Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles  [ The Brunn-Minkowski-Lusternik inequality, and other geometric and functional inequalities ]
Séminaire Bourbaki : volume 2003/2004, exposés 924-937, Astérisque, no. 299 (2005), Talk no. 928, p. 95-113

The theory of convex bodies has begun by the end of the 19th century with the Brunn inequality, later generalized as Brunn-Minkowski-Lusternik inequality, that applies also to non convex sets. This subject has had for a long time contacts with isoperimetric problems and inequalities in Analysis such as Sobolev inequalities. We shall deal with some more recent aspects of geometric inequalities; some of them are related to the mass transportation technique, in particular the “Brenier map”

La théorie des corps convexes a commencé à la fin du XIXe siècle avec l'inégalité de Brunn, généralisée ensuite sous la forme de l'inégalité de Brunn-Minkowski-Lusternik, qui s'applique à des ensembles non convexes. Ce thème a depuis longtemps des contacts avec les problèmes isopérimétriques et avec des inégalités d'Analyse telle que les plongements de Sobolev. On développera quelques aspects plus récents des inégalités géométriques, dont certains sont liés à la technique du transport de mesure, notamment le transport dit “de Brenier”.

Classification:  26D15,  39B62,  52A40,  46Bxx,  60E15,  60G15
Keywords: Brunn-Minkowski inequality, Prékopa-Leindler inequality, Brascamp-Lieb inequality, isoperimetric inequality, Sobolev inequality, log-concave function, log-concave measure, convex body, transportation of mass, Brenier map, gaussian measure, deviation inequality, complex interpolation
@incollection{SB_2003-2004__46__95_0,
     author = {Maurey, Bernard},
     title = {In\'egalit\'e de Brunn-Minkowski-Lusternik, et autres in\'egalit\'es g\'eom\'etriques et fonctionnelles},
     booktitle = {S\'eminaire Bourbaki : volume 2003/2004, expos\'es 924-937},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Association des amis de Nicolas Bourbaki, Soci\'et\'e math\'ematique de France},
     address = {Paris},
     number = {299},
     year = {2005},
     note = {talk:928},
     pages = {95-113},
     zbl = {1101.52002},
     mrnumber = {2167203},
     language = {fr},
     url = {http://www.numdam.org/item/SB_2003-2004__46__95_0}
}
Maurey, Bernard. Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques et fonctionnelles, in Séminaire Bourbaki : volume 2003/2004, exposés 924-937, Astérisque, no. 299 (2005), Talk no. 928, pp. 95-113. http://www.numdam.org/item/SB_2003-2004__46__95_0/

[And] T. W. Anderson. The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Amer. Math. Soc., 6 :170-176, 1955. | MR 69229 | Zbl 0066.37402

[ABBN] S. Artstein, K. Ball, F. Barthe, and A. Naor. Solution of Shannon's problem on the monotonicity of entropy. J. Amer. Math. Soc., 17 :975-982, 2004. | MR 2083473 | Zbl 1062.94006

[Ba1] K. Ball. Cube slicing in n . Proc. Amer. Math. Soc., 97 :465-473, 1986. | MR 840631 | Zbl 0601.52005

[Ba2] K. Ball. Volumes of sections of cubes and related problems. In Geometric aspects of functional analysis (1987-88), volume 1376 of Lect. Notes in Math., pages 251-260. Springer. | MR 1008726 | Zbl 0674.46008

[Ba3] K. Ball. Volume ratios and a reverse isoperimetric inequality. J. London Math. Soc. (2), 44 :351-359, 1991. | MR 1136445 | Zbl 0694.46010

[Ba4] K. Ball. Convex geometry and functional analysis. In Handbook of the Geometry of Banach spaces, volume 1, pages 161-194. North Holland, 2001. | MR 1863692 | Zbl 1017.46004

[BBN] K. Ball, F. Barthe, and A. Naor. Entropy jumps in the presence of a spectral gap. Duke Math. J., 119 :41-63, 2003. | MR 1991646 | Zbl 1036.94003

[Bar] F. Barthe. On a reverse form of the Brascamp-Lieb inequality. Invent. Math., 134 :335-361, 1998. | MR 1650312 | Zbl 0901.26010

[BaC] F. Barthe and D. Cordero-Erausquin. Inverse Brascamp-Lieb inequalities along the Heat equation. In Geometric Aspects of Functional Analysis, Israel Seminar 2002-2003, volume 1850 of Lect. Notes in Math., pages 65-71. Springer, 2004. | MR 2087151 | Zbl 1086.26010

[Ber] B. Berndtsson. Prékopa's theorem and Kiselman's minimum principle for plurisubharmonic functions. Math. Ann., 312 :785-792, 1998. | MR 1660227 | Zbl 0938.32021

[Bob] S. G. Bobkov. An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probab., 25 :206-214, 1997. | MR 1428506 | Zbl 0883.60031

[BoL] S. G. Bobkov and M. Ledoux. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal., 10 :1028-1052, 2000. | MR 1800062 | Zbl 0969.26019

[Bo1] C. Borell. The Brunn-Minkowski inequality in Gauss space. Invent. Math., 30 :207-216, 1975. | MR 399402 | Zbl 0292.60004

[Bo2] C. Borell. The Ehrhard inequality. C. R. Acad. Sci. Paris Sér. I Math., 337 :663-666, 2003. | MR 2030108 | Zbl 1031.60013

[BrL] H. J. Brascamp and E. H. Lieb. Best constants in Young's inequality, its converse, and its generalization to more than three functions. Adv. in Math., 20 :151-173, 1976. | MR 412366 | Zbl 0339.26020

[Bre] Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math., 44 :375-417, 1991. | MR 1100809 | Zbl 0738.46011

[Ca1] L. A. Caffarelli. The regularity of mappings with a convex potential. J. Amer. Math. Soc., 5 :99-104, 1992. | MR 1124980 | Zbl 0753.35031

[Ca2] L. A. Caffarelli. Monotonicity properties of optimal transportation and the FKG and related inequalities. Comm. Math. Phys., 214 :547-563, 2000. Erratum, ibid. 225 (2002), p. 449-450. | MR 1800860 | Zbl 0978.60107

[CHL] M. Capitaine, E. P. Hsu, and M. Ledoux. Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces. Electron. Comm. Probab., 2 :71-81, 1997. | MR 1484557 | Zbl 0890.60045

[Co1] D. Cordero-Erausquin. Some applications of mass transport to Gaussian-type inequalities. Arch. Rational Mech. Anal., 161 :257-269, 2002. | MR 1894593 | Zbl 0998.60080

[Co2] D. Cordero-Erausquin. Santaló’s inequality on n by complex interpolation. C. R. Acad. Sci. Paris Sér. I Math., 334 :767-772, 2002. | MR 1905037 | Zbl 1002.31003

[CFM] D. Cordero-Erausquin, M. Fradelizi, and B. Maurey. The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal., 214 :410-427, 2004. | MR 2083308 | Zbl 1073.60042

[CMS] D. Cordero-Erausquin, R. Mccann, and M. Schmuckenschläger. A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math., 146 :219-257, 2001. | MR 1865396 | Zbl 1026.58018

[CNV] D. Cordero-Erausquin, B. Nazaret, and C. Villani. A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. in Math., 182 :307-332, 2004. | MR 2032031 | Zbl 1048.26010

[DaG] S. Das Gupta. Brunn-Minkowski inequality and its aftermath. J. Multivariate Anal., 10 :296-318, 1980. | MR 588074 | Zbl 0467.26008

[Ehr] A. Ehrhard. Symétrisation dans l'espace de Gauss. Math. Scand., 53 :281-301, 1983. | MR 745081 | Zbl 0542.60003

[Gar] R. J. Gardner. The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. (N.S.), 39 :355-405, 2002. | MR 1898210 | Zbl 1019.26008

[HaO] H. Hadwiger and D. Ohmann. Brunn-Minkowskischer Satz und Isoperimetrie. Math. Z., 66 :1-8, 1956. | MR 82697 | Zbl 0071.38001

[Ha1] G. Hargé. A particular case of correlation inequality for the Gaussian measure. Ann. Probab., 27 :1939-1951, 1999. | MR 1742895 | Zbl 0962.28013

[Ha2] G. Hargé. Inequalities for the Gaussian measure and an application to Wiener space. C. R. Acad. Sci. Paris Sér. I Math., 333 :791-794, 2001. | MR 1868955 | Zbl 0992.60025

[HeM] R. Henstock and A. M. Macbeath. On the measure of sum-sets. I. The theorems of Brunn, Minkowski, and Lusternik. Proc. London Math. Soc. (3), 3 :182-194, 1953. | MR 56669 | Zbl 0052.18302

[Kan] M. Kanter. Unimodality and dominance for symmetric random vectors. Trans. Amer. Math. Soc., 229 :65-85, 1977. | MR 445580 | Zbl 0379.60015

[Kno] H. Knothe. Contributions to the theory of convex bodies. Michigan Math. J., 4 :39-52, 1957. | MR 83759 | Zbl 0077.35803

[Lat] R. Latała. A note on the Ehrhard inequality. Studia Math., 118 :169-174, 1996. | MR 1389763 | Zbl 0847.60012

[LaO] R. Latała and K. Oleszkiewicz. Gaussian measures of dilations of convex symmetric sets. Ann. Probab., 27 :1922-1938, 1999. | MR 1742894 | Zbl 0966.60037

[Led] M. Ledoux. The concentration of measure phenomenon. American Mathematical Society, 2001. | MR 1849347 | Zbl 0995.60002

[Lei] L. Leindler. On a certain converse of Hölder's inequality. Acta Sci. Math. (Szeged), 33 :217-223, 1972. | MR 2199372 | Zbl 0245.26011

[Lie] E. H. Lieb. Gaussian kernels have only Gaussian maximizers. Invent. Math., 102 :179-208, 1990. | MR 1069246 | Zbl 0726.42005

[Lus] L. Lusternik. Die Brunn-Minkowskische Ungleichung für beliebige messbare Mengen. Dokl. Akad. Nauk SSSR, (3) :55-58, 1935. | JFM 61.0760.03 | Zbl 0012.27203

[MC1] R. J. Mccann. Existence and uniqueness of monotone measure-preserving maps. Duke Math. J., 80 :309-323, 1995. | MR 1369395 | Zbl 0873.28009

[MC2] R. J. Mccann. Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal., 11 :589-608, 2001. | MR 1844080 | Zbl 1011.58009

[MeP] M. Meyer and A. Pajor. Sections of the unit ball of n p . J. Funct. Anal., 80 :109-123, 1988. | MR 960226 | Zbl 0667.46004

[Mon] G. Monge. Mémoire sur la théorie des déblais et des remblais. In Histoire de l'Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, pages 666-704. 1781.

[Pis] G. Pisier. The volume of convex bodies and Banach space geometry, volume 94 of Cambridge Tracts in Mathematics. Cambridge University Press, 1989. | MR 1036275 | Zbl 0698.46008

[Pit] L. D. Pitt. A Gaussian correlation inequality for symmetric convex sets. Ann. Probab., 5 :470-474, 1977. | MR 448705 | Zbl 0359.60018

[Pre] A. Prékopa. On logarithmic concave measures and functions. Acta Sci. Math. (Szeged), 34 :335-343, 1973. | MR 404557 | Zbl 0264.90038

[Sim] C. G. Simader. Essential self-adjointness of Schrödinger operators bounded from below. Math. Z., 159 :47-50, 1978. | MR 470456 | Zbl 0409.35026

[SuT] V. N. Sudakov and B. S. Tsirel'Son. Extremal properties of half-spaces for spherically invariant measures. J. Soviet Math., 9 :9-18, 1978. traduit de Zap. Nauch. Sem. L.O.M.I. 41 (1974), p. 14-24. | MR 365680 | Zbl 0395.28007

[Vil] C. Villani. Topics in Optimal Transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, 2003. | MR 1964483 | Zbl 1106.90001