Primality testing algorithms
Séminaire Bourbaki : vol. 1980/81, exposés 561-578, Séminaire Bourbaki, no. 23 (1981), Talk no. 576, 15 p.
@incollection{SB_1980-1981__23__243_0,
     author = {Lenstra, H. W., Jr.},
     title = {Primality testing algorithms},
     booktitle = {S\'eminaire Bourbaki : vol. 1980/81, expos\'es 561-578},
     series = {S\'eminaire Bourbaki},
     note = {talk:576},
     pages = {243--257},
     publisher = {Springer-Verlag},
     number = {23},
     year = {1981},
     zbl = {0476.10005},
     language = {en},
     url = {http://archive.numdam.org/item/SB_1980-1981__23__243_0/}
}
TY  - CHAP
AU  - Lenstra, H. W., Jr.
TI  - Primality testing algorithms
BT  - Séminaire Bourbaki : vol. 1980/81, exposés 561-578
AU  - Collectif
T3  - Séminaire Bourbaki
N1  - talk:576
PY  - 1981
SP  - 243
EP  - 257
IS  - 23
PB  - Springer-Verlag
UR  - http://archive.numdam.org/item/SB_1980-1981__23__243_0/
LA  - en
ID  - SB_1980-1981__23__243_0
ER  - 
%0 Book Section
%A Lenstra, H. W., Jr.
%T Primality testing algorithms
%B Séminaire Bourbaki : vol. 1980/81, exposés 561-578
%A Collectif
%S Séminaire Bourbaki
%Z talk:576
%D 1981
%P 243-257
%N 23
%I Springer-Verlag
%U http://archive.numdam.org/item/SB_1980-1981__23__243_0/
%G en
%F SB_1980-1981__23__243_0
Lenstra, H. W., Jr. Primality testing algorithms, in Séminaire Bourbaki : vol. 1980/81, exposés 561-578, Séminaire Bourbaki, no. 23 (1981), Talk no. 576, 15 p. http://archive.numdam.org/item/SB_1980-1981__23__243_0/

1. L.M. Adleman, On distinguishing prime numbers from composite numbers (abstract), Proc. 21st Annual IEEE Symposium on Foundations of Computer Science (1980), 387-406.

2. L.M. Adleman, C. Pomerance, R.S. Rumely, On distinguishing prime numbers from composite numbers, preprint. | MR

3. S.U. Chase, D.K. Harrison, A. Rosenberg, Galois theory and Galois cohomology of commutative rings, Memoirs Amer. Math. Soc. 52 (1965), 15-33. | MR | Zbl

4. F. Demeyer, E. Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics 181, Springer, Berlin 1971. | MR | Zbl

5. R.K. Guy, How to factor a number, Proc. Fifth Manitoba Conf. Numer. Math., Utilitas, Winnipeg (1975), 49-89. | MR | Zbl

6. D.E. Knuth, The art of computer programming, vol. 2, Seminumerical algorithms, second edition, Addison-Wesley, Reading 1981. | MR | Zbl

7. S. Lang, Cyclotomic fields, Springer, Berlin 1978. | MR | Zbl

8. H.W. Lenstra, Jr., Euclid's algorithm in cyclotomic fields, J. London Math. Soc. (2) 10 (1975), 457-465. | MR | Zbl

9. J.M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos. Soc. 76 (1974), 521-528. | MR | Zbl

10. K. Prachar, Über die Anzahl der Teiler einer natürlichen Zahl, welche die Form p - 1 haben, Monatsh. Math. 59 (1955), 91-97. | MR | Zbl

11. C.P. Schnorr, Refined analysis and improvements on some factoring algorithms, to appear in: Automata, Languages and Programming, Eighth Colloquium, Haifa 1981, Lecture Notes in Computer Science, to appear. | MR | Zbl

12. R. Solovay, V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput. 6 (1977), 84-85; erratum, 7 (1978), 118. | MR | Zbl

13. H.C. Williams, Primality testing on a computer, Ars Combin. 5 (1978), 127-185. | MR | Zbl