler, U. Langer (eds.) Symbolic and numerical scientific computation (Hagenberg, 2001), Lecture Notes in Comput. Sci., vol. 2630, pp. 40–87. Springer, Berlin (2003) | DOI | Zbl
[Inc56] Ince, E.L.: Ordinary Differential Equations. Dover Publications, New York (1956)
[IP98] Insa, M., Pauer, F.: Gröbner bases in rings of differential operators. In: B. Buchberger, F. Winkler (eds.) Gröbner bases and applications (Linz, 1998), London Math. Soc. Lecture Note Ser., vol. 251, pp. 367–380. Cambridge Univ. Press, Cambridge (1998) | DOI | Zbl
[Jan20] Janet, M.: Sur les systèmes d’équations aux dérivées partielles. Thèses françaises de l’entre-deux-guerres. Gauthiers-Villars, Paris (1920). http://www.numdam.org/item?id=THESE_1920__19__1_0 | Numdam
[Jan29] Janet, M.: Leçons sur les systèmes d’équations aux dérivées partielles. Cahiers Scientifiques IV. Gauthiers-Villars, Paris (1929) | Zbl
[Kap76] Kaplansky, I.: An introduction to differential algebra, second edn. Hermann, Paris (1976). Actualités Scientifiques et Industrielles, No. 1251, Publications de l’Institut de Mathématique de l’Université de Nancago, No. V
[Kas03] Kashiwara, M.: -modules and microlocal calculus, Translations of Mathematical Monographs, vol. 217. American Mathematical Society, Providence, RI (2003). Translated from the 2000 Japanese original by Mutsumi Saito, Iwanami Series in Modern Mathematics | DOI | Zbl
[Kol64] Kolchin, E.R.: The notion of dimension in the theory of algebraic differential equations. Bull. Amer. Math. Soc. 70, 570–573 (1964) | DOI | MR | Zbl
[Kol73] Kolchin, E.R.: Differential algebra and algebraic groups, Pure and Applied Mathematics, vol. 54. Academic Press, New York-London (1973) | Zbl
[Kol99] Kolchin, E.R.: Selected works of Ellis Kolchin with commentary. American Mathematical Society, Providence, RI (1999). Commentaries by A. Borel, M.F. Singer, B. Poizat, A. Buium and P.J. Cassidy, edited and with a preface by H. Bass, A. Buium and P.J. Cassidy | Zbl
[Kov75] Kowalevsky, S.: Zur Theorie der partiellen Differentialgleichung. J. Reine & Angewandte Mathematik 80, 1–32 (1875) | DOI | MR | Zbl
[Kre93] Kredel, H.: Solvable Polynomial Rings. Shaker-Verlag, Aachen (1993) | Zbl
[KRW90] Kandri-Rody, A., Weispfenning, V.: Noncommutative Gröbner bases in algebras of solvable type. J. Symbolic Comput. 9(1), 1–26 (1990) | DOI | Zbl
[Laz91] Lazard, D.: A new method for solving algebraic systems of positive dimension. Discrete Appl. Math. 33(1-3), 147–160 (1991). Applied algebra, algebraic algorithms, and error-correcting codes (Toulouse, 1989) | DOI | MR
[Lec03] Lecerf, G.: Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers. J. Complexity 19(4), 564–596 (2003) | DOI | MR | Zbl
[Lem02] Lemaire, F.: Contribution à l’algorithmique en algèbre différentielle. Ph.D. thesis, Université de Lille 1, France (2002)
[Lev05] Levandovskyy, V.: Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation. Ph.D. thesis, Universität Kaiserslautern, Germany (2005).
[Lew57] Lewy, H.: An example of a smooth linear partial differential equation without solution. Ann. of Math. (2) 66, 155–158 (1957) | DOI | MR | Zbl
[LH14] Lange-Hegermann, M.: Counting Solutions of Differential Equations. Ph.D. thesis, RWTH Aachen University, Germany (2014). Available online at http://publications.rwth-aachen.de/record/229056
[LH18] Lange-Hegermann, M.: The differential counting polynomial. Found. Comput. Math. 18(2), 291–308 (2018) | DOI | MR | Zbl
[LHR13] Lange-Hegermann, M., Robertz, D.: Thomas decompositions of parametric nonlinear control systems. In: Proceedings of the 5th Symposium on System Structure and Control, Grenoble (France), pp. 291–296 (2013) | DOI
[LHR] Lange-Hegermann, M., Robertz, D.: Thomas Decomposition and Nonlinear Control Systems, accepted for publication | DOI | Zbl
[LL87] Landau, L.D., Lifshitz, E.M.: Course of theoretical physics. Vol. 6. Fluid mechanics. Translated from the third Russian edition by J. B. Sykes and W. H. Reid, second edn. Pergamon Press, Oxford (1987)
[LMMX05] Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in MAPLE. SIGSAM Bull. 39, 96–97 (2005) | DOI
[LMW10] Li, X., Mou, C., Wang, D.: Decomposing polynomial sets into simple sets over finite fields: The zero-dimensional case. Comput. Math. Appl. 60(11), 2983–2997 (2010) | DOI | MR | Zbl
[LW99] Li, Z., Wang, D.: Coherent, regular and simple systems in zero decompositions of partial differential systems. System Science and Mathematical Sciences 12, 43–60 (1999) | Zbl
[Mal05] Malgrange, B.: Systèmes différentiels involutifs. Panoramas et Synthèses [Panoramas and Syntheses], vol. 19, Société Mathématique de France, Paris (2005)
[Man91] Mansfield, E.L.: Differential Gröbner Bases. Ph.D. thesis, University of Sydney, Australia (1991)
[MAP] Maple. Waterloo Maple Inc. www.maplesoft.com
[Mil77] Miller Jr., W.: Symmetry and separation of variables, Encyclopedia of Mathematics and its Applications, vol. 4. Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam (1977). With a foreword by R. Askey
[Mis93] Mishra, B.: Algorithmic algebra. Texts and Monographs in Computer Science. Springer-Verlag, New York (1993) | DOI
[MLW13] Mou, C., Li, X., Wang, D.: Decomposing polynomial sets into simple sets over finite fields: The positive-dimensional case. Theoret. Comput. Sci. 468, 102–113 (2013) | DOI | MR | Zbl
[MM82] Mayr, E.W., Meyer, A.R.: The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. in Math. 46(3), 305–329 (1982) | DOI | MR | Zbl
[Mor94] Mora, T.: An introduction to commutative and noncommutative Gröbner bases. Theoret. Comput. Sci. 134(1), 131–173 (1994). Second International Colloquium on Words, Languages and Combinatorics (Kyoto, 1992) | DOI | Zbl
[MR01] McConnell, J.C., Robson, J.C.: Noncommutative Noetherian rings, Graduate Studies in Mathematics, vol. 30, revised edn. American Mathematical Society, Providence, RI (2001). With the cooperation of L.W. Small | DOI | MR | Zbl
[MRC98] Mansfield, E.L., Reid, G.J., Clarkson, P.A.: Nonclassical reductions of a -cubic nonlinear Schrödinger system. Comput. Phys. Comm. 115(2-3), 460–488 (1998) | DOI | Zbl
[Mér80] Méray, C.: Démonstration générale de l’existence des intégrales des équations aux dérivées partielles. Journal de mathématiques pures et appliquées, 3e série tome VI, 235–265 (1880) | Zbl
[Obe90] Oberst, U.: Multidimensional constant linear systems. Acta Appl. Math. 20(1-2), 1–175 (1990) | DOI | MR | Zbl
[Oll91] Ollivier, F.: Standard bases of differential ideals. In: S. Sakata (ed.) Applied algebra, algebraic algorithms and error-correcting codes (Tokyo, 1990), Lecture Notes in Comput. Sci., vol. 508, pp. 304–321. Springer, Berlin (1991) | DOI
[Olv93] Olver, P.J.: Applications of Lie groups to differential equations, Graduate Texts in Mathematics, vol. 107, second edn. Springer-Verlag, New York (1993) | Zbl
[OP01] Oberst, U., Pauer, F.: The constructive solution of linear systems of partial difference and differential equations with constant coefficients. Multidimens. Systems Signal Process. 12(3-4), 253–308 (2001). Special issue: Applications of Gröbner bases to multidimensional systems and signal processing | Zbl
[OR86] Olver, P.J., Rosenau, P.: The construction of special solutions to partial differential equations. Phys. Lett. A 114(3), 107–112 (1986) | DOI | MR | Zbl
[Ore33] Ore, O.: Theory of non-commutative polynomials. Ann. of Math. (2) 34(3), 480–508 (1933) | DOI | MR | Zbl
[Pan89] Pankratʼev, E.V.: Computations in differential and difference modules. Acta Appl. Math. 16(2), 167–189 (1989). Symmetries of partial differential equations, Part III | DOI
[PB14] Plesken, W., Bächler, T.: Counting Polynomials for Linear Codes, Hyperplane Arrangements, and Matroids. Doc. Math. 19, 285–312 (2014) | Zbl
[PG97] Péladan-Germa, A.: Tests effectifs de nullité dans des extensions d’anneaux différentiels. Ph.D. thesis, Ecole Polytechnique, Palaiseau, France (1997)
[Ple09a] Plesken, W.: Counting solutions of polynomial systems via iterated fibrations. Arch. Math. (Basel) 92(1), 44–56 (2009) | DOI | MR | Zbl
[Ple09b] Plesken, W.: Gauss-Bruhat decomposition as an example of Thomas decomposition. Arch. Math. (Basel) 92(2), 111–118 (2009) | DOI | MR | Zbl
[Pom01] Pommaret, J.F.: Partial differential control theory, Mathematics and its Applications, vol. 530. Kluwer Academic Publishers Group, Dordrecht (2001). Vol. I. Mathematical tools; Vol. II. Control systems. With a foreword by J. C. Willems
[Pom78] Pommaret, J.F.: Systems of partial differential equations and Lie pseudogroups, Mathematics and its Applications, vol. 14. Gordon & Breach Science Publishers, New York (1978). With a preface by André Lichnerowicz | DOI | Zbl
[Pom94] Pommaret, J.F.: Partial differential equations and group theory, Mathematics and its Applications, vol. 293. Kluwer Academic Publishers Group, Dordrecht (1994). New perspectives for applications | DOI | Zbl
[PQ99] Pommaret, J.F., Quadrat, A.: Localization and parametrization of linear multidimensional control systems. Systems Control Lett. 37(4), 247–260 (1999) | DOI | MR | Zbl
[PR05] Plesken, W., Robertz, D.: Janet’s approach to presentations and resolutions for polynomials and linear PDEs. Arch. Math. (Basel) 84(1), 22–37 (2005) | DOI | MR | Zbl
[PR10] Plesken, W., Robertz, D.: Linear differential elimination for analytic functions. Math. Comput. Sci. 4(2-3), 231–242 (2010) | DOI | MR | Zbl
[QR07] Quadrat, A., Robertz, D.: Computation of bases of free modules over the Weyl algebras. J. Symbolic Comput. 42(11-12), 1113–1141 (2007) | DOI | MR | Zbl
[QR14] Quadrat, A., Robertz, D.: A constructive study of the module structure of rings of partial differential operators. Acta Appl. Math. 133(1), 187–234 (2014) | DOI | MR | Zbl
[Qua10a] Quadrat, A.: An introduction to constructive algebraic analysis and its applications. In: Les cours du CIRM, tome 1, numéro 2: Journées Nationales de Calcul Formel, pp. 281–471 (2010) | DOI
[Qua10b] Quadrat, A.: Systèmes et Structures: Une approche de la théorie mathématique des systèmes par l’analyse algébrique constructive. Habilitation thesis, Université de Nice (Sophia Antipolis), France (2010)
[Rau34] Raudenbush Jr., H.W.: Ideal theory and algebraic differential equations. Trans. Amer. Math. Soc. 36(2), 361–368 (1934) | DOI | MR | Zbl
[Riq10] Riquier, C.: Les systèmes d’équations aux dérivées partielles. Gauthiers-Villars, Paris (1910) | DOI
[Rit34] Ritt, J.F.: Differential Equations from the Algebraic Standpoint. American Mathematical Society Colloquium Publications, vol. XIV. American Mathematical Society, New York, N. Y. (1934) | DOI | Zbl
[Rit36] Ritt, J.F.: On the singular solutions of algebraic differential equations. Ann. of Math. (2) 37(3), 552–617 (1936) | DOI | MR | Zbl
[Rit50] Ritt, J.F.: Differential Algebra. American Mathematical Society Colloquium Publications, vol. XXXIII. American Mathematical Society, New York, N. Y. (1950) | DOI | Zbl
[Rob06] Robertz, D.: Formal Computational Methods for Control Theory. Ph.D. thesis, RWTH Aachen University, Germany (2006). Available online at http://publications.rwth-aachen.de/record/61055
[Rob07] Robertz, D.: Janet bases and applications. In: M. Rosenkranz, D. Wang (eds.) Gröbner bases in symbolic analysis, Radon Ser. Comput. Appl. Math., vol. 2, pp. 139–168. Walter de Gruyter, Berlin (2007) | DOI | Zbl
[Rob09] Robertz, D.: Noether normalization guided by monomial cone decompositions. J. Symbolic Comput. 44(10), 1359–1373 (2009) | DOI | MR | Zbl
[Rob14] Robertz, D.: Formal Algorithmic Elimination for PDEs, Lecture Notes in Mathematics, vol. 2121. Springer, Cham (2014) | DOI | Zbl
[Rob15] Robertz, D.: Recent Progress in an Algebraic Analysis Approach to Linear Systems. Multidimens. Syst. Signal Process. 26(2), 349–388 (2015) | DOI | MR | Zbl
[Rob16] Robertz, D.: Formal Algorithmic Elimination for PDEs. In: Abramov, S.A., Zima, E.V., Gao, X.-S. (eds.) Proceedings of the 2016 International Symposium on Symbolic and Algebraic Computation, 19-22 July 2016, Waterloo, Ontario, Canada, pp. 19–22 (2016) | DOI | Zbl
[Rob] Robertz, D.: InvolutiveBases – Methods for Janet bases and Pommaret bases in Macaulay2. Available online at http://www.math.uiuc.edu/Macaulay2/Packages/
[Ros59] Rosenfeld, A.: Specializations in differential algebra. Trans. Amer. Math. Soc. 90, 394–407 (1959) | DOI | MR | Zbl
[RR04] Renardy, M., Rogers, R.C.: An introduction to partial differential equations, Texts in Applied Mathematics, vol. 13, second edn. Springer-Verlag, New York (2004) | DOI | Zbl
[RRW99] Rust, C.J., Reid, G.J., Wittkopf, A.D.: Existence and uniqueness theorems for formal power series solutions of analytic differential systems. In Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation (Vancouver, BC), pp. 105–112 (1999) | DOI
[RS10] Rueda, S.L., Sendra, J.R.: Linear complete differential resultants and the implicitization of linear DPPEs. J. Symbolic Comput. 45(3), 324–341 (2010) | DOI | MR | Zbl
[RWB96] Reid, G.J., Wittkopf, A.D., Boulton, A.: Reduction of systems of nonlinear partial differential equations to simplified involutive forms. European J. Appl. Math. 7(6), 635–666 (1996) | DOI | MR | Zbl
[Sad00] Sadik, B.: Une note sur les algorithmes de décomposition en algèbre différentielle. C. R. Acad. Sci. Paris Sér. I Math. 330(8), 641–646 (2000) | DOI | Zbl
[Sch84] Schwarz, F.: The Riquier-Janet theory and its application to nonlinear evolution equations. Phys. D 11(1-2), 243–251 (1984) | DOI | MR | Zbl
[Sch08a] Schwarz, F.: Algorithmic Lie theory for solving ordinary differential equations, Pure and Applied Mathematics (Boca Raton), vol. 291. Chapman & Hall/CRC, Boca Raton, FL (2008) | Zbl
[Sei10] Seiler, W.M.: Involution, Algorithms and Computation in Mathematics, vol. 24. Springer-Verlag, Berlin (2010). The formal theory of differential equations and its applications in computer algebra | Zbl
[Sei56] Seidenberg, A.: An elimination theory for differential algebra. Univ. California Publ. Math. (N.S.) 3, 31–65 (1956) | DOI
[SST00] Saito, M., Sturmfels, B., Takayama, N.: Gröbner deformations of hypergeometric differential equations, Algorithms and Computation in Mathematics, vol. 6. Springer-Verlag, Berlin (2000) | DOI | Zbl
[Sta96] Stanley, R.P.: Combinatorics and commutative algebra, Progress in Mathematics, vol. 41, second edn. Birkhäuser Boston Inc., Boston, MA (1996) | DOI | Zbl
[Stu96] Sturmfels, B.: Gröbner bases and convex polytopes, University Lecture Series, vol. 8. American Mathematical Society, Providence, RI (1996) | DOI
[SW91] Sturmfels, B., White, N.: Computing combinatorial decompositions of rings. Combinatorica 11(3), 275–293 (1991) | DOI | MR | Zbl
[Tho28] Thomas, J.M.: Riquier’s existence theorems. Ann. of Math. (2) 30(1-4), 285–310 (1928/29) | DOI | MR | Zbl
[Tho34] Thomas, J.M.: Riquier’s existence theorems. Ann. of Math. (2) 35(2), 306–311 (1934) | DOI | MR | Zbl
[Tho37] Thomas, J.M.: Differential Systems. American Mathematical Society Colloquium Publications, vol. XXI. American Mathematical Society, New York, N. Y. (1937)
[Tho62] Thomas, J.M.: Systems and Roots. William Byrd Press, Richmond, VA (1962) | Zbl
[Top89] Topunov, V.L.: Reducing systems of linear differential equations to a passive form. Acta Appl. Math. 16(2), 191–206 (1989). Symmetries of partial differential equations, Part III | Zbl
[vdPS03] van der Put, M., Singer, M.F.: Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, vol. 328. Springer-Verlag, Berlin (2003) | Zbl
[Vin84] Vinogradov, A.M.: Local symmetries and conservation laws. Acta Appl. Math. 2(1), 21–78 (1984) | DOI | MR | Zbl
[vzGG03] von zur Gathen, J., Gerhard, J.: Modern computer algebra, third edn. Cambridge University Press, Cambridge (2013) | DOI | Zbl
[Wan01] Wang, D.: Elimination methods. Texts and Monographs in Symbolic Computation. Springer-Verlag, Vienna (2001) | DOI | MR
[Wan04] Wang, D.: Elimination practice. Imperial College Press, London (2004). Software tools and applications. With 1 CD-ROM (UNIX/LINUX, Windows). http://www-salsa.lip6.fr/~wang/epsilon | DOI
[Wan98] Wang, D.: Decomposing polynomial systems into simple systems. J. Symbolic Comput. 25(3), 295–314 (1998) | DOI | MR | Zbl
[WBM99] Wolf, T., Brand, A., Mohammadzadeh, M.: Computer algebra algorithms and routines for the computation of conservation laws and fixing of gauge in differential expressions. J. Symbolic Comput. 27(2), 221–238 (1999) | DOI | MR | Zbl
[Wol04] Wolf, T.: Applications of CRACK in the classification of integrable systems. In: P. Tempesta, P. Winternitz, J. Harnad, W. Miller Jr., G. Pogosyan, M. Rodriguez (eds.) Superintegrability in classical and quantum systems, CRM Proc. Lecture Notes, vol. 37, pp. 283–300. Amer. Math. Soc., Providence, RI (2004). http://lie.math.brocku.ca/Crack_demo.html | DOI
[Wu00] Wu, W.t.: Mathematics mechanization, Mathematics and its Applications, vol. 489. Kluwer Academic Publishers Group, Dordrecht; Science Press, Beijing (2000). Mechanical geometry theorem-proving, mechanical geometry problem-solving and polynomial equations-solving | Zbl
[Wu89] Wu, W.t.: On the foundation of algebraic differential geometry. Systems Sci. Math. Sci. 2(4), 289–312 (1989) | Zbl
[Wu91] Wu, W.t.: On the construction of Groebner basis of a polynomial ideal based on Riquier-Janet theory. Systems Sci. Math. Sci. 4(3), 193–207 (1991). Also in: D. Wang, Z. Zheng (eds.) Differential Equations with Symbolic Computation, Trends Math., pp. 351–368. Birkhäuser, Basel (2005) | DOI | Zbl
[ZB96] Zharkov, A.Y., Blinkov, Y.A.: Involution approach to investigating polynomial systems. Math. Comput. Simulation 42(4-6), 323–332 (1996). Symbolic computation, new trends and developments (Lille, 1993) | DOI | MR
[ZL04] Zhang, S.q., Li, Z.b.: An implementation for the algorithm of Janet bases of linear differential ideals in the Maple system. Acta Math. Appl. Sin. Engl. Ser. 20(4), 605–616 (2004) | DOI | MR | Zbl
Cited by Sources: