Problèmes combinatoires posés par la physique statistique
Séminaire Bourbaki : volume 1983/84, exposés 615-632, Astérisque no. 121-122  (1985), Talk no. 626, p. 225-246
@incollection{SB_1983-1984__26__225_0,
     author = {Viennot, G\'erard},
     title = {Probl\`emes combinatoires pos\'es par la physique statistique},
     booktitle = {S\'eminaire Bourbaki : volume 1983/84, expos\'es 615-632},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {121-122},
     year = {1985},
     note = {talk:626},
     pages = {225-246},
     zbl = {0563.60095},
     mrnumber = {768962},
     language = {fr},
     url = {http://www.numdam.org/item/SB_1983-1984__26__225_0}
}
Viennot, Gérard. Problèmes combinatoires posés par la physique statistique, in Séminaire Bourbaki : volume 1983/84, exposés 615-632, Astérisque, no. 121-122 (1985), Talk no. 626, pp. 225-246. http://www.numdam.org/item/SB_1983-1984__26__225_0/

[1] R. Baxter, Exactly solved models in statistical mechanics, Academic Press, New-York, 1982. Des livres de base sur la mécanique statistique sont : | MR 690578 | Zbl 0723.60120

[2] D. Ruelle, Statistical mechanics, rigorous results, Benjamin, New-York, 1969, | MR 289084 | Zbl 0177.57301

[3] C. Domb et M. S. Green, eds, Phase transition and critical phenomena, Academic Press, New-York, 1974. Pour les méthodes combinatoires en physique statistique, une solution combinatoire du modèle d'Ising et une formulation dans le langage des graphes, voir respectivement | MR 353911

[4] J. K. Percus, Combinatorial methods, Applied mathematical sciences, vol. 4, Springer-Verlag, New-York/Berlin, 1971, | MR 345825 | Zbl 0268.05003

[5] P. W. Kasteleyn, Graph theory and crystal physics, in "Graph theory and theoretical physics", F. Harary ed., Academic Press, New-York, 1967, 43-110, | MR 253689 | Zbl 0205.28402

[6] F. Y. Wu, Graph theory in statistical physics, in "Studies in foundations and combinatorics", Advances in Math. supplementary studies, vol. 1, 1978. Pour une revue très récente des problèmes de percolation, percolation dirigée et animaux voir (avec les articles de synthèse cités) | MR 520558 | Zbl 0435.05061

[7] M. Sahimi, Critical exponents and thresholds for percolation and conduction, in "The mathematics and physics of disordered media", Lecture Notes in Maths n° 1035, Springer-Verlag, New-York/Berlin (1983), 314-346. | Zbl 0532.60100

[8] N. Breuer, Corrections to scaling for directed branched polymers (lattice animals), preprint (1983), soumis à Z. Physik B.

[9] N. Breuer et H. K. Janssen, Critical behaviour of directed branched polymers and the dynamics at the Yang-Lee edge singularity, Z. Physik B, 48 (1982) 347-350.

[10] J. L. Cardy, Directed lattice animals and the Lee-Yang edge singularity, J. Phys. A : Math. Gen., 15 (1982), L593-L595. | MR 679087

[11] A. R. Day et T. C. Lubensky, ε expansion for directed animals, J. Phys. A : Math. Gen., 15 (1982),L 285-L 290.

[12] D. Dhar, Equivalence of the two-dimensional directed-site animal problem to Baxter's Hard-Square Lattice-Gas model, Phys. Rev. Lett., 49 (1982), 959-962. | MR 675054

[13] D. Dhar, Exact solution of a directed-site animals-enumeration problem in 3 dimensions, Phys. Rev. Lett., 59 (1983), 853-856. | MR 721768

[14] D. Dhar, M. K. Phani et M. Barma, Enumeration of directed site animals on two-dimensional lattices, J. Phys. A : Math. Gen., 15 (1982), L 279-L 284. | MR 663685

[15] F. Family, Relation between size and shape of isotropic and directed percolation clusters and lattice animals,J. Phys. A : Math. Gen., 15 (1982), L 583-L 592. | MR 679086

[16] J. E. Green et M. A. Moore, Application of directed lattice animal theory to river networks, J. Phys. A : Math. Gen., 15 (1982), L 597-L 599. | MR 679088

[17] V. Hakim et J. P. Nadal, Exact results for 2 D directed animals on a strip of finite width, J. Phys. A : Math. Gen., 16 (1983), L 213-L 218. | MR 707373

[18] H. Herrmann, F. Family et H. E. Stanley, Position-space renormalisation group for directed branched polymers, J. Phys. A : Math. Gen., 16 (1983), L 375-L 379.

[19] T. C. Lubensky et J. Vannimenus, Flory approximation for directed branched polymers and directed percolation, J. Physique, 43 (1982), L 377-L381.

[20] J. P. Nadal, Etude de systèmes dirigés en physique statistique, Thèse 3ème cycle, Univ. d'Orsay, 1983.

[21] J. P. Nadal, B. Derrida et J. Vannimenus, Directed lattice animals in 2 dimensions : numerical and exact results, J. Physique, 43 (1982), 1561. | MR 684783

[22] J. P. Nadal, B. Derrida et J. Vannimenus, Directed Diffusion-controlled Aggregation versus directed animals, Preprint (1983).

[23] S. Redner et A. Conioeio, Flory theory for directed lattice animals and directed percolation, J. Phys. A : Math. Gen., 15 (1982, L 273 -L 278.

[24] S. Redner et Z. R. Yang, Size and shape of directed lattice animals, J. Phys. A : Math. Gen., 15 (1982), L177 - L187. | MR 655343

[25] H. E. Stanley , S. Redner et Z. R. Yang, Site and bond directed branched polymers for arbitrary dimensionality : evidence supporting a relation with the Lee-Yang edge arbitrary, J. Phys. A : Math. Gen., 15 (1982), L569 -L573. | MR 684576

[26] G. Viennot, Combinatorial solution of the 2D directed lattice animals problem with heaps of dominos, en préparation.

[27] G. Viennot, Directed animals and combinatorial interpretation of the density of a gaz, destiné à Advances in Applied Maths.

[28] G. Viennot et D. Gouyou-Beauchamps, The number of directed animals, destiné à Advances in Maths.

[29] G. E. Andrews, R. J. Baxter et P. J. Forresters, Eight vertex SOAS model and generalized Rogers-Ramanujan type identities, preprint (1984). | MR 748075

[30] R. J. Baxter, Hard hexagons : exact solution, J. Phys. A : Math. Gen. 13 (1980)L61 -L70. | MR 560533

[31] R. J. Baxfer, Rogers-Ramanujan identities in the hard hexagon model, J. Stat. Physics, 26 (1981), 427-452. | MR 648195 | Zbl 0511.05004

[32] R. J. Baxter, Lettre à Dhar, citée dans [12].

[33] R. J. Baxter et P. A. Pearce, Hard hexagones : interfacial tension and correlation length, J. Phys. A : Math. Gen., 15 (1982), 897-910. | MR 653418

[34] M. T. Jaekel et J. M. Mkillard, Modèles solubles en mécanique statistique, Proc. R.C.P. 25, vol.29, Publ. IRMA, Strasbourg (1982),93.

[35] J. M. Maillard, Equations fonctionnelles en mécanique statistique, Note CEA-N- 2332, (1983).

[36] G. Parisi et N. Sourlas, Phys. Rev. Lett. 14 (1981), 871. | MR 609853 | Zbl 0969.82030

[37] A. M. W. Verhagen, J. Stat. Phys., 15 (1976), 219. | MR 428999

[38] P. Cartier et D. Foata, Problèmes combinatoires de commutation et réarrangements, Lecture Notes in Maths. n°85, Springer-Verlag, New-York/Berlin, 1969. | MR 239978 | Zbl 0186.30101

[39] M. De Sainte Catherine, Couplage et Pfaffien en combinatoire et physique, Thèse 3ème cycle, Université de Bordeaux I, 1983.

[40] S. Dulucq et G. Viennot, The Cartier-Foata commutation monoid revisited with heaps of pieces, manuscrit, 1983.

[41] D. Dumont, Une approche combinatoire des fonctions elliptiques de Jacobi, Advances in Maths., 41 (1981), 1-39. | MR 625332 | Zbl 0483.33001

[42] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math., 32 (1980) , 125-161. | MR 592851 | Zbl 0445.05014

[43] D. Foata, La série génératrice exponentielle dans les problèmes d'énumération, Presses de l'Univ. de Montréal, (1974). | MR 505546 | Zbl 0325.05007

[44] D. Foata, A non-commutative version of the matrix inversion formula, Advances in Maths., 31 (1979), 330-349. | MR 532839 | Zbl 0418.15004

[45 ] D. Foata, A combinatorial proof of Jacobi's identity, Annals of Discrete Maths. 6 (1980) , 125-135. | MR 593527 | Zbl 0448.05006

[46] D. Foata, M. P. Schützenberger, Théorie géométrique des polynômes Eulériens, Lecture Notes in Maths. n°138, Springer-Verlag, New-York/Berlin, (1970). | MR 272642 | Zbl 0214.26202

[47] A. Garsia, S. Milne, A Rogers-Ramanujan bijection, J. Combinatorial Th., A, 31 (1981), 289-339. | MR 635372 | Zbl 0477.05009

[48] C. D. Godsil, Matchings and walks in graphs, J. Graphs Th., 5 (1981), 285-291. | MR 625070 | Zbl 0466.05053

[49] S. N. Joni et G. C. Rota, Coalgebras and bialgebras in combinatorics, Studies in Applied Maths., 61 (1979), 93-139. | MR 544721 | Zbl 0471.05020

[50 ] A. Joyal, Une théorie combinatoire des séries formelles, Advances in Maths., 42, (1981), 1-82. | MR 633783 | Zbl 0491.05007

[51 ] P. A. Macmahon, Combinatory Analysis, Cambridge Univ. Press, London, 1915. Réimpression Chelsea, New-York, (1960). | JFM 46.0118.07 | MR 141605

[52] G. C. Rota, On the foundations of combinatorial theory, I. Theory of Möbius functions, Z. Wahrsch. Band 2, Heft 4, (1964), 340-368. | MR 174487 | Zbl 0121.02406

[53 ] G. Viennot, Une interprétation combinatoire des coefficients des développements en série entière des fonctions elliptiques de Jacobi, J. Combinatorial Th. A, 29 (1980), 121-133. | MR 583951 | Zbl 0444.33002

[54 ] G. Viennot, Théorie combinatoire des nombres d'Euler et Genocchi, Séminaire Théorie des Nombres 1981/82, Publication Université de Bordeaux I, 94 p.

[55] G. Viennot, Théorie combinatoire des polynômes orthogonaux généraux, Notes de séminaire de l'Univ. du Québec à Montréal, (1983), 165 p.

[56] G. E. Andrews, The theory of partitions, Encyclopedia of Maths. and its applications, G.C. Rota ed., vol.2, Addison-Wesley, Reading, (1976). | MR 557013 | Zbl 0655.10001

[57] G. E. Andrews, The hard-hexagon model and Rogers-Ramanujan identities, Proc. Nat. Acad. Sci. U.S.A., 78, (1981), 5290-5292. | MR 629656 | Zbl 0526.33004

[58] P. Cartier, La théorie classique et moderne des fonctions symétriques, Séminaire Bourbaki, exposé n°597, Astérisque n°105-106, (1983), 1-23. | Numdam | MR 728978 | Zbl 0534.20005

[59] I. G. Macdonald, Affine Lie algebras and modular forms, Séminaire Bourbaki, exposé n°577, Lecture Notes in Maths. n°901, Springer-Verlag, Berlin/ New-York, (1981), 258-275. | Numdam | MR 647501 | Zbl 0472.17006