Relations diophantiennes et la solution négative du 10e problème de Hilbert
Séminaire Bourbaki : vol. 1970/71, exposés 382-399, Séminaire Bourbaki, no. 13 (1971), Talk no. 383, p. 11-28
@incollection{SB_1970-1971__13__11_0,
     author = {Azra, Jean-Pierre},
     title = {Relations diophantiennes et la solution n\'egative du 10e probl\`eme de Hilbert},
     booktitle = {S\'eminaire Bourbaki : vol. 1970/71, expos\'es 382-399},
     author = {Collectif},
     series = {S\'eminaire Bourbaki},
     publisher = {Springer-Verlag},
     number = {13},
     year = {1971},
     note = {talk:383},
     pages = {11-28},
     zbl = {0268.02030},
     mrnumber = {469884},
     language = {fr},
     url = {http://www.numdam.org/item/SB_1970-1971__13__11_0}
}
Azra, Jean-Pierre. Relations diophantiennes et la solution négative du 10e problème de Hilbert, in Séminaire Bourbaki : vol. 1970/71, exposés 382-399, Séminaire Bourbaki, no. 13 (1971), Talk no. 383, pp. 11-28. http://www.numdam.org/item/SB_1970-1971__13__11_0/

[1] David Hilbert - Mathematische Probleme. Vortrag gehalten auf dem internationalen Mathematiker-Kongress zu Paris 1900. Traduction anglaise, Bull. Amer. Math. Soc., 8 (1901/1902), 437-479. | JFM 33.0976.07

[2] Julia Robinson - Existential definability in aritmetic, Trans. A.M.S., vol. 72 (1952), 437-449. | MR 48374 | Zbl 0047.24802

[3] Martin Davis, Hilary Putnam and Julia Robinson - The decision problem for exponential diophantine equations, Annals of Math., vol. 74 (1961), 425-436. | MR 133227 | Zbl 0111.01003

[4] Iu.V. Matiasevitch - Enumerable sets are diophantine, Soviet Mathematics, Mar-Apr. 1970, vol. 11, number 2, p. 354. | Zbl 0212.33401

[5] Daniel Lacombe - La théorie des fonctions récursives et ses applications, Bull. Soc. Math. France, 88 (1960), 393-468. | Numdam | MR 122720 | Zbl 0156.25201

[6] Hilary Putnam - An unsolvable problem in number theory, J. of Symb. Logic, t. 25 (1960), 220-232. | MR 158825 | Zbl 0108.00701

[7] Martin Davis - An explicit diophantine definition of the exponential function, (non publié).