Systèmes hyperboliques et viscosité évanescente  [ Hyperbolic systems and vanishing viscosity ]
Séminaire Bourbaki : volume 2002/2003, exposés 909-923, Astérisque, no. 294 (2004), Talk no. 918, p. 231-250

In this talk we will present the works of S. Bianchini and A. Bressan on the Cauchy problem for viscous perturbations t u ε + x f(u ε )=ε xx u ε of one-dimensional strictly hyperbolic systems t u+ x f(u)=0. They have shown global existence (t0), uniqueness and stability and they have justified the limit when ε goes to zero for initial data with small total variation. Their analysis also shows that the solutions of the hyperbolic system obtained by this method coincide with the solutions obtained by other types of approximations.

Le but de l’exposé est de présenter les résultats obtenus par S. Bianchini et A. Bressan sur le problème de Cauchy pour des perturbations visqueuses t u ε + x f(u ε )=ε xx u ε de systèmes strictement hyperboliques t u+ x f(u)=0 en une dimension d’espace. Ils ont en particulier montré l’existence globale (t0), l’unicité et la stabilité des solutions et justifié la convergence quand ε tend vers zéro pour des données initiales à petite variation totale. Leur analyse montre aussi que les solutions du système hyperbolique ainsi obtenues coïncident avec les solutions provenant d’autres types d’approximations.

Classification:  35F20,  35F25,  35B25,  35B35
Keywords: hyperbolic systems, vanishing viscosity method
@incollection{SB_2002-2003__45__231_0,
     author = {Rousset, Fr\'ed\'eric},
     title = {Syst\`emes hyperboliques et viscosit\'e \'evanescente},
     booktitle = {S\'eminaire Bourbaki : volume 2002/2003, expos\'es 909-923},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Association des amis de Nicolas Bourbaki, Soci\'et\'e math\'ematique de France},
     address = {Paris},
     number = {294},
     year = {2004},
     note = {talk:918},
     pages = {231-250},
     zbl = {1215.35104},
     mrnumber = {2111646},
     language = {fr},
     url = {http://www.numdam.org/item/SB_2002-2003__45__231_0}
}
Rousset, Frédéric. Systèmes hyperboliques et viscosité évanescente, in Séminaire Bourbaki : volume 2002/2003, exposés 909-923, Astérisque, no. 294 (2004), Talk no. 918, pp. 231-250. http://www.numdam.org/item/SB_2002-2003__45__231_0/

[1] P. Baiti & H. K. Jenssen - “On the front-tracking algorithm”, J. Math. Anal. Appl. 217 (1998), no. 2, p. 395-404. | MR 1492096 | Zbl 0966.35078

[2] S. Bianchini - “BV solutions of the semidiscrete upwind scheme”, Arch. Ration. Mech. Anal. 167 (2003), no. 1, p. 1-81. | MR 1967667 | Zbl 1024.65087

[3] S. Bianchini & A. Bressan - “BV solutions for a class of viscous hyperbolic systems”, Indiana Univ. Math. J. 49 (2000), no. 4, p. 1673-1713. | MR 1838306 | Zbl 0988.35109

[4] -, “A case study in vanishing viscosity”, Discrete Contin. Dynam. Systems 7 (2001), no. 3, p. 449-476. | MR 1815762 | Zbl 0983.35083

[5] -, “A center manifold technique for tracing viscous waves”, Commun. Pure Appl. Anal. 1 (2002), no. 2, p. 161-190. | MR 1938610 | Zbl 1017.35071

[6] -, “On a Lyapunov functional relating shortening curves and viscous conservation laws”, Nonlinear Anal. 51 (2002), no. 4, Ser. A : Theory Methods, p. 649-662. | MR 1920342 | Zbl 1050.35005

[7] -, “Vanishing viscosity solutions of nonlinear hyperbolic systems”, Preprint, 2002.

[8] A. Bressan - “Global solutions of systems of conservation laws by wave-front tracking”, J. Math. Anal. Appl. 170 (1992), no. 2, p. 414-432. | MR 1188562 | Zbl 0779.35067

[9] -, “The unique limit of the Glimm scheme”, Arch. Rational Mech. Anal. 130 (1995), no. 3, p. 205-230. | MR 1337114 | Zbl 0835.35088

[10] -, “Hyperbolic systems of conservation laws”, Rev. Mat. Complut. 12 (1999), no. 1, p. 135-200. | MR 1698903

[11] -, Hyperbolic systems of conservation laws, Oxford Lecture Series in Mathematics and its Applications, vol. 20, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem. | MR 1816648 | Zbl 0997.35002

[12] A. Bressan, P. Baiti & H. K. Jenssen - “An instability of the Godunov scheme”, Preprint. | MR 2254446 | Zbl 1122.35074

[13] A. Bressan & R. M. Colombo - “The semigroup generated by 2×2 conservation laws”, Arch. Rational Mech. Anal. 133 (1995), no. 1, p. 1-75. | MR 1367356 | Zbl 0849.35068

[14] A. Bressan, G. Crasta & B. Piccoli - Well-posedness of the Cauchy problem for n×n systems of conservation laws, vol. 146, Mem. Amer. Math. Soc., no. 694, American Mathematical Society, 2000. | MR 1686652 | Zbl 0958.35001

[15] A. Bressan & P. Goatin - “Oleinik type estimates and uniqueness for n×n conservation laws”, J. Differential Equations 156 (1999), no. 1, p. 26-49. | MR 1701818 | Zbl 0990.35095

[16] A. Bressan & P. G. Le Floch - “Uniqueness of weak solutions to systems of conservation laws”, Arch. Rational Mech. Anal. 140 (1997), no. 4, p. 301-317. | MR 1489317 | Zbl 0903.35039

[17] A. Bressan & M. Lewicka - “A uniqueness condition for hyperbolic systems of conservation laws”, Discrete Contin. Dynam. Systems 6 (2000), no. 3, p. 673-682. | MR 1757395 | Zbl 1157.35421

[18] A. Bressan, T.-P. Liu & T. Yang - L 1 stability estimates for n×n conservation laws”, Arch. Ration. Mech. Anal. 149 (1999), no. 1, p. 1-22. | MR 1723032 | Zbl 0938.35093

[19] A. Bressan & T. Yang - “On the rate of convergence of the vanishing viscosity approximation”, Preprint, 2003. | Zbl 1060.35109

[20] C. M. Dafermos - “The entropy rate admissibility criterion for solutions of hyperbolic conservation laws”, J. Differential Equations 14 (1973), p. 202-212. | MR 328368 | Zbl 0262.35038

[21] -, Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, Springer-Verlag, Berlin, 2000. | MR 1763936 | Zbl 0940.35002

[22] G. Dal Maso, P. G. Lefloch & F. Murat - “Definition and weak stability of nonconservative products”, J. Math. Pures Appl. (9) 74 (1995), no. 6, p. 483-548. | MR 1365258 | Zbl 0853.35068

[23] R. J. Diperna - “Convergence of approximate solutions to conservation laws”, Arch. Rational Mech. Anal. 82 (1983), no. 1, p. 27-70. | MR 684413 | Zbl 0519.35054

[24] J. Glimm - “Solutions in the large for nonlinear hyperbolic systems of equations”, Comm. Pure Appl. Math. 18 (1965), p. 697-715. | MR 194770 | Zbl 0141.28902

[25] J. Goodman - “Nonlinear asymptotic stability of viscous shock profiles for conservation laws”, Arch. Rational Mech. Anal. 95 (1986), no. 4, p. 325-344. | MR 853782 | Zbl 0631.35058

[26] J. Goodman & Z. P. Xin - “Viscous limits for piecewise smooth solutions to systems of conservation laws”, Arch. Rational Mech. Anal. 121 (1992), no. 3, p. 235-265. | MR 1188982 | Zbl 0792.35115

[27] O. Guès, G. Métivier, M. Williams & K. Zumbrun - “Multidimensional viscous shocks I, II”, Preprint, 2002. | Zbl 1058.35163

[28] T. Iguchi & P. G. Le Floch - “Existence theory for hyperbolic systems of conservation laws with general flux-functions”, Preprint, 2002. | MR 1991515 | Zbl 1036.35130

[29] H. K. Jenssen - “Blowup for systems of conservation laws”, SIAM J. Math. Anal. 31 (2000), no. 4, p. 894-908 (electronic). | MR 1752421 | Zbl 0969.35091

[30] S. Khruzhkov - “First order quasilinear equations with several space variables”, Math. USSR Sbornik 10 (1970), p. 217-243. | Zbl 0215.16203

[31] P. D. Lax - “Hyperbolic systems of conservation laws. II”, Comm. Pure Appl. Math. 10 (1957), p. 537-566. | MR 93653 | Zbl 0081.08803

[32] P. G. Le Floch - Hyperbolic systems of conservation laws, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2002, The theory of classical and nonclassical shock waves. | MR 1927887 | Zbl 1019.35001

[33] T.-P. Liu - Admissible solutions of hyperbolic conservation laws, vol. 30, Mem. Amer. Math. Soc., no. 240, American Mathematical Society, 1981. | MR 603391 | Zbl 0446.76058

[34] -, Nonlinear stability of shock waves for viscous conservation laws, vol. 56, Mem. Amer. Math. Soc., no. 328, American Mathematical Society, 1985. | MR 791863 | Zbl 0617.35058

[35] T.-P. Liu & T. Yang - “A new entropy functional for a scalar conservation law”, Comm. Pure Appl. Math. 52 (1999), no. 11, p. 1427-1442. | MR 1702712 | Zbl 0941.35051

[36] -, “Well-posedness theory for hyperbolic conservation laws”, Comm. Pure Appl. Math. 52 (1999), no. 12, p. 1553-1586. | MR 1711037 | Zbl 1034.35073

[37] -, “Weak solutions of general systems of hyperbolic conservation laws”, Comm. Math. Phys. 230 (2002), no. 2, p. 289-327. | MR 1936793 | Zbl 1041.35038

[38] N. H. Risebro - “A front-tracking alternative to the random choice method”, Proc. Amer. Math. Soc. 117 (1993), p. 1125-1139. | MR 1120511 | Zbl 0799.35153

[39] F. Rousset - “Viscous approximation of strong shocks of systems of conservation laws”, SIAM J. Math. Anal. 35 (2003), no. 2, p. 492-519 (electronic). | MR 2001110 | Zbl 1052.35128

[40] D. Serre - Systems of conservation laws. 1, 2, Cambridge University Press, Cambridge, 2000, Geometric structures, oscillations, and initial-boundary value problems, Translated from the 1996 French original by I. N. Sneddon. | MR 1775057 | Zbl 0936.35001

[41] A. Szepessy & Z. P. Xin - “Nonlinear stability of viscous shock waves”, Arch. Rational Mech. Anal. 122 (1993), no. 1, p. 53-103. | MR 1207241 | Zbl 0803.35097

[42] A. Szepessy & K. Zumbrun - “Stability of rarefaction waves in viscous media”, Arch. Rational Mech. Anal. 133 (1996), no. 3, p. 249-298. | MR 1387931 | Zbl 0861.35037

[43] A. Vanderbauwhede - “Centre manifolds, normal forms and elementary bifurcations”, in Dynamics reported, Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., vol. 2, Wiley, Chichester, 1989, p. 89-169. | MR 1000977 | Zbl 0677.58001

[44] S.-H. Yu - “Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws”, Arch. Ration. Mech. Anal. 146 (1999), no. 4, p. 275-370. | MR 1718368 | Zbl 0935.35101

[45] K. Zumbrun - “Multidimensional stability of planar viscous shock waves”, in Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl., vol. 47, Birkhäuser Boston, Boston, MA, 2001, p. 307-516. | MR 1842778 | Zbl 0989.35089

[46] K. Zumbrun & P. Howard - “Pointwise semigroup methods and stability of viscous shock waves”, Indiana Univ. Math. J. 47 (1998), no. 3, p. 741-871. | MR 1665788 | Zbl 0928.35018