The Rasmussen invariant and the Milnor conjecture
Winter Braids IV (Dijon, 2014), Winter Braids Lecture Notes (2014), Exposé no. 1, 19 p.

These notes were written for a series of lectures on the Rasmussen invariant and the Milnor conjecture, given at Winter Braids IV in February 2014.

DOI : 10.5802/wbln.2
Audoux, Benjamin 1

1 Aix Marseille Université, I2M, UMR 7373, 13453 Marseille, France
@article{WBLN_2014__1__A1_0,
     author = {Audoux, Benjamin},
     title = {The {Rasmussen} invariant and the {Milnor} conjecture},
     booktitle = {Winter Braids IV (Dijon, 2014)},
     series = {Winter Braids Lecture Notes},
     note = {talk:1},
     pages = {1--19},
     publisher = {Winter Braids School},
     year = {2014},
     doi = {10.5802/wbln.2},
     mrnumber = {3703248},
     zbl = {1422.57031},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/wbln.2/}
}
TY  - JOUR
AU  - Audoux, Benjamin
TI  - The Rasmussen invariant and the Milnor conjecture
BT  - Winter Braids IV (Dijon, 2014)
AU  - Collectif
T3  - Winter Braids Lecture Notes
N1  - talk:1
PY  - 2014
SP  - 1
EP  - 19
PB  - Winter Braids School
UR  - http://archive.numdam.org/articles/10.5802/wbln.2/
DO  - 10.5802/wbln.2
LA  - en
ID  - WBLN_2014__1__A1_0
ER  - 
%0 Journal Article
%A Audoux, Benjamin
%T The Rasmussen invariant and the Milnor conjecture
%B Winter Braids IV (Dijon, 2014)
%A Collectif
%S Winter Braids Lecture Notes
%Z talk:1
%D 2014
%P 1-19
%I Winter Braids School
%U http://archive.numdam.org/articles/10.5802/wbln.2/
%R 10.5802/wbln.2
%G en
%F WBLN_2014__1__A1_0
Audoux, Benjamin. The Rasmussen invariant and the Milnor conjecture, dans Winter Braids IV (Dijon, 2014), Winter Braids Lecture Notes (2014), Exposé no. 1, 19 p. doi : 10.5802/wbln.2. http://archive.numdam.org/articles/10.5802/wbln.2/

[1] Baldwin, John A.; Gillam, William D. Computations of Heegaard-Floer knot homology, J. Knot Theory Ramifications, Volume 21 (2012) no. 8, 1250075, 65 pages | MR | Zbl

[2] Bar-Natan, Dror On Khovanov’s categorification of the Jones polynomial, Algebr. Geom. Topol., Volume 2 (2002), pp. 337-370 | DOI | MR | Zbl

[3] Blanchet, Christian An oriented model for Khovanov homology, J. Knot Theory Ramifications, Volume 19 (2010) no. 2, pp. 291-312 | DOI | MR | Zbl

[4] Boileau, Michel; Weber, Claude Le problème de J. Milnor sur le nombre gordien des noeuds algébriques, Noeuds, tresses et singularités, C. R. Sémin., Plans-sur-Bex 1982, Monogr. Enseign. Math. 31, 49-98 (1983)., 1983 | Zbl

[5] Caprau, Carmen Livia sl(2) tangle homology with a parameter and singular cobordisms, Algebr. Geom. Topol., Volume 8 (2008) no. 2, pp. 729-756 | DOI | MR | Zbl

[6] Carter, J.Scott; Saito, Masahico Reidemeister moves for surface isotopies and their interpretation as moves to movies., J. Knot Theory Ramifications, Volume 2 (1993) no. 3, pp. 251-284 | DOI | MR | Zbl

[7] Chow, Timothy You could have invented spectral sequences, Notices Amer. Math. Soc., Volume 53 (2006) no. 1, pp. 15-19 | MR | Zbl

[8] Clark, David; Morrison, Scott; Walker, Kevin Fixing the functoriality of Khovanov homology, Geom. Topol., Volume 13 (2009) no. 3, pp. 1499-1582 | DOI | MR | Zbl

[9] Ghiggini, Paolo Knot Floer homology detects genus-one fibred knots, Am. J. Math., Volume 130 (2008) no. 5, pp. 1151-1169 | DOI | MR | Zbl

[10] Jacobsson, Magnus An invariant of link cobordisms from Khovanov’s homology theory, Algebr. Geom. Topol (2004), pp. 1211-1251 | DOI | MR | Zbl

[11] Kawauchi, A.; Shibuya, T; Suzuki, S. Descriptions on surfaces in four space. I. Normal forms., Math. Semin. Notes, Kobe Univ., Volume 10 (1982), pp. 75-126 | MR | Zbl

[12] Khovanov, Mikhail A categorification of the Jones polynomial, Duke Math. J., Volume 101 (2000) no. 3, pp. 359-426 | MR | Zbl

[13] Kronheimer, Peter B.; Mrowka, Tomasz S. Gauge theory for embedded surfaces. I., Topology, Volume 32 (1993) no. 4, pp. 773-826 | DOI | MR | Zbl

[14] Kronheimer, Peter B.; Mrowka, Tomasz S. Khovanov homology is an unknot-detector, Publ. Math., Inst. Hautes Étud. Sci., Volume 113 (2011), pp. 97-208 | DOI | Numdam | MR | Zbl

[15] Lee, Eun Soo An endomorphism of the Khovanov invariant, Adv. Math., Volume 197 (2005) no. 2, pp. 554-586 | MR | Zbl

[16] McCleary, John A user’s guide to spectral sequences. 2nd ed., Cambridge: Cambridge University Press, 2001, xv + 561 pages | Zbl

[17] Milnor, John W. Singular points of complex hypersurfaces, Annals of Mathematics Studies. 61. Princeton, N.J.: Princeton University Press and the University of Tokyo Press. 122 p. (1968)., 1968 | Zbl

[18] Murasugi, Kunio On a certain numerical invariant of link types, Trans. Am. Math. Soc., Volume 117 (1965), pp. 387-422 | DOI | MR | Zbl

[19] Ni, Yi Knot Floer homology detects fibred knots, Invent. Math., Volume 170 (2007) no. 3, pp. 577-608 | DOI | MR | Zbl

[20] Ni, Yi Erratum: Knot Floer homology detects fibred knots, Invent. Math., Volume 177 (2009) no. 1, pp. 235-238 | DOI | MR | Zbl

[21] Ozsváth, Peter; Szabó, Zoltán Holomorphic disks and genus bounds, Geom. Topol., Volume 8 (2004), pp. 311-334 | DOI | MR | Zbl

[22] Ozsváth, Peter; Szabó, Zoltán Holomorphic disks and knot invariants, Adv. Math., Volume 186 (2004) no. 1, pp. 58-116 | DOI | MR | Zbl

[23] Rasmussen, Jacob Floer homology and knot complements, Harvard University (2003) (Ph. D. Thesis)

[24] Rasmussen, Jacob Khovanov homology and the slice genus, Invent. Math., Volume 182 (2010) no. 2, pp. 419-447 | DOI | MR | Zbl

[25] Reidemeister, Kurt Einführung in die kombinatorische Topologie, Wissenschaftliche Buchgesellschaft, Darmstadt, 1972, xii+209 pages (Unveränderter reprografischer Nachdruck der Ausgabe Braunschweig 1951) | MR | Zbl

[26] Turner, Paul Five lectures on Khovanov homology, arXiv:0606464, 2006 | Zbl

[27] Turner, Paul A hitchhiker’s guide to Khovanov homology, arXiv:1409.6442, 2014 | Zbl

[28] Vikash, Siwach; Madeti, Prabhakar A method for unknotting torus knots, arXiv:1207.4918, 2012

[29] Viro, Oleg Khovanov homology, its definitions and ramifications, Fund. Math., Volume 184 (2004), pp. 317-342 | DOI | MR | Zbl

[30] Watson, Liam Knots with identical Khovanov homology, Algebr. Geom. Topol., Volume 7 (2007), pp. 1389-1407 | DOI | MR | Zbl

[31] Weibel, Charles A. An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994 | MR | Zbl

Cité par Sources :