Nouvelles approches de la propriété (T) de Kazhdan  [ New approaches to Kazhdan's property (T) ]
Séminaire Bourbaki : volume 2002/2003, exposés 909-923, Astérisque, no. 294 (2004), Talk no. 913, p. 97-124

A locally compact group G has Kazhdan’s property (T) if the 1-cohomology of any unitary G-module is zero. This rigidity property of the representation theory of G found applications ranging from ergodic theory to graph theory. For nearly 30 years, the only known examples of groups with property (T) came from simple algebraic groups over local fields, and their lattices. Situation dramatically changed during the last years: new characterizations (Y. Shalom), new examples (M. Gromov, Y. Shalom, A. Zuk), so that one may talk of “genericity” of discrete groups with property (T).

Un groupe localement compact G a la propriété (T) de Kazhdan si la 1-cohomologie de tout G-module hilbertien est nulle. Cette propriété de rigidité de la théorie des représentations de G a trouvé des applications qui vont de la théorie ergodique à la théorie des graphes. Pendant près de 30 ans, les seuls exemples connus de groupes avec la propriété (T), provenaient des groupes algébriques simples sur les corps locaux, ou de leurs réseaux. La situation a radicalement changé ces dernières années : nouvelles caractérisations (Y. Shalom), nouveaux exemples (M. Gromov, Y. Shalom, A. Zuk), de sorte qu’on peut même parler de “généricité” des groupes discrets ayant la propriété (T).

Classification:  22D10,  22E40,  22E41,  05C50,  53C43
Keywords: unitary representations, 1-cohomology, simple algebraic groups, lattices, harmonic maps, graph spectra
@incollection{SB_2002-2003__45__97_0,
     author = {Valette, Alain},
     title = {Nouvelles approches de~la~propri\'et\'e~(T) de Kazhdan},
     booktitle = {S\'eminaire Bourbaki : volume 2002/2003, expos\'es 909-923},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Association des amis de Nicolas Bourbaki, Soci\'et\'e math\'ematique de France},
     address = {Paris},
     number = {294},
     year = {2004},
     note = {talk:913},
     pages = {97-124},
     zbl = {1068.22012},
     mrnumber = {2111641},
     language = {fr},
     url = {http://www.numdam.org/item/SB_2002-2003__45__97_0}
}
Valette, Alain. Nouvelles approches de la propriété (T) de Kazhdan, in Séminaire Bourbaki : volume 2002/2003, exposés 909-923, Astérisque, no. 294 (2004), Talk no. 913, pp. 97-124. http://www.numdam.org/item/SB_2002-2003__45__97_0/

[1] R. Alperin - “Locally compact groups acting on trees and property (T)”, Monatsh. Math. 93 (1982), p. 261-265. | MR 666827 | Zbl 0488.22014

[2] W. Ballmann & J. Swiatkowski - “On L 2 -cohomology and property (T) for automorphism groups of polyhedral cell complexes”, Geom. funct. anal. 7 (1997), p. 615-645. | MR 1465598 | Zbl 0897.22007

[3] S. Barré - “Immeubles de Tits triangulaires exotiques”, Ann. Fac. Sci. Toulouse Math. (5) 9 (2000), p. 575-603. | Numdam | MR 1838139 | Zbl 1003.51007

[4] H. Behr - SL 3 (F q [t]) is not finitely presentable”, in Homological and Combinational Techniques in Group Theory, Proc. Symp., Durham, 1977, London Math. Soc. Lect. Notes Ser., vol. 36, 1979, p. 213-224. | MR 564424 | Zbl 0434.20025

[5] M. E. B. Bekka, P. De La Harpe & A. Valette - “Kazhdan's property (T)”, Preprint, septembre 2003, http://www.unige.ch/math/biblio/preprint/2003/tsept03.ps. | MR 1995797

[6] M. E. B. Bekka & A. Valette - “Group cohomology, harmonic functions and the first L 2 -Betti number”, Potential analysis 6 (1997), p. 313-326. | MR 1452785 | Zbl 0882.22013

[7] A. Borel - “Cohomologie de certains groupes discrets et laplacien p-adique (d’après H. Garland)”, in Sém. Bourbaki (1973-74), Lect. Notes in Math., vol. 431, Springer-Verlag, 1975, exp. no 437, p. 12-35. | Numdam | MR 476919 | Zbl 0376.22009

[8] F. Bruhat & J. Tits - “Groupes réductifs sur un corps local I ; données radicielles valuées”, Inst. Hautes Études Sci. Publ. Math. 41 (1972), p. 5-251. | Numdam | MR 327923 | Zbl 0254.14017

[9] M. Burger & N. Monod - “Bounded cohomology of lattices in higher rank Lie groups”, J. Eur. Math. Soc. 1 (1999), p. 199-235. | MR 1694584 | Zbl 0932.22008

[10] D. Cartwright, A. Mantero, T. Steger & A. Zappa - “Groups acting simply transitively on the vertices of a building of type A ˜ 2 , Geom. Dedicata 47 (1993), p. 143-166. | MR 1232965 | Zbl 0784.51010

[11] D. Cartwright, W. Mlotkowski & T. Steger - “Property (T) and A ˜ 2 groups”, Ann. Inst. Fourier (Grenoble) 44 (1993), p. 213-248. | Numdam | MR 1262886 | Zbl 0792.43002

[12] P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg & A. Valette - Groups with the Haagerup property (Gromov's a-T-menability), Progress in Math., Birkhäuser, 2001. | MR 1852148 | Zbl 1030.43002

[13] K. Corlette - “Archimedean superrigidity and hyperbolic rigidity”, Ann. of Math. 135 (1992), p. 165-182. | MR 1147961 | Zbl 0768.53025

[14] M. Cowling - “Sur les coefficients des représentations des groupes de Lie simples”, in Analyse harmonique sur les groupes de Lie II (Sém. Nancy-Strasbourg 1976-1978), Lect. Notes in Math., vol. 739, Springer, 1979, p. 132-178. | MR 560837 | Zbl 0417.22010

[15] C. Delaroche & A. Kirillov - “Sur les relations entre l'espace dual d'un groupe et la structure de ses sous-groupes fermés (d'après D.A. Kajdan)”, in Sém. Bourbaki (1967-68), W. A. Benjamin, Inc., New York-Amsterdam, 1969, exp. no 343 ou Soc. Math. de France, Collection Hors Série, vol. 10, (1995), en réimpression, p. 507-528. | Numdam | MR 1610473 | Zbl 0214.04602

[16] P. Delorme - 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles”, Bull. Soc. Math. France 105 (1977), p. 281-336. | Numdam | MR 578893 | Zbl 0404.22006

[17] J. Faraut - “Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques”, in Analyse harmonique, Cours du CIMPA, Nice, 1983, p. 315-446. | Zbl 0569.43002

[18] D. Farley - “Proper isometric actions of Thompson's groups on Hilbert space”, Preprint, 2002. | MR 2006480 | Zbl 1113.22005

[19] W. Feit & G. Higman - “The nonexistence of certain generalized polygons”, J. Algebra 1 (1964), p. 114-131. | MR 170955 | Zbl 0126.05303

[20] A. Furman - “Gromov's measure equivalence and rigidity of higher rank lattices”, Ann. of Math. 150 (1999), p. 1059-1081. | MR 1740986 | Zbl 0943.22013

[21] H. Garland - p-adic curvature and the cohomology of discrete subgroups of p-adic groups”, Ann. of Math. 97 (1973), p. 375-423. | MR 320180 | Zbl 0262.22010

[22] T. Gelander & A. Zuk - “Dependence of Kazhdan constants on generating subsets”, Israel J. Math. 129 (2002), p. 93-98. | MR 1910934 | Zbl 0993.22003

[23] É. Ghys - “Actions de réseaux sur le cercle”, Invent. Math. 137 (1999), p. 199-231. | MR 1703323 | Zbl 0995.57006

[24] É. Ghys & V. Sergiescu - “Sur un groupe remarquable de difféomorphismes du cercle”, Comment. Math. Helv. 62 (1987), p. 185-239. | MR 896095 | Zbl 0647.58009

[25] M. Gromov - “Hyperbolic groups”, in Essays in group theory (S.M. Gersten, 'ed.), vol. 8, Math. Sci. Res. Inst. Publ., Springer-Verlag, New York, 1987, p. 75-263. | MR 919829 | Zbl 0634.20015

[26] -, “Random walk in random groups”, 13 (2003), p. 73-146. | MR 1978492

[27] M. Gromov & R. Schoen - “Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one”, Inst. Hautes Études Sci. Publ. Math. 76 (1992), p. 165-246. | Numdam | MR 1215595 | Zbl 0896.58024

[28] A. Guichardet - “Sur la cohomologie des groupes topologiques II”, Bull. Sci. Math. 96 (1972), p. 305-332. | MR 340464 | Zbl 0243.57024

[29] -, Cohomologie des groupes topologiques et des algèbres de Lie, Cedic-F. Nathan, 1980. | Zbl 0464.22001

[30] P. De La Harpe & A. Valette - La propriété (T) de Kazhdan pour les groupes localement compacts, Astérisque, vol. 175, Soc. Math. France, Paris, 1989. | Numdam | Zbl 0759.22001

[31] G. Hector & U. Hirsch - The geometry of foliations, Part B, Vieweg, 1983. | MR 726931

[32] S. Helgason - Differential geometry and symmetric spaces, Academic Press, 1963. | MR 145455 | Zbl 0111.18101

[33] A. Hulanicki - “Means and Følner condition on locally compact groups”, Studia Math. 24 (1966), p. 87-104. | MR 195982 | Zbl 0165.48701

[34] J. Jost - “Equilibrium maps between metric spaces”, Calc. Var. 2 (1994), p. 173-204. | MR 1385525 | Zbl 0798.58021

[35] D. Kazhdan - “Connection of the dual space of a group with the structure of its closed subgroups”, Funct. Anal. Appl. 1 (1967), p. 63-65. | MR 209390 | Zbl 0168.27602

[36] B. Kostant - “On the existence and irreducibility of certain series of representations”, Bull. Amer. Math. Soc. 75 (1969), p. 627-642. | MR 245725 | Zbl 0229.22026

[37] A. Lubotzky - Discrete groups, expanding graphs and invariant measures, Progress in Math., vol. 125, Birkhäuser Verlag, Basel, 1994. | MR 1308046 | Zbl 0826.22012

[38] G. A. Margulis - Discrete subgroups of semisimple Lie groups, Frgeb. Math. Grenzgeb. 3 Folge, vol. 17, Springer-Verlag, 1991. | MR 1090825 | Zbl 0732.22008

[39] N. Mok - “Harmonic forms with values in locally constant Hilbert bundles”, J. Fourier analysis and appl. (1995), p. 433-453, Proceedings of the Conference in honor of J.-P. Kahane (Orsay 1993), Special Volume. | MR 1364901 | Zbl 0891.58001

[40] A. Navas - “Actions de groupes de Kazhdan sur le cercle”, Ann. Sci. École Norm. Sup. (4) 35 (2002), p. 749-758. | Numdam | MR 1951442 | Zbl 1028.58010

[41] P. Pansu - “Sous-groupes discrets des groupes de Lie : rigidité, arithméticité”, in Sém. Bourbaki (1993-94), Astérisque, vol. 227, Soc. Math. France, Paris, 1995, exp. no 778, p. 69-105. | Numdam | MR 1321644 | Zbl 0835.22011

[42] -, “Formules de Matsushima, de Garland, et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles”, Bull. Soc. Math. France 126 (1998), p. 107-139. | Numdam | MR 1651383 | Zbl 0933.22009

[43] A. Pressley & G. Segal - Loop groups, Oxford Univ. Press, 1986. | MR 900587 | Zbl 0638.22009

[44] U. Rehmann & C. Soulé - “Finitely presented groups of matrices”, in Algebraic K-theory, Lect. Notes in Math., vol. 551, Springer, 1976, p. 164-169. | MR 486175 | Zbl 0445.20025

[45] H. Reiter - “Some properties of locally compact groups”, Nederl. Akad. Wetensch. Indag. Math. 27 (1965), p. 697-701. | MR 194908 | Zbl 0131.13201

[46] A. Reznikov - “Analytic topology of groups, actions, strings and varieties”, Preprint, janvier 2000. | MR 2402403 | Zbl 1196.57023

[47] J.-P. Serre - Arbres, amalgames, SL 2 , Astérisque, vol. 46, Soc. Math. France, Paris, 1977. | Numdam | MR 476875 | Zbl 0369.20013

[48] Y. Shalom - “Rigidity of commensurators and irreducible lattices”, Invent. Math. 141 (2000), p. 1-54. | MR 1767270 | Zbl 0978.22010

[49] -, “Bounded generation and Kazhdan property (T)”, Inst. Hautes Études Sci. Publ. Math. 90 (2001), p. 145-168. | Numdam | Zbl 0980.22017

[50] G. Skandalis - “Une notion de nucléarité en K-théorie”, K-Theory 1 (1988), p. 549-573. | MR 953916 | Zbl 0653.46065

[51] L. N. Vaserstein - “Groups having the property (T)”, Funct. Anal. Appl. 2 (1968), p. 174. | MR 228620 | Zbl 0232.20087

[52] A. M. Vershik & S. I. Karpushev - “Cohomology of groups in unitary representations, the neighbourhood of the identity and conditionally positive definite functions”, Math. USSR-Sb. 47 (1984), p. 513-526. | Zbl 0528.43005

[53] S. P. Wang - “The dual space of semi-simple Lie groups”, Amer. J. Math. 23 (1969), p. 921-937. | MR 259023 | Zbl 0192.36102

[54] Y. Watatani - “Property (T) of Kazhdan implies property (FA) of Serre”, Math. Japon. 27 (1981), p. 97-103. | MR 649023 | Zbl 0489.20022

[55] A. Zuk - “La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres”, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), p. 453-458. | MR 1408975 | Zbl 0858.22007

[56] -, “Property (T) and Kazhdan constants for discrete groups”, Geom. Funct. Anal. 13 (2003), p. 643-670. | MR 1995802 | Zbl 1036.22004