@incollection{MSMF_1976__48__35_0, author = {Hornix, E.A.M.}, title = {The {Milnor} ring of a local ring}, booktitle = {Colloque sur les formes quadratiques (Montpellier, 1975)}, series = {M\'emoires de la Soci\'et\'e Math\'ematique de France}, pages = {35--44}, publisher = {Soci\'et\'e math\'ematique de France}, number = {48}, year = {1976}, doi = {10.24033/msmf.199}, mrnumber = {58 #10976}, zbl = {0353.15036}, url = {http://archive.numdam.org/articles/10.24033/msmf.199/} }
TY - CHAP AU - Hornix, E.A.M. TI - The Milnor ring of a local ring BT - Colloque sur les formes quadratiques (Montpellier, 1975) AU - Collectif T3 - Mémoires de la Société Mathématique de France PY - 1976 SP - 35 EP - 44 IS - 48 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/msmf.199/ DO - 10.24033/msmf.199 ID - MSMF_1976__48__35_0 ER -
%0 Book Section %A Hornix, E.A.M. %T The Milnor ring of a local ring %B Colloque sur les formes quadratiques (Montpellier, 1975) %A Collectif %S Mémoires de la Société Mathématique de France %D 1976 %P 35-44 %N 48 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/msmf.199/ %R 10.24033/msmf.199 %F MSMF_1976__48__35_0
Hornix, E.A.M. The Milnor ring of a local ring, in Colloque sur les formes quadratiques (Montpellier, 1975), Mémoires de la Société Mathématique de France, no. 48 (1976), pp. 35-44. doi : 10.24033/msmf.199. http://archive.numdam.org/articles/10.24033/msmf.199/
[1] Lectures on topics in algebraic K-theory. Tata Institute of fundamental research, 1967. | MR | Zbl
,[2] Bemerkungen zur Theorie der quadratischen Formen über semilokalen Ringen. Saarbrücken, 1969.
,[3] Stiefel-Whitney invariants of quadratic forms over local rings. J. of Algebra 26 (1973), 258-279. | MR | Zbl
,[4] Sur les algèbres de Clifford, Ann. Sc. Ec. Normale Sup., 4è série, 1 (1968), 271-304. | Numdam | MR | Zbl
, ,[5] Sur les algèbres de Clifford II, Journal für die Reine und Andgewandte Mathematik, 242 (1970), 61-90. | MR | Zbl
, ,[6] Algebraic K-theory and quadratic forms. Inventiones Math. 9, 318-344 (1970). | MR | Zbl
,[7] Symmetric bilinear forms and quadratic forms. J. of Algebra, 20 (1972), 144-160. | MR | Zbl
,Cited by Sources: