Braids in Contact 3–manifolds
Winter Braids VII (Caen, 2017), Winter Braids Lecture Notes (2017), Exposé no. 4, 23 p.
DOI : 10.5802/wbln.20
Vértesi, Vera 1

1 IRMA Université de Strasbourg
@article{WBLN_2017__4__A4_0,
     author = {V\'ertesi, Vera},
     title = {Braids in {Contact} 3{\textendash}manifolds},
     booktitle = {Winter Braids VII (Caen, 2017)},
     series = {Winter Braids Lecture Notes},
     note = {talk:4},
     pages = {1--23},
     publisher = {Winter Braids School},
     year = {2017},
     doi = {10.5802/wbln.20},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/wbln.20/}
}
TY  - JOUR
AU  - Vértesi, Vera
TI  - Braids in Contact 3–manifolds
BT  - Winter Braids VII (Caen, 2017)
AU  - Collectif
T3  - Winter Braids Lecture Notes
N1  - talk:4
PY  - 2017
SP  - 1
EP  - 23
PB  - Winter Braids School
UR  - http://archive.numdam.org/articles/10.5802/wbln.20/
DO  - 10.5802/wbln.20
LA  - en
ID  - WBLN_2017__4__A4_0
ER  - 
%0 Journal Article
%A Vértesi, Vera
%T Braids in Contact 3–manifolds
%B Winter Braids VII (Caen, 2017)
%A Collectif
%S Winter Braids Lecture Notes
%Z talk:4
%D 2017
%P 1-23
%I Winter Braids School
%U http://archive.numdam.org/articles/10.5802/wbln.20/
%R 10.5802/wbln.20
%G en
%F WBLN_2017__4__A4_0
Vértesi, Vera. Braids in Contact 3–manifolds, dans Winter Braids VII (Caen, 2017), Winter Braids Lecture Notes (2017), Exposé no. 4, 23 p. doi : 10.5802/wbln.20. http://archive.numdam.org/articles/10.5802/wbln.20/

[Ale20] James Waddell Alexander. Note on riemann spaces. Bull. Amer. Math. Soc., 26:370–372, 1920.

[Ben83] Daniel Bennequin. Entrelacements et équations de Pfaff. In Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982), volume 107 of Astérisque, pages 87–161. Soc. Math. France, Paris, 1983.

[BF98] Joan S. Birman and Elizabeth Finkelstein. Studying surfaces via closed braids. J. Knot Theory Ramifications, 7(3):267–334, 1998.

[EFM01] Judith Epstein, Dmitry Fuchs, and Maike Meyer. Chekanov-Eliashberg invariants and transverse approximations of Legendrian knots. Pacific J. Math., 201(1):89–106, 2001.

[Etn03] John B. Etnyre. Introductory lectures on contact geometry. In Topology and geometry of manifolds (Athens, GA, 2001), volume 71 of Proc. Sympos. Pure Math., pages 81–107. Amer. Math. Soc., Providence, RI, 2003.

[Etn06] John B. Etnyre. Lectures on open book decompositions and contact structures. In Floer homology, gauge theory, and low-dimensional topology, volume 5 of Clay Math. Proc., pages 103–141. Amer. Math. Soc., Providence, RI, 2006.

[EV17] John B. Etnyre and Vera Vértesi. Legendrian satellites. IMRN, 2017.

[Gab83] David Gabai. The Murasugi sum is a natural geometric operation. In Low-dimensional topology (San Francisco, Calif., 1981), volume 20 of Contemp. Math., pages 131–143. Amer. Math. Soc., Providence, RI, 1983.

[Gei06] Hansjörg Geiges. Contact geometry. In Handbook of differential geometry. Vol. II, pages 315–382. Elsevier/North-Holland, Amsterdam, 2006.

[Gir00] Emmanuel Giroux. Structures de contact en dimension trois et bifurcations des feuilletages de surfaces. Invent. Math., 141(3):615–689, 2000.

[Gir02] Emmanuel Giroux. Géométrie de contact: de la dimension trois vers les dimensions supérieures. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pages 405–414. Higher Ed. Press, Beijing, 2002.

[HKM07] Ko Honda, William H. Kazez, and Gordana Matić. Right-veering diffeomorphisms of compact surfaces with boundary. Invent. Math., 169(2):427–449, 2007.

[IK14] Tetsuya Ito and Keiko Kawamuro. Open book foliation. Geom. Topol., 18(3):1581–1634, 2014.

[Lic62] W. B. R. Lickorish. A representation of orientable combinatorial 3-manifolds. Ann. of Math. (2), 76:531–540, 1962.

[OS04] Burak Ozbagci and András I. Stipsicz. Surgery on contact 3-manifolds and Stein surfaces, volume 13 of Bolyai Society Mathematical Studies. Springer-Verlag, Berlin; János Bolyai Mathematical Society, Budapest, 2004.

[Pav11] Elena Pavelescu. Braiding knots in contact 3-manifolds. Pacific J. Math., 253(2):475–487, 2011.

[Sko92] Richard K. Skora. Closed braids in 3-manifolds. Math. Z., 211(2):173–187, 1992.

[Sun93] Paul A. Sundheim. The Alexander and Markov theorems via diagrams for links in 3-manifolds. Trans. Amer. Math. Soc., 337(2):591–607, 1993.

[TW75] W. P. Thurston and H. E. Winkelnkemper. On the existence of contact forms. Proc. Amer. Math. Soc., 52:345–347, 1975.

Cité par Sources :