@incollection{MSMF_1971__25__17_0, author = {Armitage, J. V.}, title = {The product of $N$ linear forms in a field of series and the {Riemann} hypothesis for curves}, booktitle = {Colloque de th\'eorie des nombres (Bordeaux, 1969)}, author = {Collectif}, series = {M\'emoires de la Soci\'et\'e Math\'ematique de France}, pages = {17--27}, publisher = {Soci\'et\'e math\'ematique de France}, number = {25}, year = {1971}, doi = {10.24033/msmf.29}, zbl = {0221.14017}, mrnumber = {50 #12923}, url = {http://archive.numdam.org/articles/10.24033/msmf.29/} }
TY - CHAP AU - Armitage, J. V. TI - The product of $N$ linear forms in a field of series and the Riemann hypothesis for curves BT - Colloque de théorie des nombres (Bordeaux, 1969) AU - Collectif T3 - Mémoires de la Société Mathématique de France PY - 1971 DA - 1971/// SP - 17 EP - 27 IS - 25 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/msmf.29/ UR - https://zbmath.org/?q=an%3A0221.14017 UR - https://www.ams.org/mathscinet-getitem?mr=50 #12923 UR - https://doi.org/10.24033/msmf.29 DO - 10.24033/msmf.29 ID - MSMF_1971__25__17_0 ER -
Armitage, J. V. The product of $N$ linear forms in a field of series and the Riemann hypothesis for curves, dans Colloque de théorie des nombres (Bordeaux, 1969), Mémoires de la Société Mathématique de France, no. 25 (1971), pp. 17-27. doi : 10.24033/msmf.29. http://archive.numdam.org/articles/10.24033/msmf.29/
[1] On a method of Mordell in the geometry of numbers, Mathematika 2 (1955), 132-140. | MR 17,1060a | Zbl 0066.03602
.[2] The product of n linear forms in a field of series, Mathematika 4 (1957), 132-137. | MR 20 #38 | Zbl 0079.27303
.[3] Algebraic functions and an analogue of the geometry of numbers : the Riemann-Roch Theorem, Archiv der Mathematik 18 (1967), 383-393. | MR 37 #192 | Zbl 0156.41102
.[4] L'hypothèse de Riemann pour les corps de fonctions algébriques de caractéristique p, Séminaire Bourbaki 1 (1948/1949), n° 3 and n° 9. | Numdam | Zbl 0116.03001
.[5] Zur Theorie der abstrakten elliptischen Funktionenkörper, J. reine u. angew. Math. 175 (1936), 69-88 and 193-208. | Zbl 0014.24901
.[6] An analogue to Minkowski's geometry of numbers in a field of series, Ann. Math., II Ser. 42 (1941), 481-522. | JFM 67.0140.01 | MR 2,350c | Zbl 0027.16001
.[7] Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités scientifiques et industrielles, n° 1041, Paris, (1948). | MR 10,262c | Zbl 0036.16001
.[8] Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497-508. | MR 10,592e | Zbl 0032.39402
.Cité par Sources :