« Vanishing theorem » pour un fibré vectoriel holomorphe positif de rang quelconque
Journées de géométrie analytique (Poitiers, 1972), Mémoires de la Société Mathématique de France no. 38  (1974), p. 107-119
@incollection{MSMF_1974__38__107_0,
     author = {Le Potier, Joseph},
     title = {\guillemotleft{} Vanishing theorem \guillemotright{} pour un fibr\'e vectoriel holomorphe positif de rang quelconque},
     booktitle = {Journ\'ees de g\'eom\'etrie analytique (Poitiers, 1972)},
     author = {Collectif},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {38},
     year = {1974},
     pages = {107-119},
     zbl = {0293.32024},
     mrnumber = {51 \#3553},
     language = {mul},
     url = {http://www.numdam.org/item/MSMF_1974__38__107_0}
}
Le Potier, Joseph. « Vanishing theorem » pour un fibré vectoriel holomorphe positif de rang quelconque, in Journées de géométrie analytique (Poitiers, 1972), Mémoires de la Société Mathématique de France, no. 38 (1974), pp. 107-119. doi : 10.24033/msmf.158. http://www.numdam.org/item/MSMF_1974__38__107_0/

[1] Bott (R.). - Homogeneous vector bundles, Ann. Math., 66 (1957), 203-248. | MR 19,681d | Zbl 0094.35701

[2] Bott (R.) and Chern (S.S.). - Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math. 114 (1966), 71-112. | MR 32 #3070 | Zbl 0148.31906

[3] Godement (R.). - Topologie Algébrique et théorie des faisceaux, Hermann, Paris (1964).

[4] Griffiths (P.A.). - Hermitian differential geometry, Chern classes and positive vector bundles, Global Analysis (Paper in honor of K. Kodaira), Princeton U. Press (1970). | Zbl 0201.24001

[5] Hirzebruch (F.). - Topological methods in algebraic geometry, Springer (1966) (Appendice by A. Borel : A spectral sequence for complex analytic bundles). | MR 34 #2573 | Zbl 0138.42001

[6] Husemoller (D.). - Fibre bundles, Mc Graw-Hill Book Company (1966). | MR 37 #4821 | Zbl 0144.44804

[7] Morrow (J.) and Kodaira (K.). - Complex Manifolds, Holt, Rinehart and Winston Inc., New-York (1971). | MR 46 #2080 | Zbl 0325.32001