Heegaard Floer Homologies and Rational Cuspidal Curves. Lecture notes.
Winter Braids VI (Lille, 2016), Winter Braids Lecture Notes (2016), Talk no. 1, 39 p.

This is an expanded version of the lecture course the second author gave at Winterbraids VI in Lille in February 2016.

DOI: 10.5802/wbln.12
Baranowski, Adam 1; Borodzik, Maciej 2, 1; Serrano de Rodrigo, Juan 3

1 Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland.
2 Institute of Mathematics, Polish Academy of Science, ul. Śniadeckich 8, Warsaw, Poland.
3 Dpto. de Matemáticas, Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, España.
@article{WBLN_2016__3__A1_0,
     author = {Baranowski, Adam and Borodzik, Maciej and Serrano de Rodrigo, Juan},
     title = {Heegaard {Floer} {Homologies} and {Rational} {Cuspidal} {Curves.} {Lecture} notes.},
     booktitle = {Winter Braids VI (Lille, 2016)},
     series = {Winter Braids Lecture Notes},
     note = {talk:1},
     pages = {1--39},
     publisher = {Winter Braids School},
     year = {2016},
     doi = {10.5802/wbln.12},
     mrnumber = {3707742},
     zbl = {1431.57031},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/wbln.12/}
}
TY  - JOUR
AU  - Baranowski, Adam
AU  - Borodzik, Maciej
AU  - Serrano de Rodrigo, Juan
TI  - Heegaard Floer Homologies and Rational Cuspidal Curves. Lecture notes.
BT  - Winter Braids VI (Lille, 2016)
AU  - Collectif
T3  - Winter Braids Lecture Notes
N1  - talk:1
PY  - 2016
SP  - 1
EP  - 39
PB  - Winter Braids School
UR  - http://archive.numdam.org/articles/10.5802/wbln.12/
DO  - 10.5802/wbln.12
LA  - en
ID  - WBLN_2016__3__A1_0
ER  - 
%0 Journal Article
%A Baranowski, Adam
%A Borodzik, Maciej
%A Serrano de Rodrigo, Juan
%T Heegaard Floer Homologies and Rational Cuspidal Curves. Lecture notes.
%B Winter Braids VI (Lille, 2016)
%A Collectif
%S Winter Braids Lecture Notes
%Z talk:1
%D 2016
%P 1-39
%I Winter Braids School
%U http://archive.numdam.org/articles/10.5802/wbln.12/
%R 10.5802/wbln.12
%G en
%F WBLN_2016__3__A1_0
Baranowski, Adam; Borodzik, Maciej; Serrano de Rodrigo, Juan. Heegaard Floer Homologies and Rational Cuspidal Curves. Lecture notes., in Winter Braids VI (Lille, 2016), Winter Braids Lecture Notes (2016), Talk no. 1, 39 p. doi : 10.5802/wbln.12. http://archive.numdam.org/articles/10.5802/wbln.12/

[1] S. Baader, P. Feller, L. Lewark, L. Liechti, On the topological 4-genus of torus knots, preprint 2015, arxiv:1509.07634, to appear in Trans. Amer. Math. Soc. | DOI | MR | Zbl

[2] J. Bodnár, Classification of rational unicuspidal curves with two Newton pairs, Acta Math. Hungar. 148 (2016), no. 2, 294–299. | DOI | MR | Zbl

[3] J. Bodnár, A. Némethi, Lattice cohomology and rational cuspidal curves, Math. Res. Lett. 23 (2016), no. 2, 339–375. | DOI | MR | Zbl

[4] M. Borodzik, E. Gorsky, Immersed concordances of links and Heegaard Floer homology, preprint 2016, arxiv:1601.07507, to appear in Indiana Univ. Math. J. | DOI | MR | Zbl

[5] M. Borodzik, M. Hedden, The ϒ function of L–space knots is a Legendre transform, Math. Proc. Cambridge Philos. Soc., 1-11. doi:10.1017/S030500411700024X | DOI | Zbl

[6] M. Borodzik, J. Hom, Involutive Heegaard Floer homology and rational cuspidal curves, preprint 2016, arxiv:1609.08303. | DOI | MR | Zbl

[7] M. Borodzik, C. Livingston, Heegaard Floer homologies and rational cuspidal curves, Forum of Math. Sigma, 2 (2014), e28, 23 pages. | DOI | MR | Zbl

[8] M. Borodzik, T. Moe, Topological obstructions for rational cuspidal curves in Hirzebruch surfaces, Michigan Math. J. 65 (2016), no. 4, 761–797. | DOI | MR | Zbl

[9] E. Brieskorn, H. Knörrer, Plane Algebraic Curves, Birkhäuser, Basel, 1986. | Zbl

[10] W. Burau, Kennzeichnung der Schlauchknoten, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 9 (1932), 125–133. | DOI | MR | Zbl

[11] A. Campillo, F. Delgado, S. Gusein-Zade, The Alexander polynomial of a plane curve singularity via the ring of functions on it, Duke Math. J. 117 (2003), no. 1, 125–156. | DOI | MR | Zbl

[12] J. Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 5–173. | DOI | Zbl

[13] J. Coolidge, A treatise on plane algebraic curves, Oxford Univ. Press, Oxford, 1928.

[14] D. Eisenbud, W. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals Math. Studies 110, Princeton University Press, Princeton, 1985. | DOI | Zbl

[15] P. Feller, D. Krcatovich, On cobordisms between knots, braid index, and the Upsilon-invariant, preprint 2016, arxiv:1602.02637. | DOI | MR | Zbl

[16] J. Fernández de Bobadilla, I. Luengo, A. Melle-Hernández, A. Némethi, Classification of rational unicuspidal projective curves whose singularities have one Puiseux pair, Proceedings of São Carlos Workshop 2004 Real and Complex Singularities, Series Trends in Mathematics, Birkhäuser 2007, 31–46. | DOI | Zbl

[17] J. Fernández de Bobadilla, I. Luengo, A. Melle-Hernández, A. Némethi, On rational cuspidal projective plane curves, Proc. of London Math. Soc., 92 (2006), 99–138. | DOI | MR | Zbl

[18] H. Flenner and M. Zaidenberg, On a class of rational cuspidal plane curves, Manuscripta Math. 89 (1996), no. 4, 439–459. | DOI | MR | Zbl

[19] T. Friedrich, Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, 25. American Mathematical Society, Providence, RI, 2000. | DOI | Zbl

[20] P. Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008), no. 5, 1151–1169. | DOI | MR | Zbl

[21] R. E. Gompf, A. I. Stipsicz, 4–Manifolds and Kirby Calculus (Graduate Studies in Mathematics), American Mathematical Society, 1999. | DOI | Zbl

[22] G-M. Greuel, C. Lossen, E. Shustin, Introduction to Singularities and Deformations, Springer–Verlag, Berlin–Heidelberg–New York, 2006. | Zbl

[23] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Revised and corrected reprint of the 1983 original. Applied Mathematical Sciences, 42. Springer-Verlag, New York, 1990. | DOI

[24] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977. | DOI | Zbl

[25] M. Hedden, Notions of positivity and the Ozsváth-Szabó concordance invariant, J. Knot Theory Ramifications 19 (2010), no. 5, 617–629. | DOI | Zbl

[26] M. Hedden, On knot Floer homology and cabling. II., Int. Math. Res. Not. IMRN 2009, 2248–2274. | DOI | Zbl

[27] K. Hendricks, C. Manolescu, Involutive Heegaard Floer homology, preprint 2015, arxiv:1507.00383, to appear in Duke Math. Journal. | DOI | MR | Zbl

[28] K. Hendricks, C. Manolescu, I. Zemke, A connected sum formula for involutive Heegaard Floer homology, preprint 2016, arxiv:1607.07499. | DOI | MR | Zbl

[29] J. Hom, A note on cabling and L-space surgeries, Algebr. Geom. Topol. 11 (2011), no. 1, 219–223. | DOI | Zbl

[30] J. Hom, A survey on Heegaard Floer homology and concordance, preprint 2015, arxiv:1512.00383. | DOI | MR | Zbl

[31] J. Hom, T. Lidman and L. Watson, The Alexander invariant, Seifert forms, and categorification, preprint, arXiv: 1501.04866, to appear in J. Topology. | DOI | MR | Zbl

[32] S. Iitaka, On logarithmic Kodaira dimension of algebraic varietes, in: ‘Complex Analysis and Algebraic Geometry’ (A collection of papers dedicated to K. Kodaira), Iwanami, 1977, pp. 175–189. | DOI

[33] A. Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006), 1429–1457. | DOI | MR | Zbl

[34] A. Juhász, A survey of Heegaard Floer homology, New Ideas in Low Dimensional Topology, World Scientific, 2014, 237–296. | DOI | Zbl

[35] A. Juhász, D. Thurston, Naturality and mapping class groups in Heegaard Floer homology, preprint 2012, arxiv:1210.4996.

[36] H. Kashiwara, Fonctions rationnelles de type (0,1) sur le plan projectif complexe, Osaka J. Math. 24 (1987), no. 3, 521–577. | Zbl

[37] T. Kishimoto, Projective plane curves whose complements have logarithmic Kodaira dimension one, Japan. J. Math. 27 (2001), no. 2, 275–310. | DOI | MR | Zbl

[38] K. Kodaira, D. Spencer, On deformations of complex analytic structures. I, II., Ann. of Math. 67 (1958) 328–466. | DOI | MR | Zbl

[39] M. Koras, K. Palka, The Coolidge-Nagata conjecture, Duke Math. J. (2017), 61 pp, DOI 00127094-2017-0010. | DOI | MR | Zbl

[40] D. Krcatovich, The reduced knot Floer complex, Topology Appl. 194 (2015), 171–201. | DOI | MR | Zbl

[41] P. Kronheimer, T. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), 797–808. | DOI | MR | Zbl

[42] P. Kronheimer, T. Mrowka, Monopoles and three–manifolds, New Mathematical Monographs, 10. Cambridge University Press, Cambridge, 2007. | DOI | Zbl

[43] Ç. Kutluhan, Y. Lee, C. H. Taubes, HF=HM I: Heegaard Floer homology and Seiberg-Witten Floer homology, preprint 2011, arxiv:1007.1979v5

[44] R. Lee, D. Wilczyński, Locally flat 2-spheres in simply connected 4–manifolds, Comment. Math. Helv. 65 (1990), no. 3, 388–412. | DOI | MR | Zbl

[45] A. Levine and D.Ruberman, Generalized Heegaard Floer correction terms, Proceedings of the 20th Gökova Geometry/Topology Conference, 76–96. | Zbl

[46] R. Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006), 955–1097. | DOI | MR | Zbl

[47] T. Liu, On planar rational cuspidal curves, Ph.D. thesis, 2014, at M.I.T., available at http://dspace.mit.edu/bitstream/handle/1721.1/90190/890211671.pdf. | Zbl

[48] Y. Liu, L-space surgeries on links, to appear in Quant. Topol., arXiv:1409.0075. | DOI | MR | Zbl

[49] I. Luengo, The μ–constant stratum is not smooth, Invent. Math. 90 (1987) 139–152. | DOI | MR | Zbl

[50] I. Luengo, A. Melle Hernández, A. Némethi, Links and analytic invariants of superisolated singularities, J. Algebraic Geom. 14 (2005) 543–565. | DOI | MR | Zbl

[51] R. Lipshitz, P. Ozsváth, D. Thurston, Bordered Heegaard Floer homology: Invariance and pairing, preprint, arXiv:0810.0687. | Zbl

[52] R. Lipshitz, P. Ozsváth, D. Thurston, Tour of bordered Floer theory, Proc. Natl. Acad. Sci. USA 108 (2011), no. 20, 8085–8092. | DOI | MR | Zbl

[53] R. Lipshitz, P. Ozsváth, D. Thurston, Notes on bordered Floer homology, Contact and symplectic topology, 275–355, Bolyai Soc. Math. Stud., 26, János Bolyai Math. Soc., Budapest, 2014. | DOI | Zbl

[54] C. Livingston, Computations of the Ozsváth-Szabó knot concordance invariant, Geom. Topol. 8 (2004), 735–742. | DOI | Zbl

[55] C. Manolescu, An introduction to knot Floer homology, preprint 2014, arxiv:1401.7107. To appear in Proceedings of the 2013 SMS Summer School on Homology Theories of Knots and Links. | DOI | Zbl

[56] C. Manolescu, B. Owens, A concordance invariant from the Floer homology of double branched covers, Int. Math. Res. Not. IMRN 2007, no. 20, Art. ID rnm077, 21 pp. | DOI | Zbl

[57] C. Manolescu, P. Ozsváth, On the Khovanov and knot Floer homologies of quasi-alternating links, Proceedings of Gökova Geometry–Topology Conference 2007, 60–81, Gökova Geometry/Topology Conference (GGT), Gökova, 2008. | Zbl

[58] C. Manolescu, P. Ozsváth, Heegaard Floer homology and integer surgeries on links, preprint 2010, arxiv:1011.1317.

[59] T. Matsuoka, F. Sakai, The degree of rational cuspidal curves, Math. Ann. 285 (1989), 233–247. | DOI | MR | Zbl

[60] J. Milnor, Lectures on the h-cobordism theorem, Princeton University Press, Princeton, NJ, 1965. | DOI | Zbl

[61] J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies. 61, Princeton University Press and the University of Tokyo Press, Princeton, NJ, 1968. | DOI | Zbl

[62] T. K. Moe, Rational cuspidal curves, Master Thesis, University of Oslo 2008, available at arXiv:1511.02691.

[63] T. K. Moe, Rational cuspidal curves with four cusps on Hirzebruch surfaces, Le Matematiche Vol. LXIX (2014) Fasc. II, 295–318. doi: 10.4418/2014.69.2.25. | Zbl

[64] T. K. Moe, On the number of cusps on cuspidal curves on Hirzebruch surfaces, Math. Nachrichten. 288 (2015), 76–88. | DOI | MR | Zbl

[65] L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737–745. | DOI | MR | Zbl

[66] M. Nagata, On rational surfaces. I: Irreducible curves of arithmetic genus 0 or 1, Mem. Coll. Sci., Univ. Kyoto, Ser. A 32 (1960), 351–370. | DOI | MR | Zbl

[67] M. Namba, Geometry of projective algebraic curves, Monographs and Textbooks in Pure and Applied Mathematics, 88. Marcel Dekker, Inc., New York, 1984.

[68] P. Nayar, B. Pilat, A note on the rational cuspidal curves, Bull. Polish Acad. Science., 62 (2014), no. 2, 117–123. | DOI | MR | Zbl

[69] A. Némethi, L Nicolaescu, Seiberg–Witten invariants and surface singularities, Geom. Topol. 6 (2002) 269–328. | DOI | MR | Zbl

[70] A. Némethi, L. Nicolaescu, Seiberg–Witten invariants and surface singularities II, singularities with good * –action, J. London Math. Soc. 69 (2004) 593–607. | DOI | MR | Zbl

[71] A. Némethi, L. Nicolaescu, Seiberg–Witten invariants and surface singularities: splicings and cyclic covers, Sel. Math. New Ser. 11 (2005), 399–451. | DOI | MR | Zbl

[72] Y. Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007), no. 3, 577–608. Erratum: Knot Floer homology detects fibred knots Invent. Math. 177 (2009), no. 1, 235–238. | DOI | MR | Zbl

[73] Y. Ni, Link Floer homology detects the Thurston norm, Geom. Topol. 13 (2009), no. 5, 2991–3019. | DOI | MR | Zbl

[74] Y. Ni, Z. Wu, Cosmetic surgeries on knots in S 3 , J. Reine Angew. Math. 706 (2015), 1–17. | DOI | Zbl

[75] L. Nicolaescu, Notes on Seiberg-Witten theory, Graduate Studies in Mathematics, 28. American Mathematical Society, Providence, RI, 2000. | DOI | Zbl

[76] S. Orevkov, On rational cuspidal curves. I. Sharp estimates for degree via multiplicity, Math. Ann. 324 (2002), 657–673. | DOI | Zbl

[77] P. Ozsváth, A. Stipsicz, Z. Szabó, Concordance homomorphisms from knot Floer homology, preprint 2014, arxiv:1407.1795. | DOI | MR | Zbl

[78] P. Ozsváth, A. Stipsicz, Z. Szabó, Grid homology for knots and links, Mathematical Surveys and Monographs, 208. American Mathematical Society, Providence, RI, 2015. | DOI | Zbl

[79] P. Ozsváth, Z. Szabó, Absolutely graded Floer homologies and intersection forms for four–manifolds with boundary, Adv. Math. 173 (2003), 179–261. | DOI | MR | Zbl

[80] P. Ozsváth, Z. Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003), 225–254. | DOI | MR | Zbl

[81] P. Ozsváth, Z. Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003), 615–639. | DOI | MR | Zbl

[82] P. Ozsváth, Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), 1027–1158. | DOI | MR | Zbl

[83] P. Ozsváth, Z. Szabó, Holomorphic disks and three manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004), 1159–1245. | DOI | MR | Zbl

[84] P. Ozsváth, Z. Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), 58–116. | DOI | MR | Zbl

[85] P. Ozsváth, Z. Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311–334. | DOI | MR | Zbl

[86] P. Ozsváth, Z. Szabó, On knot Floer homology and lens space surgeries, Topology, 44 (2005), 1281–1300. | DOI | MR | Zbl

[87] P. Ozsváth, Z. Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), no. 1, 1–33. | DOI | MR | Zbl

[88] P. Ozsváth, Z. Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006), no. 2, 326–400. | DOI | MR | Zbl

[89] P. Ozsváth, Z. Szabó, An introduction to Heegaard Floer homology, in: Floer homology, gauge theory, and low-dimensional topology, 3–27, Clay Math. Proc., 5, Amer. Math. Soc., Providence, RI, 2006. | Zbl

[90] P. Ozsváth, Z. Szabó, Lectures on Heegaard Floer homology, in: Floer homology, gauge theory, and low-dimensional topology, 29–70, Clay Math. Proc., 5, Amer. Math. Soc., Providence, RI, 2006. | Zbl

[91] P. Ozsváth, Z. Szabó, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008), no. 1, 101–153. | DOI | MR | Zbl

[92] P. Ozsváth, Z. Szabó, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011), 1–68. | DOI | MR | Zbl

[93] K. Palka, Cuspidal curves, minimal models and Zaidenberg’s finiteness conjecture, J. Reine Angew. Math (Crelle’s Journal), preprint 2016, arxiv:1405.5346. | DOI | MR | Zbl

[94] K. Palka, The Coolidge-Nagata conjecture, part I, Adv. Math. 267 (2014), 1–43. | DOI | MR | Zbl

[95] K. Palka, T. Pełka, Classification of planar rational cuspidal curves. I. ** -fibrations, preprint 2016, arxiv:1609.03992. | DOI | MR | Zbl

[96] T. Perutz, Hamiltonian handleslides for Heegaard Floer homology, Proceedings of Gökova Geometry-Topology Conference 2007, 15–35, Gökova Geometry/Topology Conference (GGT), Gökova, 2008. | Zbl

[97] T. Peters, A concordance invariant from the Floer homology of ±1 surgeries, preprint 2010, arxiv:1003.3038.

[98] J. Piontkowski, On the number of cusps of rational cuspidal plane curves, Experiment. Math. 16 (2007), no. 2, 251–255. | DOI | MR | Zbl

[99] J. Ramírez Alfonsín, The Diophantine Frobenius problem, Oxford Lecture Series in Mathematics and its Applications 30, Oxford University Press, Oxford, 2005. | DOI | Zbl

[100] J. Rasmussen, Floer homology and knot complements, Harvard thesis, 2003, available at arxiv:math/0306378.

[101] D. Rolfsen, Knots and links, Publish or Perish, 1976. | DOI

[102] J. Robbin, D. Salamon, The Maslov index for paths, Topology 32 (4) (1993), 827–844. | DOI | MR | Zbl

[103] L. Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 51–59. | DOI | MR | Zbl

[104] S. Sarkar, Moving basepoints and the induced automorphisms of link Floer homology, Algebr. Geom. Topol. 15 (2015), no. 5, 2479–2515. | DOI | MR | Zbl

[105] A. Scorpan, The wild world of 4–manifolds, American Mathematical Society, Providence, RI, 2005. | Zbl

[106] K. Tono, Rational unicuspidal plane curves with κ ¯=1, Newton polyhedra and singularities (Kyoto, 2001). Sūrikaisekikenkyūsho Kōkyūroku 1233 (2001), 82–89. | Zbl

[107] K. Tono, On the number of cusps of cuspidal plane curves, Math. Nachr. 278 (2005), 216–221. | DOI | MR | Zbl

[108] S. Tsunoda, The complements of projective plane curves, RIMS-Kôkyûroku, 446 (1981), 48–56, available at http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0446-06.pdf. | Zbl

[109] V. Turaev, Torsion invariants of Spin c –structures on 3–manifolds, Math. Res. Lett., 4 (5) (1997), 679–695. | DOI | MR | Zbl

[110] V. Turaev, Torsions of 3–dimensional manifolds, Progress in Mathematics, 208. Birkhäuser Verlag, Basel, 2002. | Zbl

[111] I. Wakabayashi, On the logarithmic Kodaira dimension of the complement of a curve in 2 , Proc. Japan Acad. Ser. A. Math. Sci. 54 (1978), 157–162. | DOI | MR | Zbl

[112] C. Wall, Singular Points of Plane Curves, London Mathematical Society Student Texts, 63. Cambridge University Press, Cambridge, 2004. | Zbl

[113] O. Zariski, On the topology of algebroid singularities, Amer. J. Math. 54 (1932), 453–465. | DOI | MR | Zbl

[114] O. Zariski, Algebraic surfaces, With appendices by S. Abhyankar, J. Lipman and D. Mumford. Preface to the appendices by Mumford. Reprint of the second (1971) edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

[115] I. Zemke, Quasi-stabilization and basepoint moving maps in link Floer homology, preprint 2016, arxiv:1604.04316. | DOI | MR | Zbl

[116] I. Zemke, Connected sums and involutive knot Floer homology, preprint 2017, arxiv:1705.01117. | DOI | MR | Zbl

[117] H. Żoładek, The monodromy group, Mathematical monographs (new series), 67, Birkhäuser Verlag, Basel, 2006. | Zbl

Cited by Sources: