Affine Lie algebras and modular forms
Séminaire Bourbaki : vol. 1980/81, exposés 561-578, Séminaire Bourbaki, no. 23 (1981), Talk no. 577, 19 p.
@incollection{SB_1980-1981__23__258_0,
     author = {MacDonald, I. G.},
     title = {Affine {Lie} algebras and modular forms},
     booktitle = {S\'eminaire Bourbaki : vol. 1980/81, expos\'es 561-578},
     series = {S\'eminaire Bourbaki},
     note = {talk:577},
     pages = {258--276},
     publisher = {Springer-Verlag},
     number = {23},
     year = {1981},
     mrnumber = {647501},
     zbl = {0472.17006},
     language = {en},
     url = {http://archive.numdam.org/item/SB_1980-1981__23__258_0/}
}
TY  - CHAP
AU  - MacDonald, I. G.
TI  - Affine Lie algebras and modular forms
BT  - Séminaire Bourbaki : vol. 1980/81, exposés 561-578
AU  - Collectif
T3  - Séminaire Bourbaki
N1  - talk:577
PY  - 1981
SP  - 258
EP  - 276
IS  - 23
PB  - Springer-Verlag
UR  - http://archive.numdam.org/item/SB_1980-1981__23__258_0/
LA  - en
ID  - SB_1980-1981__23__258_0
ER  - 
%0 Book Section
%A MacDonald, I. G.
%T Affine Lie algebras and modular forms
%B Séminaire Bourbaki : vol. 1980/81, exposés 561-578
%A Collectif
%S Séminaire Bourbaki
%Z talk:577
%D 1981
%P 258-276
%N 23
%I Springer-Verlag
%U http://archive.numdam.org/item/SB_1980-1981__23__258_0/
%G en
%F SB_1980-1981__23__258_0
MacDonald, I. G. Affine Lie algebras and modular forms, in Séminaire Bourbaki : vol. 1980/81, exposés 561-578, Séminaire Bourbaki, no. 23 (1981), Talk no. 577, 19 p. http://archive.numdam.org/item/SB_1980-1981__23__258_0/

[1] M. Adler and P. Van Moerbeke, Completely integrable systems, Kac-Moody Lie algebras and curves, Adv.in Math. 36(1980) 1-44.

[2] M. Adler and P. Van Moerbeke, Linearisation of Hamiltonian systems, Jacobi varieties and representation theory, Adv. in Math. 38(1980) 318-379. | MR | Zbl

[3] J.H. Conway and S.P. Norton, Monstrous moonshine, Bull. LMS 11(1979) 308-339. | MR | Zbl

[4] M. Demazure, Identités de Macdonald, Sém.Bourbaki 483 (1976). | Numdam | Zbl

[5] A. Feingold and J. Lepowsky, The Weyl-Kac character formula and power series identities, Adv. in Math. 29(1978) 271-309. | MR | Zbl

[6] I.B. Frenkel, Orbital theory for affine Lie algebras, Inv. Math. (to appear). | MR | Zbl

[7] I.B. Frenkel and V.G. Kac, Basic representations of affine Lie algebras and dual resonance models, Inv. Math. 62(1980) 23-66. | MR | Zbl

[8] H. Garland, Dedekind's n-function and the cohomology of infinite-dimensional Lie algebras, PNAS 72(1975) 2493-2495. | MR | Zbl

[9] H. Garland, The arithmetic theory of loop groups, preprint. | MR

[10] H. Garland and J. Lepowsky, Lie algebra homology and the Macdonald-Kac formulas, Inv. Math. 34(1976) 37-76. | MR | Zbl

[11] V.G. Kac, Simple irreducible graded Lie algebras of finite growth, Math. USSR Izvestiya 2(1968) 1271-1311. | MR | Zbl

[12] V.G. Kac, Infinite-dimensional Lie algebras and Dedekind's n-function, Funct.Anal. Appl. 8(1974) 68-70. | MR | Zbl

[13] V.G. Kac, Infinite-dimensional Lie algebras, Dedekind's n-function, classical Möbius formula and the very strange formula, Advances in Math. 30(1978) 85-136. | MR | Zbl

[14] V.G. Kac, Infinite root systems, representations of graphs and invariant theory, Inv. Math. 56(1980) 57-92. | MR | Zbl

[15] V.G. Kac, An elucidation of "Infinite-dimensional algebras ... and the very strange formula". E8(1) and the cube root of the modular invariant j. Advances in Math. 35(1980) 264-273. | MR | Zbl

[16] V.G. Kac and D. Peterson, Affine Lie algebras and Hecke modular forms, Bull. AMS (New Series) 3(1980) 1057-1061. | MR | Zbl

[17] V.G. Kac and D. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, preprint. | MR

[18] V.G. Kac, D.A. Kazhdan, J. Lepowsky and R.L. Wilson, Realisation of the basic representations of the Euclidean Lie algebras, to appear. | Zbl

[19] J. Lepowsky, Macdonald-type identities, Adv. in Math. 27(1978) 230-234. | MR | Zbl

[20] J. Lepowsky, Generalised Verma modules, loop space cohomology and Macdonald-type identities, Ann. Scient. ENS (4e série) 12(1979) 169-234. | Numdam | MR | Zbl

[21] J. Lepowsky and R.L. Wilson, A Lie-theoretic interpretation and proof of the Rogers-Ramanujan identities, preprint. | MR

[22] E. Looijenga, Root systems and elliptic curves, Inv. Math. 38(1976) 17-32. | MR | Zbl

[23] I.G. Macdonald, Affine root systems and Dedekind's n-function, Inv. Math. 15(1972) 92-143. | MR | Zbl

[24] R.V. Moody, A new class of Lie algebras, J. Alg. 10(1968) 211-230. | MR | Zbl

[25] R.V. Moody, Euclidean Lie algebras, Can. J. Math. 21(1969) 1432-1454. | MR | Zbl

[26] P. Slodowy, Chevalley groups over C((t)) and deformations of simply elliptic singularities, RIMS Kyoto University, Japan, 1981. | MR