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NAHM TRANSFORM FOR INTEGRABLE
CONNECTIONS ON THE RIEMANN SPHERE

Sziltrd Szab—

Abstract. B In this text, we debPne Nahm transform for parabolic integrable connec-
tions with regular singularities and one PoincarZ rank1 irregular singularity on the
Riemann sphere. After a Prst debnition using-2-cohomology, we give an algebraic de-
scription in terms of hypercohomology. Exploiting these dilerent interpretations, we
give the transformed object by explicit analytic formulas as well as geometrically, by
its spectral curve. Finally, we show that this transform is (up to a sign) an involution.

RZsumZTransformZe de Nahm pour les connexions intZgrables sur la sphere de Riemann)

Dans ce texte, nous dZbnissons la transformZe de Nahm pour les connexions intZ-
grables paraboliques ayant des singularitZs rZgulieres et une singularitZ irrZguliere de
rang de PoincarZ1 sur la sphere de Riemann. Apres une dZPnition en terme de coho-
mologie L2, nous donnons une description algZbrique en terme dOhypercohomologie.
En nous servant de cette double interprZtation, nous dZcrivons IQobjet transformZ ~ la
fois par des formules analytiques explicites et gZomZtriquement en utilisant la courbe
spectrale du problsme. Finalement, nous dZmontrons que la correspondance dZbnie
est (" un signe pres) une involution.
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INTRODUCTION

Nahm transform is a non-linear analog for instantons of the usual Fourier transform
on functions. It has been extensively studied starting from the beginning of the 19800s,
inspired by the seminal work of M. F. Atiyah, V. Drinfeld, N. J. Hitchin and Yu. I.
Manin on a correspondence (theADHM-transform ) between Pnite-energy solutions
of the Yang-Mills equations and some algebraic data (se€l] and Chapter 3 of [12]).
The Yang-Mills equations are the anti-self-duality equations for a unitary connection
on a Hermitian vector bundle debned oveR#; their Pnite-energy solutions are called
instantons.

Since then, it turned out that the general picture concerning this correspondence
is as follows: letX be any manifold obtained as a quotient ofR 4 by a closed additive
subgroup! . The solutions of the Yang-Mills equations invariant by ! (that are clearly
not of Pnite energy in the case! £ {0}) can be identibed in an obvious manner to
solutions of a system of dilerential equations onX, called the reduction of the Yang-
Mills equations. On the other hand, denoting by (R4)' the dual of the vector space
R*, ! determines a closed additive subgroud ' called the dual subgroupby saying
that an element! " (R%)' isin!' ifand only if 1(")" Z forall " " ! . Hence, we
can form the dual manifold X' = (R#)'/!' of X, that also admits a reduction of the
Yang-Mills equations. Nahm transform is then a procedure that maps solutions of the
reduced equations onX to solutions of the reduced equations onX' bijectively up
to overall gauge transformations on both sides. One remarks that there is a canonical
isomorphism between((R4)')' and R*, as well as betweer(! ') and! . Therefore, if
we start from a solution of the reduced equations onX and iterate Nahm transform
twice, we again get a solution of the reduced equations oX . One important property
analogous to usual Fourier transform is that in some cases the solution we get this
way is, up to a coordinate changex #$ %x, known to be the solution we started with;
that is, Nahm transform is (up to a sign) involutive. Moreover, in some cases one
knows that the moduli spaces of solutions of the reduced equations modulo gauge
transformations on X and on X' are smooth hyper-KShler manifolds with respect
to the metric induced by L2-norm and the complex structures induced byR*; Nahm
transform is then a hyper-KShler isometry between these moduli spaces. This is to be
compared with ParsevalOs theorem which states that usual Fourier transform debnes
an isometry betweenL 2-spaces of functions.
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8 INTRODUCTION

Putting !'= {0}, one getsX = R*and!' = R%, soX' = {0}. In this case, Nahm
transform reduces to the ADHM-transform. The other examples of Nahm transform
in the literature for dilerent subgroups of R* are as follows. For! = Z#, staring
from an ASD-connection on the four-dimensional torusX = T#, its transform is an
ASD-connection on the dual torus X' = (T4)', see P. Braam and P. van Baal 7],
S. Donaldson and P. Kronheimer 12] and H. Schenck P5]. Notice that [12] also
describes a holomorphic interpretation of this transform, which reproduces MukaiOs
Fourier transform for holomorphic bundles on tori. For X = R3, X' = R one gets a
correspondence between monopoles (solutions of BogomolnyOs equationRot) and
solutions of an ordinary dilerential equation, called NahmOs equation, on the open
interval (%1, 1), with bPxed singularity behaviour at the end-points. This was Prst
described by W. Nahm P1], then complemented by others. The caseX = R? &
S, X' = R & S! was treated by S. Cherkis and A. Kapustin [LO]: here, one gets a
correspondence between periodic monopoles dd? & St with logarithmic growth at
inPnity and solutions of HitchinOs equations oR & S with exponential growth at
inbnity. When X = R3& S, X' = S, the correspondence relates calorons (periodic
instantons) on R3& S* and solutions of NahmOs equations on the circle with singularity
in a discrete set of points. This was studied by T. Nye 2] and T. Nye and M. Singer
[23]. In these works invertibility is not yet completely proved; however, J. Hurtubise
and B. Charbonneau recently announced 9] that they completed its proof. In the
caseX = R2& T? the works of M. Jardim [16], [17] and O. Biquard and M. Jardim
[6] establish the transform between doubly-periodic instantons (ASD-connections on
R?2 & T?) with bxed behaviour at inbnity, and solutions of HitchinOs equations on

X' = T? with (at most) two simple poles and bxed singularity data. Finally, for
X = R&TS3, B. Charbonneau described a transform from spatially periodic instantons
to singular monopoles onX' = T3 [8]. For more details on the history of these

examples, see the survey paperB] of M. Jardim.

In this work, we are concerned with one of the last cases not treated before, namely
= RZ. In this case, the base manifold isX = R?, and its dual X' is another copy
of the real plane that we shall denote byR?. These are non-compact manifolds, with

compactibcations the Riemann sphere€P ! and EP ' respectively. The reduction of
the original (Yang-Mills) equations can be viewed in two dilerent ways depending on
the complex structure that we choose: they are the equations debning an integrable
connection with harmonic metric, or equivalently, those debning a Higgs bundle with
Hermitian-Einstein metric. Now, it turns out that there are no smooth solutions on the
Riemann sphere of either one of these equations except for the trivial ones (cfL4]).
However, there are solutions with prescribed singularities in some points, and the
solutions of one equation are still in correspondence with those of the other: this is
proved by O. Biquard and Ph. Boalch in [5]. For this correspondence to work, one
needs to have a parabolic structure in the singular locus on both types of objects.
We establish, under some hypotheses on the singularity behaviour, Nahm transform
for parabolic integrable connections (or equivalently, parabolic Higgs bundles) on the

MfMOIRES DE LA SMF 110



INTRODUCTION 9

Riemann sphere. On the other hand, using di'erent techniques, B. Malgrange has
debned in RO] a so-called Fourier-Laplace transform for integrable connections with
singularities on the Riemann sphere, behaving in the same manner on the level of
singularity data as the transform we debne here. One dilerence between these works is,
however, the transformation of a parabolic structure and an adapted harmonic metric
at the singularities in our case; for details, see Sectiot.3. The author has proved that
Nahm transform for parabolic integrable connections is the natural generalisation of
Fourier-Laplace transform to the parabolic case, see?[7].

The construction follows the main ideas of other Nahm transforms found in liter-
ature. Namely, in Section 2.1 we debne positive and negative spinor bundleS* over
CP1, as well as a Dirac operator

#:8"" Eu S ' E.
We thenlet! " @! P be a parameter, where® is the singular locus of the transformed
objects, and for all! twist the operator # by some Rat connection to obtain a family of
operators# . In Section 2.2 we prove that the kernel of these twisted operators vanish
and that the cokernels form a bnite-dimensional space. Furthermore, this dimension is
independent of! ; we then debne the transformed vector bundlé® on @ as the vector
bundle with Pber over! given by coKer# ). In Section 2.3 we carry out an analog of
L2-Hodge theory of a compact KShlerian manifold in this case; namely we establish an
isomorphism between this cokernel and the Prsk 2-cohomology of an elliptic complex,
as well as harmonicl-forms with respect to the Laplacian of the Dirac operator. We
then go on to debne the transformed 3at bundle and the transformed Hermitian metric
in Section 3.1, and we extend the Rat bundle over the singularities B so debning the
transformed parabolic integrable connection D in Sectio3.2. The transformed metric
is then shown to be Hermitian-Einstein in Section4.2. Next, in Section 4.3 we give a
completely explicit description of the bbers of the transformed bundle, brst in terms
of hypercohomology of a sheaf map, then in terms of the corresponding spectral set.
Then come the constructions of the extensions of the transformed Higgs bundle to
the singular points (Section4.4). This allows us to deduce the singularity data of the
transformed Higgs bundle in Sections4.5 and 4.6, and we complete the transform
by computing the topology of the transformed Higgs bundle in Section4.7. Finally,
Chapter 5 deals with the involutivity property of the transform.
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CHAPTER 1

NOTATIONS AND STATEMENT OF THE RESULTS

1.1. Integrable connection point of view

Let C be the complex line, with its natural holomorphic coordinate z = x + iy and
Euclidean metric |dz|?; and let CP ! be the complex projective line. LetE $ CP ! be
a rank r holomorphic vector bundle on the Riemann sphere, and be a meromorphic
integrable connection on it, with Prst order or logarithmic singularities at the points
of a bnite set{ps1,...,pn} = P ( C and a second order singularity at inbnity. In other

of E, D is of the form DI + b whereb is a holomorphic 1-form on the disk and

. Al
I =
(1.0 D d+ Z%p dz) .

We suppose furthermore thatAl is diagonal:
0

%

i
prJ +1

>
1
et

W
itis called the residue of D at pj, and 1* r%r; * r is the rank of Al . For convenience,
we put gy = 44& pl =0, so that Al = diag( W )k=1,.r - We will often make use of
the holomorphic local decomposition
(1.2) Ej = Elj’eg + Ejsing'
into the regular and singular components of E near p;; here by dePnition Eieg is
the holomorphic subbundle ofE! = E|y p, ») spanned by{%}k=1..r,, and Ef is

the one spanned by{o/ig}kzrJ +1 ...r - Intrinsically, EjSing is the sum of the generalised

eigenspaces corresponding to all eigenvalues converging to inbnity of the integrable
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12 CHAPTER 1. NOTATIONS AND STATEMENT OF THE RESULTS

connection, whereasE£eg is the sum of the generalised eigenspaces corresponding to
the eigenvalues that remain bounded.

In a similar manner, at inbPnity D is supposed to be equal (up to a holomor-
phic term) to a meromorphic local model having asecond order pole so that in a
holomorphic basis{% }«-1,.r on adiskC! "(0 ,R) corresponding to a standard
neighbourhood of inbnity in CP 1, it is of the form D = D* + b* whereb® is now a
holomorphic 1-form in the given neighborhood of inPnity, and

)
(1.3) D* =d+ A+% dz)

is the second order model with diagonal leading term

't

i
#
i
Z !
#
4
A=#
#
#
#
:
¢
Lo
and residue " , %
" H1
C=#% §
Ty
Here{!|}|“:!1 are the distinct eigenvalues ofA. Each !, appears in neighbouring posi-
tions k =1+ a,...,a+1, in particular its multiplicity is m; = a+; %a,. Of course,

we must then havea; = 0 and a,'+1 = r. In line with the above notation, we set
r =0 and C =diag(Mf )k=1..r . Furthermore, we will write

A =diag({!/,m})i=1,..n:

for the diagonal matrix A as given above, meaning thatA is diagonal with m; neigh-
bouring eigenvalues equal td .

Definition 1.1 . D The integrable connections having singularities near the points
of P, {} as described above will be calletheromorphic integrable connections
with logarithmic singularities in P and a second-order singularity at inbnity, or for
simplicity meromorphic integrable connectionsalthough they are by far not all the
meromorphic integrable connections.
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1.2. THE TRANSFORM OF THE INTEGRABLE CONNECTION 13

1.2. The transform of the meromorphic integrable connection

Let (E,D) be a stable vector bundle with a meromorphic integrable connection
on the sphere. Our aim in this paper is to dePne another complex bundl& with a
meromorphic connection® on the sphere out of(E, D ), which we call the transformed
meromorphic integrable connection Just as the initial connection, the transformed one
will also admit a Pnite number of simple poles in points of the line and a second-order
pole at inPnity.

In order to debne the transformed vector bundle®, brst we need to set some
notation. Let @ be another copy of C. (The importance of distinguishing the two
copies ofC is to help us avoid confusions.) For a parameter " @, consider the
following deformation of D:

(1.4) D" = D %!dz),

where! : E $ E stands for multiplication by !. Since we only change the(1, 0)-
part of D, and by an endomorphism that is independent ofz, this is then another
meromorphic integrable connection, with the same underlying holomorphic bundle as
for D. Furthermore, its unitary and self-adjoint parts are given by

! LY
(1.5) D/ =D" %édz+ édn
. ! |7}
(1.6) #int = g % 5dz % 5.

Consider the following family in ! of elliptic complexes Qm overC! P:

Dinl Dlmt
(1.7) $°" E %98 $'' E %98 $2' E.
Fix a Hermitian metric h on E for which the holomorphic sections of the extension at
the singularities are bounded (above and below) by a positive constant, and denote
by E’[‘”‘ the Prst L2-cohomology of the complex {.7) for this metric. In Theorems 2.6

and 2.21we show that there exists a bnite sef® ( @ such that for ! * @! P the brst

L2-cohomologies of this complex are Pnite-dimensional of the same dimension for all
|

Definition 1.2 . B The transformed vector bundle B is then the vector bundle over
© ! P whose bber ovet " ! B is the prstL2-cohomologyL?H(D") of CG™.

Let!o" @1 B, andletf(z) " B, be a class in the Prst cohomology oG .
Definition 1.3 . B The transformed Rat connection® is by dePnition the Rat con-

nection whose parallel sectiorf (!;z) extendingf in some neighbourhood of is given
by the brstL2-cohomology classes inC™" of

" 102t (z).

SOCIfTf MATHfMATIQUE DE FRANCE 2007



14 CHAPTER 1. NOTATIONS AND STATEMENT OF THE RESULTS

Finally, h induces a natural Hermitian metric A on B as follows: in Theorem2.21
we show that any class inL?H (D) can be represented by a unique harmonié-form
with respect to the Laplacian of the Dirac operator.

Definition 1.4 . B The transformed Hermitian metric A on B is debned by the.2-
norm of harmonic representatives.

All this will be explained in more detail in Section 3.1 and in DepPnition 3.1

When one considers an integrable connection, there exists sometimes a privileged
Pber metric on the bundle, namely a harmonic one. In order to be able to debne
harmonicity, decompose as usuaD into its unitary and self-adjoint part

(1.8) D=D"+#,

put . 5+ orsimply . * for the covariant derivative associated to the connectionD™*
(so that . *t makes sense for a tensor of arbitrary type (TCP)P' (T'cp?l)a:
E'' (E')®) and denote by (. *);, the adjoint operator of . * with respect to h.

Definition 1.5 . B The Hermitian metric h is called harmonic, if it satispes the equa-
tion

(1.9) (. D#=0.

This is a second-order non-linear partial dilerential equation in h.
Here is the main result of this thesis in a special case (the one without parabolic
structures, see Debnitionl.8).

Theorem 1.6 . b Let (E,D, h) be any meromorphic integrable connection with loga-
rithmic singularities in P as in (1.1), and a double pole {.3) at inbnity, endowed
with a harmonic metric h. Suppose that the eigenvalues of the polar part @ in the
punctures satisfy the following assumptions:

(1) for bxedj "{ 1,...,n}, the complex numbersp{( for k=r;+1,...,r are all
dilerent, and / pL 1z

(2) for bxedl "{ 1,...,n%, the complex numbersuf for k =1+ a,..., a5 are
all diterent, and / pff 7 Z

Then the set of punctures® " @ of the transformed bundle is the sef!s,...,! '} of
distinct eigenvalues of the leading order termA of D at inbnity. For ! I' B, the brst
L2-cohomologies of {.7) are bnite dimensional vector spaces of the same dimension.
They match up to dePne a smooth vector bund® of rank

*Nn
(1.10) = (r%r;)

j=1
over @1 P. © is a Rat connection on B. It underlies a meromorphic integrable
connection (that we continue to denote(E, ®)) of degree deg(®) = deg(E), called
the transformed meromorphic connection It has logarithmic singularities in ® and
a double pole at inbnity. The non-vanishing eigenvalues of the residue In " B are
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1.3. PARABOLIC STRUCTURE AND ADAPTED HARMONIC METRIC 15

{9%uf, aree ,%u§|+l }. The eigenvalues of the second-order term of the transformed
meromorphic connection are {%py, ..., %p,}, the multiplicity of %, being (r %r;);
the eigenvalues of its residue at inPnity on the eigenspace of the second-order term
corresponding to %p; are {%p‘rj 410+, %W}, Finally, R is harmonic for .

Remark 1.7 . B The assumptions (1) and (2) of the theorem are clearly generic in
the parameter space of all possible eigenvalues.

This theorem actually follows from the more general statementl1.17. In order to
understand the more general setup, one needs to consider meromorphic connections
endowed with a parabolic structure.

1.3. Parabolic structure and adapted harmonic metric

We can suppose more structure on the integrable connection: namely, that it comes
with a parabolic structure on P and at inpPnity.

Definition 1.8 . D A parabolic structure on (E, D) is the data of a strictly decreasing
bltration by vector subspaces

Ep = FoEp 0 F]_Ep Oaaa OFbp" 1Ep 0 Fbp Ep = {0}
(Where1* b, * r) of the PberE of E in each singular pointp™ P ,{-} , called the
parabolic Bag such that eachFr, is spanned by some of the restriction % (p)} k-,

of the holomorphic basis to the singularityp = p; or - , together with a sequence of
corresponding real numbers

0* & <aaa & <1
called the parabolic weights.

Remark 1.9 . b All parabolic weights can be assigned a natural multiplicity, namely
the dimension of the corresponding graded of the Pltration: more precisely, the multi-
plicity of &fj forany p" P,{-} andanyk"{1,...,} is by dePnition

dlm(Fk 1Ep/F Kk Ep).

We will write

0* & *4a4a*8& <1
for the parabolic weights repeated according to their multiplicities, and use this num-
bering of the weights throughout the whole paper instead of the one in their dePnition.
Moreover, we write & instead of & .

Remark 1.10 . D The order of the % spanning Fn Ex in the above depnition is not
necessarily the same as the one in which the eigenvalues of the second-order term A
at inbPnity appear in one group, as supposed in1.3). However, this will not cause any
confusion in the sequel, because the basis vectors at inbnity in this latter order still
have well-debned parabolic weights (which are then not necessarily increasing).

SOCIfTf MATHfMATIQUE DE FRANCE 2007



16 CHAPTER 1. NOTATIONS AND STATEMENT OF THE RESULTS

Definition 1.11 . B A meromorphic integrable connection(E, D) with described local
models and parabolic structures at the punctures will be callegarabolic integrable
connection The parabolic degreeof E with respect to the given parabolic structure is
the real number

* *r

(111) deqjar(E) = deg(E) + 84(,
jo%{1,..,n, # k=1

wheredeg(E) is the standard (algebraic geometric) degree dE, and the sum is taken
over all parabolic weights for all puncturesp. The slope of the parabolic integrable
connection is the real number

d E
(112) fpar (E) = 2% (E)

rk(E)

and (E,D) is said to be parabolically stable (resp. semi-stablg if for any subbundle
F invariant with respect to D and endowed with the induced parabolic structure over
the singularities, the inequality

(1.13) Hpar (F) < M par (E)

(respectively ppar (F) * Hpar (E)) holds. Finally, (E,D) is said to be parabolically
polystable if it is a direct sum of parabolically stable bundles that are all invariant by
D and of the same slope a&.

Remark 1.12 . B The notions of stability, semi-stability and polystability make sense
for meromorphic connections without a parabolic structure as well: in the correspond-
ing debnitions, one only needs to set all parabolic weights equal @ Notice however

that by the residue theorem we have
*

degE) = %/ tr (Res(D, - )) % ! tr (Res(D, p;))
j%{1,...,n}
*r * *r .
= T % I W,
k=1 j %{1,..,n } k=1

(the change of sign coming from the fact that the eigenvalues of the residue at inPnity
are % because in the local coordinatev = 1/z we have @/z = %dw/w .) Therefore
(1.11) is in fact equal to

*xr * *r * *r

(& + 1 pg)+ (& %/ ) = N

k=1 j %{1,...,n } k=1 j%{1,...n, #} k=1
where'l'( are the parabolic weights of the local system gty (Proposition 11.1, [4]).
On the other hand, the parabolic degree of an integrable connection is always equal
to O: this follows from the Gauss-Chern formula 2.9 of 3]. Therefore, the case where
the parabolic weights&, of the integrable connection vanish is not the one where
the parabolic weights' k of the representation of the fundamental group vanish, and

MfMOIRES DE LA SMF 110



1.3. PARABOLIC STRUCTURE AND ADAPTED HARMONIC METRIC 17

where by Remark 8.2 of[5] stability reduces to irreducibility of the corresponding
representation.

Definition 1.13 . B A Hermitian Pber metric h on E is said to be adapted to the
parabolic structure if near the logarithmic punctures in the holomorphic base$} it is
mutually bounded with the diagonal model

(1.14) diag(|z %p; [ )jc-1
and at inbnity in the holomorphic basis9 it is mutually bounded with

(1.15) diag(lz|" % )iz, -

Remark 1.14 . B In general, without the hypothesis of semi-simplicity of the residue
in the punctures made in Sectionl.1, the local models of the metric near the punctures
are more complicated than in the above dePnition: e.g. for the regular singularities one
has to take into account an extra pltration induced by the nilpotent part of the residue,
and add a factor|In(r)|¥ on the correspondingk-th graded, see the Synopsis dR6].

Here is the important existence result of the theory:

Theorem 1.15 (Thm 1.1, [24]; Section 9, p]). P Let (E, D) be a parabolically stable
parabolic integrable connection. Then there exists a unique harmonic Hermitian metric
h adapted to the parabolic structure.

Remark 1.16 . B Actually, in the above articles this theorem is proved to hold for
parabolic integrable connections having poles of arbitrary order in the punctures. On
the other hand, for integrable connections with only regular singularities, it had already
been shown by C. Simpson, sg@6].

We are now ready to describe the more general version of Nahm transform: that
for parabolic integrable connections.

Theorem 1.17 . BLet (E,D) be any parabolic integrable connection on the sphere
with logarithmic singularities in P as in (1.1), and a double pole {.3) at inPnity.
Suppose that the eigenvalues of its polar parts and the parabolic weights& in the
punctures satisfy the following assumptions:

(1) for bxedj " { 1,...,n}, the complex numbers, %&, for k = r; +1,...,r
are distinct and dilerent from 0, the parabolic weights&{( fork=1,...,r; are 0 and
Pnally / pL T Zfork=r; +1,...,r

(2) for bxedl "{ 1,...,n%, the complex numbergyf %& for k =1+ a,...,a.
are distinct and dilerent from 0, and / pf} 7 Z
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18 CHAPTER 1. NOTATIONS AND STATEMENT OF THE RESULTS

Then, in addition to the conclusions of Theorem1.6, the transformed bundle(®, )
carries a natural parabolic structure in the punctures (that we will call transformed
parabolic structure), such that the transformed metric of the harmonic metric is
adapted to it. Moreover, the set of its non-vanishing parabolic weights i, " ®
is equal to the set of parabolic weight§&, agre &;ﬁ ., } of E atinpnity, restricted to
the eigenspace ofA corresponding to the eigenvalué,; whereas the parabolic weights
of B at inbnity restricted to the eigenspace of the second-order term d® correspond-
ing to the eigenvalue%p; are equal to the parabolic weightg 84j +10--,8} of E at
p; . All these statements are to be understood with multiplicities.

Remark 1.18 . B Again, the conditions (1) and (2) of the theorem are generic in the
parameter space of all possible eigenvalues and parabolic weights. They will regularly
appear along this paper, both in analytical and geometric arguments.

This theorem is a consequence of Theorerh.32

Definition 1.19 . B The map
(1.16) N: (E,D) #%$(B, D)

described in Theoremsl1.6 and 1.17 will be called Nahm transform.

Finally, as we have already mentioned, Nahm transform has an involutibility prop-
erty:

Theorem 1.20 . D Let (E,D) be a parabolic integrable connection on the sphere sat-
isfying the assumptions of Theoreml.17. Then

N?(E,D) = (%1)' (E,D),

where%l : C $ C is the mapz #$ %z, and (%l)' the induced map on bber bundles
with connection. In particular, Nahm transform is invertible.

This will be proved in Theorem 5.1, using arguments of the same type as Theorem
3.2.17 of S. Donaldson and P. Kronheimer inJ2], namely the study of the spectral
sequence of a suitable double complex.

1.4. Local model for parabolic integrable connections

We suppose in this section that near each singularity,h coincides with the diag-
onal models hi and h* given in Debnition 1.13 (that is, without the extra O(|z %
p [2#" %)) and O(|z|" 2% " #¢)) factors in (1.14) and (1.15); in particular, this
metric is then not harmonic). For computations, it will be useful to express the local
models of the integrable connection near the singularities in some orthonormal bases.
As in Section 1 of p], we consider the orthonormal basis debned by

i

(1.17) d = |z H ISy k=1,...,r
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1.4. LOCAL MODEL FOR PARABOLIC INTEGRABLE CONNECTIONS 19

around p; . The h-unitary part (D*)' of D! becomes

(1.18) (D*) = d+ i/ (Al)d(

polar coordinates aroundp; such that we havez %p; = re’® . For the self-adjoint part
#1 of D! in this basis we get:

j ! .
_ Al dz +(A) dp &Jdr

#] - 0
2 z%p; 2 %W

(1.19) =/ (Aj)%&j]dr—r % 1(A)d(,

model for the operator D in polar coordinates is

(1.20) D) = d+iAld( +[/ (AJ’)%&J]%r.
In an analogous way, in the orthonormal basis(€] },_,  given by
(1.21) e = |z 18 exp[(tz %9 B/ 2%

near inbnity the unitary part of the model connection D¥ is given by

(D*)* =d+ i/ (C)d(,
where we have put agair/ (C) = C+zc# = diag(/ 4f )k=1,.r andz = re’®. Moreover,
putting / (zA) = diag/ ({z!i,m})i=1,.n' and 1(zA) = diag1 ({z!;,m})i=1 .n:, the
self-adjoint part of D has the form

1( ) 1( V)

#* =2 A+ S el A S g
2 z 2 2} r

(1.22) =[/ (zA+ C)+ & ]O:l + 1(zA + C)d(

(the inversion of the sign of & comes from the fact that if we make a coordinate
changew = 1/z, |w| = ) = 1/r = 1/]z|, then d)/) = %dr/r ). Remark that in
these expressions the terms in @ dr/r, dz/z, de/ are of lower order then the ones in
dz,dm, zdr/r,z d(; hence the leading order term of the singular part ofD in this basis
is just

|

(1.23) d+ %dz+ %dm.
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1.5. Higgs bundle point of view

The idea of the proofs of Theoremsl.6 and 1.17 will be to exploit the correspon-
dence known as nonabelian Hodge theory between parabolic integrable connections
on one side and parabolic Higgs bundles on the other side. Let us recall the debnition
of the latter notion:

Definition 1.21 . B A parabolic Higgs bundleis given by:

(1) a holomorphic bundle E with holomorphic structure #E over CP ! called the
holomorphic bundle underlying the Higgs bundle and with underlying smooth vector
bundleV;

(2) in each pointp"” P ,{-} a strictly decreasing parabolic Rag

for somel1l* ¢, * r, with parabolic weights
0* =h < 444 =R < 1;

(3) a #Emeromorphic section ( " $1°(CP 1 End(V)) (called the Higgs Peld,
having a simple pole at the points oP with semi-simple residue respecting the parabolic
RBag (that is, such that Res((,p;) leavesFyV,, invariant for each p; " P and all
0* k* c), and a second-order pole at inbnity, such that there exists a holomorphic

basis of Enear inbnity compatible with the parabolic structure in which the residue
and second-order term are both diagonal.

Again, we write
o* *P*ga4a**P<1
for the parabolic weights repeated according to their multiplicities
dim(Fi 1Vp/F «Vp),
and we shorten* ? to *{(. Finally, we set
(1.24) D= #E+ (|
that we call the D *2operator associated to the Higgs bundle.
The notions of parabolic degree, slope and (poly/semi-)stability of parabolic Higgs

bundles are debned analogously to the case of integrable connections, see Debni-
tion 1.11 O. Biquard and Ph. Boalch in 2004 showed the following.

Theorem 1.22 (Theorem 6.1, B]). B There exists an isomorphism between the mod-
uli space of parabolically stable rank- s with bxed diagonal polar part and parabolic

structures up to complex holomorphic gauge transformations respecting the parabolic
Rags, and the moduli space of parabolically stable rank Higgs bundles with bxed

diagonal polar part and parabolic structures up to complex holomorphic gauge trans-
formations respecting the parabolic 3ags.
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Remark 1.23 . B Actually, this is a consequence of the existence of a harmonic metric
(Theorem 1.15), and hence also proved for parabolic integrable connections with poles
of arbitrary bxed order and diagonal polar part in the punctures and parabolic Higgs
bundles with poles of the same order with diagonal polar part.

The transition from integrable connections to Higgs bundles is given as follows:
prst, the underlying smooth vector bundle of the integrable connection and the Higgs
bundle are the same. Furthermore, supposd is the harmonic metric, consider the
decomposition (1.8) of the integrable connection into its unitary and self-adjoint part,
and decompose the terms further according to bidegree

(1.25) D* =(D*)*+(D")%!
#=# 10+ 0L,
The partial connection (D*)%* debnes then the holomorphic structure ofE and # %0

will be the Higgs beld (. The D*%operator is of course(D*)%! + # 1.0, Harmonicity
of the metric implies that ( is holomorphic.

The transition in the other direction is also established using a privileged metric.

Definition 1.24 . DLet (E() be a Higgs bundle. We say thah is a Hermitian-
Einstein metric for (E() if, denoting by D; the Chern connection (the uniqueh-
unitary connection compatible with #5, by Fo : its curvature, and by (}, the adjoint
of ( with respect to h, then these objects satlsfy the real Hitchin equation

For +1((h]=

where][.,.] stands for graded commutator of forms.

Let (E () be a parabolically stable parabolic Higgs bundle. By Section 9 ofg],
there exists a unique Hermitian-Einstein metric h adapted to the parabolic structure.
The connection

(1.26) D =Dy +((+ ()

on V is then integrable, and h is the corresponding harmonic metric adapted to the
parabolic structure. In what follows, in order to simplify notations, we are often going
to omit the subscript h in the notation of the Chern connection and adjoints.

Let now (E, D) be a parabolically stable parabolic integrable connection and E ()
the associated parabolic Higgs bundle. One important application of the WeitzenbSck
formula for connections we will be constantly using is the following

Theorem 1.25 (Thm. 5.4, [4]). B Suppose the metrich is harmonic. Then, with the
previous notations, the Laplace operators' p = DD' + D'D and" p» = D®D%' +
(D' D% satisfy

=2" po.
In particular, their domain and kernel coincide.
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1.6. Local model for Higgs bundles

In this section, we give the eigenvalues of the residue of the Higgs Peld and the
parabolic weights of the Higgs bundle in the punctures that correspond to those
of the integrable connection via the Theorem1.22 To obtain local models for the
operators in this setup, suppose again that neaip; the metric h coincides with the
diagonal modelhi given by (1.14 (without the correcting O(|z %p; |2*" #i)) term;
in particular, it does not satisfy HitchinOs equation). Then, according to formulae
(1.7)-(1.11) of [5], in the local #&holomorphic trivialisation
&

(1.27) +o= |z%p | M —*
‘ U 2% M

around p; , the Higgs Peld is equal up to a perturbation term to the model Higgs beld
given by

(= Al %&  dz
C 2 z%p :
: Wl %& dz
=d
- 2 z%p k=1 ,.r
( i dz )
1.28 =diag "} —— ,
( ) J kZ%pi k=1 ,.r

where we have put'} = (%8 )/ 2. Moreover, in the same trivialisation, the parabolic
weights are

(1.29) b= 1 () %l (W1,

where [.] denotes integer part.

Remark 1.26 . D In fact, this formula is not completely correct, because théL debned
by it are not necessarily in increasing order, although they should be by debnition. One
should instead write the same formula fof 'S(k), wheres is a permutation of {1,...,r}.
However, in the sequel we discard this minor technical detail for the sake of simplicity
of the notation.

Remark 1.27 . D Since the gauge transformations between the bas{a%l}kzl _____
{+}x=1,.r are just multiplications by some functions (in particular diagonal matri-
ces), it follows that the smooth subbundle spanned by the sectio{m‘f(}k:rj 1,0 IS
smooth vector bundle oiE‘sing; and similarly, the subbundle spanned b+, }x=1 ... r
is equal to the underlying smooth bundle oEieg. The same remark also holds for the
bases{ €.} instead of {+.}. In particular, the residue of the model Higgs Peld! in
the point p; " P belongs toEnd(Eq o, )-

S
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1.6. LOCAL MODEL FOR HIGGS BUNDLES 23

Near inbnity, the situation is slightly dilerent: for h = h* the diagonal model, in
the local #&holomorphic frame

(1.30) o=z el g (k=1,...,r)
the Higgs Peld is equal up to a perturbation term to the model Higgs beld given by
# 0 #
(" = Ladz s W %& dz
2 z )
1. 1. .
(1.31) = édlag({!|,m|})|:1 ..... ntt Edlag( k Jk=1,.r 04z,

where we have put again'{ = (pf %& )/ 2, with parabolic weights being, as in the
case of simple poles,

(1.32) =) %l ()]
From these data, as above, one can form the modd *3operator
(1.33) (D% =#5+(  ("{1..n}).

Notice that since we considered holomorphic trivialisations of B, the partial connec-
tion part of the model coincides with the usual #-operator.

We are now ready to write out the assumptions made in Theoreml1.17 on the
parameters of the integrable connection, translated to those of the Higgs bundle:

Hypothesis 1.28 . D We suppose that( E () is a parabolically stable Higgs bundle
with diagonal polar part of the Higgs Peld in some local holomorphic frame near each
puncture, satisfying the properties

(1) for bxedj "{ 1,...,n} the residues"jk fork"{rj+1,...,r} are non-vanishing
and distinct, "} vanish fork =1,...,r; and bnally*! £0 if and only if "1 £0;

(2) for bxedl " { 1,...,n% the complex numbers'} for k"{ 1+ a,...a.} are
non-vanishing and distinct, and*{ 0.

Diagonality of the polar parts has already been assumed when writing the local
models (1.28) and (1.31). The brst condition says that no parabolic weight and no
eigenvalue of the residue of vanishes on the singular component at any singularity,
and that on the singular component near a puncture all eigenvalues are dilerent;
whereas the eigenvalues of the residue and parabolic weights vanish on the regular
component. One more way to say the same thing is: for afj "{ 1,...n}, the residue
of ( debPnes an automorphism oiE'Smg|pj , and the parabolic weights corresponding
to the holomorphic trivialisation ( 1.27) are non-vanishing exactly on this subspace.
The second one imposes that on the eigenspace corresponding to a bxed eigenvalue of
the second-order term at inbnity, all the eigenvalues of the residue be non-vanishing
and distinct, furthermore that no parabolic weight vanish at inPnity. Note that these
conditions are generic among all possible choices of singularity parameters.
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1.7. The transformation of the Higgs bundle

Let (E () be a parabolic Higgs bundle and! " @! P a parameter. The natural
deformation of the Higgs beld is

!
(1.34) (= (%502

with Pxed underlying holomorphic bundle E Itis clear that (, is then also holomorphic
with respect to #E with the same local models at the logarithmic punctures ag, but
its local model near inPnity is dilerent. If moreover a Hermitian metric is Pxed, then
we also have &

(= %'Edz.

Therefore, the integrable connection corresponding to the deformed Higgs bundle is
given by

! L2
(1.35) DM =D % 5z % 5 dp,
and the crucial observation is that via the unitary gauge transformation
(1.36) exp[(Pe%!z)/ 2]

on C this is equivalent to the deformation (1.4). The self-dual part of this deformation
is

| 14}
(1.37) #H =4 %'Edz%'édn,

the same deformation as in L.6). Therefore it will not make any confusion to re-
fer to #, without mentioning the adopted point of view; consequently, we drop the
corresponding upper indices. The connection debned byl1(35 is still Rat, but the
underlying holomorphic structure is dilerent from the one of D (because of the term
in dB). Notice also that the gauge transformation (1.36) between these deformations
has an exponential singularity at inPnity. Denote by @ the elliptic complex

(1.38) $0' E 006 $1' E 988 $°' E.

Definition 1.29 . B The smooth vector bundle@ underlying the transformed Higgs
bundle is the vector bundle whose bber ovér® @ ! P s the Prst L2-cohomology

L2HY(C') of C'.

In Proposition 4.2 we prove that these vector spaces indeed debne a Pnite rank
smooth bundle. Furthermore, by Theorem 2.21, any class in L2H1(Cf) admits a
unique D' -harmonic representative.

Definition 1.30 . P The transformed holomorphic structure on ¥ is the one induced
by the orthogonal projection#E of the trivial partial connection with respect to the

1
variable ! on the trivial L2-bundle over&P " to D -harmonic 1-forms. The trans-
formed Higgs Pbeldis multiplication by %zd!/ 2 followed by projection onto harmonic
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1-forms. Finally, the transformed Hermitian metric is the L2-metric of the harmonic
representative.

By virtue of Theorems 2.21 and 1.25 the transformed smooth bundle¥ can also
be computed in this case as the pbrst cohomology of the elliptic comple(f“sgiven by:

D/ D/
$°' E%6 $'' E WH $7' E,
where the maps are the corresponding deformations of1(24) in the Higgs-bundle
point of view. Explicitly, D®*reads

(D!H)$$= £E4 (.

We use this description of the transformed bundle in Sectiort.2to show the statement
of Theorem 1.6 on the transformed metric:

Theorem 1.31 . D If the original metric is harmonic then the same thing holds for
the transformed metric.

For this purpose, we prove in fact that the candidate Higgs beldQ corresponding
to O and A is meromorphic with respect to the transformed holomorphic structure.

Furthermore, in this interpretation, the remaining part of Theorems 1.6 and 1.17
can be written:

Theorem 1.32 . B Suppose( E () is a parabolic Higgs bundle with logarithmic singu-
larities in the points of P and a double pole at inPnity, as described in Sectiod.5,
such that its singularity parameters satisfy Hypothesisl.28. Then the transformed
Higgs bundle(#% O) is of the same type (that is, it has a Pnite number of logarithmic
singularities in points of @ and a double pole at inbnity, with a parabolic structure in
these points). Furthermore, its topological and singularity parameters are as follows:

(1) the rank of Eis the sum (1.10) of the ranks of the residues of( in P

(2) its degree is the same as that of£

(3) the logarithmic singularities are located in the set®, and for all 1 "{ 1,...,n%
the rank of the transformed Higgs Peld in the point; is equal to the multiplicity m,
of the eigenvalue!| of A

(4) the set of non-vanishing eigenvalues of the residue @ in the point !, is
(%" 4, a,.... %5}, where{"% ,,,...,"%  } are the eigenvalues of the residue of
the original Higgs beld( at inPnity, restricted to the eigenspace ofA corresponding
to the eigenvalue!, )

(5) the non-vanishing parabolic weights ofEin !, is the set of parabolic weights

{*%,4,.....,*4 ., } of EatinPnity, restricted to the same subspace

(6) the eigenvalues of the second-order term @ at inbPnity are {%p1/2, ..., %pn/ 2},
and the multiplicity of %p;/2 is equal to the rankr %r; of the residue of( in p

(7) on the eigenspace corresponding te; / 2 of the second-order term at inPnity,
the eigenvalues of the residue of are
6] Ly 961)
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(8) the parabolic weights on the same eigenspace at inPnity are the parabolic weights
*es-o 1) of Batp

The proof of this theorem is the object of Chapter4.
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CHAPTER 2

ANALYSIS OF THE DIRAC OPERATOR

In this chapter, we study the analytical theory needed for our construction along the
lines of Jardim [17] (Section 3) and others. First, in Section2.1we debne spinor spaces
and Dirac operators that permit us to study the problem. We also debne a suitable
functional spaceH ! and state a Fredholm theorem valid for all deformations of the
initial connection. Then it is natural to debne the bPbers of the transformed bundle as
the cokernel of the deformed Dirac operator. The Fredholm theorem is then proved
in Section 2.2. In Section 2.3, we carry out an identibcation of this cokernel with the
prst L2-cohomologyL2H (D" ) of the complex G™ given in (1.7), similar in vein to
the Hodge isomorphism between the cokernel of the operator d d' on a compact
manifold and the L2-cohomology of the operator d. However, since the manifold we
are working on is non-compact, in proving these results we need a careful study of
the singularities.

In all what follows, we Px a parabolic integrable connection with adapted metric
(E,D,h) and choose to study the analytic properties of the deformation from the
point of view of integrable connections, hence we set for simplicityd, = D" until
further notibcation.

2.1. Statement of the Fredholm theorem

Definition 2.1 . B The positive and negativespinor bundles are the vector bundles
over C! P given by

St=19T(C! P)+!12T'(C! P) s =111'(Cc! P)

Recall that we have debned® as the set{!4,...,!,} of all eigenvalues of the second
order term of D at inPnity.

Definition 2.2 . DFor ! " @ ! P the twisted Dirac operator is the brst-order
di'erential operator

# =D, %D] :%G" ' E)% %G ' E)
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where %is used to denote smooth sections with compact support i@ ! P. Its formal
adjoint

# = D] %D, : %S ' E) % %C" ' E),

is called the adjoint twisted Dirac operator.
Forany ! " @ let us introduce the following norm on sectionsf of S* ' E:
(2.1) A= [P+ TP+ FP
’ C

where . | and #, are dePned in (.5) and (1.6). Here and in all what follows, we
integrate with respect to the Euclidean volume form |dz|?, and |x|?> denotesh(x, x),
unless the contrary is explicitly stated. Our convention is furthermore to write (x,y)
for h(x,y), and for sectionsx and y, we write 3, y4instead of c (X y).

Debne the space of sections

(2.2) HHS™ " E)={f " L{e(S" " E):2f24: <},

where in L2 we refer to the metric h on the bbers. We will often write H} instead of
H(S* ' E). As we will see by the end of this chapter, this is the appropriate space
to regard the Dirac operators. First we establish the simple

Lemma 2.3. D The norm 2.2,;: depends (up to equivalence of norms) neither oh "
@, nor on the particular connection D having behaviour as in (.1) and (1.3).

Proof. B We begin by showing that the norm is independent ofl . In order to simplify
notations, we let H! stand for H} from now on. It is obviously su"cient to prove
that for an arbitrary ! " @, the H{-norm is equivalent to the H*-norm. From the
point-wise identity
o fl=21G 0 fl=21( " fl,

and the point-wise estimation
(2.3) |l TR 20
one sees that for any sectiof = (fgo,f5) " %G* ' E) the estimates

2f 2@1 * (1+8|1%)2f 22,

and
228 % (1+8]!%)2f 27,
hold; the brst statement of the Lemma follows at once.

Now we show independence of the particular connectio® with right singularity
behaviour. Introduce the model norm

(2.4) 2f 24,

g 0Bt T U IRk

Cp")
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around points of P and the model norm

(2.5) 2f2anﬂd 1o R) = If 2+ |(DT)* f|2+ [#7 £
o C! (0 \R)

near inbnity. Then it is su“cient to prove the following:

Claim 2.4 . BIf $> 0is chosen su"ciently small and R > 0 su"ciently large, then
for any smooth sectionf " H! we have

i 52 i 52 j 92
(2.6) 2 200 gy <A 20 0y SC A Zhag iy
and similarly
j 02 j 02 j 02
@7 2 2o ry < A2 crio RY SC A Zacr 0 R)

with some constantsO < ¢ < C independent off .

Proof.  Consider brst the case ofy " P. Decomposef! = fl,, + )

sing COrresponding
to the splitting ( 1.2). Write also

. *rj . .

(2.8) flg= e,
k=1
*r

(2.9) fl = e

sing
k= rj +1

with respect to the orthonormal basis {eL} introduced in (1.17), where the ’k are
functions. Formulas (1.18 and (1.19 and Hypothesis 1.28 imply that ( 2.4) is equiv-
alent to the weighted Sobolev space of sections satisfying
*j - ) )
(2.10) |, & l?+ 1d, L2
k=1 'Cp.")
2
+1d, 4P < -

*r j
' k
r

+

—_——
—~———

k=rper 1R

where d stands for the trivial connection on functions. Notice that we only add weights
on the singular component. By P6], Theorem 1 it follows thatin "( p;, $) the dilerence
between(D*) and D* is

(2.11) a=or %

for some- > 0, and the same estimation holds for the dilerence betweer#t) and #.
It is then immediate that for any ¢ > 0, the estimation

>c la, |2
'Cp)

SOCIfTf MATHfMATIQUE DE FRANCE 2007



30 CHAPTER 2. ANALYSIS OF THE DIRAC OPERATOR

holds fork = r; +1,...,r and for $ > 0 su"ciently small. We therefore have (2.6) for
fsing. On the other hand, for a function g dePned in"(0 , 1) and for - > 0 bxed, from
the claim in the proof of Theorem 5.4 in b] we have
- + - - 1
IR e |dgl? + lal°
'( p. 1) '( p,1) 10 py I P2/ 2)

Rescaling this inequality to the disk "( pj,$) one easily checks that it implies

$" 2% |r" 1+ 0/b|2

Cpt)

(2.12) *c |dgl* + $ 2 lg?
' pis") 1C Py I Ry 2)

Choosing$ su"ciently small, applying this to Jk fork=1,...,rj, and recalling that
on the regular component(D*) is the trivial connection d and #/ = 0, we obtain
(2.6) for freq as well. This establishes the equivalence of the norrﬁ&Za » and 2.2& 1
around a Pnite singularity. "

Around inbnity, by [5] Lemma 4.6 the dilerence between(D*)* and D* is
bounded above by a term

(2.13) at =o' %

for some- > 0, and again the same holds fo#t#* %#. The equivalence @.7) follows
immediately from the estimation

I |

for any ¢ > 0, wheneverr > R with R su"ciently large. O
This then Pnishes the proof of Lemma2.3 as well. O
From the previous discussion, we bring out as consequence:

Corollary 2.5 . D The Hilbert spaceH(E) is the set of sectionsf " LZ(E) such
that near a logarithmic singularity p;, in the decompositions @.8) and (2.9) we have
k" L2 for k=1,...,r and,i/r, d i " L2 for k = rj +1,...,r; whereas at

inPnity, the coordinates , { of f in the basis (1.21) are L??; equipped with the norm

f12+ 1 f7
Cl(jé pi ") / / 3
*n 1+ - ‘ . *r - ; j;Z 4
+ l2+ 12+ 'k + 12
2 (o T 1d | N IOI"<|5
izt “k=1 'Cp") k=r;+1 'Copa")

The same result holds for sections 0$2' E, coordinates being expressed in the basis
dz) dm
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Proof. B For sections of$°, this follows from Claim 2.4, (2.10) and
[#' f]* KI|f].
We then obtain the case of$2 by duality. O

We now come back to the analysis of the Dirac operator. From the debnitions of
H(S* ' E) and# we see that this latter admits a bounded extension

(2.14) #HHYS"' E)us L*(S ' E).

We are now able to announce the pbrst main result of this chapter:

Theorem 2.6 . B The operator (2.14) is Fredholm; if h is harmonic, its kernel van-
ishes.

Corollary 2.7 . B The bundle over®! B whose bber ovet is the cokernel of @.14)
is a smooth vector bundle.

Proof.  We recall the well-known fact that the index of a continuous family of Fred-
holm operators is constant. On the other hand, if the kernel of a Fredholm operator
vanishes, then its index is equal to the opposite of the dimension of its cokernel. It
then follows immediately from the Fredholm theorem that if the metric is harmonic,
then the dimension of the cokernel of the operato#, is a Pnite constant independent
of 1. Moreover, by standard implicit function theorem arguments in Hilbert space
it follows that the cokernels of these Dirac operators inL?(S" ' E) vary smoothly
with !. O

Therefore, we may set the following.

Definition 2.8 . BThe B of (E,D,h) of a singular with harmonic metric is the
smooth vector bundle ovel@ | P whose bber ovet is the pnite-dimensional vector
space®, = coKer(#) ( L%(S" ' E).

In the remaining of this section, we prove vanishing of the kernel. The proof of the
brst statement of Theorem2.6is left for the next section. For the rest of the discussion
in this section, we drop the index!.

Lemma 2.9. B The subspacesm(#|y1( o)) and Im(#|y1¢ 2)) of L?($ 1) are orthogo-
nal.

Proof. B Let fo " HY($°) and f, = gdz) dB" H($?). Suppose brst thatf, is
smooth and supported on a compact subset o€, and such that near any singularity
pi " P its singular part is supported away from p;. Then in a neighbourhood of any
p; in a holomorphic basisDf ¢ = (d+ a)f for some bounded sectiom” ! *(End(B),
and so we have by partial integration

(2.15) (Dfo,D'f2) =
P

(szo,fg) :0,
C! P

Cc!
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since D is Rat. Therefore, in order to Pnish the proof it is su"cient to show the
following:

Claim 2.10 . D The set of compactly supported smooth sections &" ' E on C with
singular part compactly supported away from any singularity is dense i .

Proof. B It is su"cient to show the statement for $°, the case of$? being analogous.
First we concentrate on inbnity. Let f " H(E), and dePne cut-o! functions)r(r)
supported in [0,2R] and equal to 1 on [0,R], such that ) ¥ is supported in [R, 2R]
with
max|) 3| * 2/R.

Then we need to check that

Jr(r)f %6 f
in HY(E) asR $- . In view of Corollary 2.5, this boils down to the classical calcu-
lations -

2(1%)R(r)f2* If 17
R)r

and

2. "((1%)r(r)f)2* DRI+ K | Tf P2

R)._r) 2R R) r

* K If 12+ K | P
R) r) 2R R)r
where K, K ®are constants independent oR and f .
Next, let us consider a logarithmic singularity p;, and debne cut-o! functions )«
supported in [0, $], equal to 1 on [0, $/2], and such that
$| %
max|)?| * =.
D™ 5
We need to show that
(1 %) )f sing 0/C$ f sing
in HY(E) as$$ 0. One sees that

|) . f sing |2 * |f sing |2 $ 0'
C r<”
sincef s " |2, In the same way,
B Jfsing2 7 f sing |2
DGO e TN
C r r<" r
sincef s"9/r " L2, Finally, we also see that
|. +O“fsing)|2* ];6 |fsing|2+ | +fsing|2
c " 2<r<” r<"
g2
% 16|f SIngl + | + f sing |2
" . r2 .o
| 2<r< r<
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and all of these expressions converge to zero as well. O

Applying the claim to approximate fo and f, in H! by sections with compactly
supported singular component combined with @.15), we immediately get the lemma.
O

Now we can come to vanishing of the kernel ofZ.14): by Lemma 2.9, we have
Ker(#!) = Ker( D, |H e 0)) + Ker(D: |H e 2)),

it is therefore su"cient to prove vanishing of the kernels of D and of D' . By duality, we
only need to treat the case ofD. Harmonicity of the metric implies the WeitzenbSck
formula:

(2.16) M# =) ) HE ) #Y
(see B], Thm 5.4.), which then gives by partial integration and Claim 2.10the identity
(2.17) 24122, = 2D/ 122, + 2#,f 2%,

forany f " H($°). Suppose now thatf is in the kernel of # . Then (2.17) implies
#,f =0, and since#, is an isomorphism near inbnity because of the choice/ B, we
also have theref = 0. Again by (2.17), f is covariant constant. This gives the result,
since a covariant constant section vanishing on an open set vanishes everywhere.

2.2. Proof of the Fredholm Theorem

A modibcation of the usual gluing argument of Fredholm-type theorems works in
this case as well. One lets ; be a cut-o! function supported in a compact region
R outside a neighbourhood of the singularities, and puts, » = 1 %, 1. Since# is a
non-singular Prst-order elliptic operator in R, elliptic theory of a compact manifold
implies that a parametrix P; exists for # in this region. Next, one considers the
problem in neighbourhoods of the singularities. First, one studies the model operators
# = DI +(DI!)" instead of the Dirac operator itself. There are two dilerent ways of
treating these:

(1) either one extends the functional spaces and the model Dirac operator onto a
natural completion of the neighbourhood, which can be either a conformal cylinder
or a complex line (depending on the form of the metric and the functional spaces),
and debnes a two-sided inverse df on this completion

(2) or one bnds directly a two-sided inverse of# on a small disk around the
singularity, with a boundary condition veribed by any section supported outside a
neighbourhood of the boundary.
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Let us see how these allow to deduce the Fredholm theorem: if we tak® su'ciently
large, then on the support of, , all of these inverses(# )" ! are debned. One then
sets

P:L*S ' E)us HY(S'"' E)

P(u)=, 1P1(, 12u) + 2#) 1 2u),
i

and shows that this operator is a two-sided parametrix of# on all C. This can be
done along classical lines, the only dilerence being that near the singularities we have
inverses of the local models of the operator and not inverses of the operator itself.
Therefore, we proceed as follows: prst, we study the local models of the Dirac operator
around the singularities, and establish the isomorphisms as in1) or in (2). Then we
prove that the elect of passing to the model operators from the global ones at the
singularities only amounts to adding a compact operatorH*(S*' E)$ L?(S ' E),
which then gives the theorem.

2.2.1. Logarithmic singularities. B Let "( p,9 be a small neighbourhood ofp "
P. Up to a change of coordinates, we may supposg = 1. Identify "( p,1)! {p} =
s'&]o, 1] via polar coordinates (r, (). Since the local model {.20) is diagonal in the
basis{e'k}, we see that the model Dirac operator on this disk

# =D %) :($°+3$)" El py % $1 Ely po

splits into the direct sum of its restrictions to the rank-one components generated
by one of the{€,}. Again, we have two cases: pbrstk " { 1,...r;} (regular case) and
secondlyk " { rj +1,...r} (singular case).

In the regular case, by debnition the model Dirac operator on a rank-one component

is just the operator
#=d%d :S*=$%+$29%$ $'=5",
which identiPes to a projection of the real part of the usual Dirac operator on a
product of two disks in C? given by
#oR 390+ $02 o $01.

Since this is known to have an inverse for the Atiyah-Patodi-Singer boundary condi-
tion, the case of the regular part at a Pnite singularity follows.

On the singular component near a bnite singularity, consider again the coordinate
changet = %Inr " R*. The local model of D with respect to t is given by

DI = d+ il d( +[/ i %8l

(see (1.20)). Notice that the rank of S* and thatof S" are both equal to2: we trivialise
them using the unit-norm sections (1,r dr ) d() and (dr,r d() respectively, so that
both S* ' Esng and S’ ' Esng become isomorphic toEsing + Esing @s Hermitian
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bundles. As we have seen in Lemma.3, the spaceH *("( p, 1), Esing) is equal to the

model space of all sections having
+

2!

/
/
I rdrd(< - .

—_—

N
'( p.1)

By conformal invariance of the norm of 1-forms and d = dr/r , this is

6| ’ |2+ |! |27 dtd(< )
Sl* R+
with the norm of the 1-form . , measured with respect to the volume form dd(. This
latter is just the dePnition of the weighted Sobolev spacel_(z)'l(S1 & R™, Esing) With
one derivative in L?and weight 0. In a similar way, the usual L2-space of sections of
Esing ON the disk is identiped with the spaceL? ;(S! & R, Esing) Of L2-sections with
weight %1 on the half cylinder, for

|, |7 rdrd( = l.e " t2dtd(.
I( p.1) Si*x R+

Hence in the trivialisation (dr,rd() of S" , the usual L2-space ofl-forms on the disk
is identibed with the weighted space

L?(S* & R*,Eging *+ Esing)-

Claim 2.11 . D Let (r,() be polar coordinates aroundp = p' as above. Letk " { r +
1,...,r} and

(f,g(rdr) d())" € " C* (" ! {0},S" " Esing)-

Then the value of the model Dirac operato# on this section is
+

Il w8, #e+ipl
B+ “krw*f% 3 r'”kg dr

+
#$+r7|p#kf +#rg%wg rd(

In particular, in the unitary trivialisations (1,r dr) d() and (dr,rd() of S* and S,
the operator

r# = e W

is translation-invariant with respect to the cylindrical coordinate t.

Proof. B This is a direct computation: for f ' e, it follows immediately from (1.20.
For the image ofg(rdr) d()' €, consider Prst the smooth form. dr' €, supported
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in a compact region of" ! {0}; then by the same formula we have
3dr' é,(D) grdr) d()' 4= DI(. dr),g(rdr) d()4
= %3#s + i@,). dr) d(,g(rdr) d()4
= %Fla(#$+ ig). g4

= 73, (# + inl)od

and thus the projection of (DI)" g(rdr) d()" eL on the dr-component is(#g+ iujk)gdr‘
€. The other component is obtained taking a compactly supported smooth form
Ird(" e:

Ird(* €, (D) grdr) d()' €4

DI (/r d(),g(rdr) d()4
8+ o 9

#+ I M %08 /.9
8 + r S ,9

and the formula of the claim follows. It implies that r# is translation-invariant be-
cause#, = Yoth/r . O

By dePnition, the weight 0 is critical for r# if and only if there exists a non-trivial
solution of

e" t#j (Ae" &t+in$ ,Be" &t+in$ (I‘ dr ) d()) =0

with some constantsA,B " C and a constant0 " C such that/ 0 = 0. Turning back
to the coordinate r again, this is equivalent to having

(2.18) r# (Ar&e™ Br&e™ (r dr) d())=0.

By formula (2.3) of [19], if O is not a critical weight, then the translation-invariant
elliptic di'erential operator

e W L3N (S*& R, ST )l L3(ST&RY,S)
is invertible, and thus so is
# o L2Y(S'&RY,SY) % L?,(S'&R*Y,S)
since
e :Liud LY,

is an isomorphism. Therefore, in order to establish the desired isomorphism in the
singular case, we only need to check the weigh is not critical for r# .
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Applying the claim to the equation (2.18), we see thatO is a critical weight if and
only if the system of linear equations

(0+ / H%&)A %i(n+ u)B =0
i(Nn+@)A+(0+ &%/ B =0

has a non-trivial solution (A,B) " C?2 for some0 " C with / 0 = 0 (here we have
omitted indices ] and k of u and & for simplicity). This system has a non-trivial
solution if and only if the determinant formed by the coe"cients is equal to O:

02 %(/ n%&?2%|n+ p|?>=0.

Since/ 0 must be 0, this can only be the case if0 = / W% & = n+ u = 0. By
assumption0 * & < 1, and n is an integer, therefore the only case this can hold is
when & = p =0, which is impossible, since we are looking at the singular component
of the bundle. Therefore, there are no non-trivial solutions to .18), and 0 is not a
critical weight.

2.2.2. Singularity at inPnity. B In this section the importance of the condition!
® will come out; therefore we write out the index! of our operators. A neighbourhood
of inPnity in C! P is given by the complementaryC! "( R) of a large disk aroundO.
A natural choice of completion of this manifold is of courseC, with its standard metric
|dz|2. We choose to study the local model in the orthonormal basigef } dePned in
(1.21). This allows us to think of E as the trivial bundle C" over C! "( R), with
standard hermitian metric on the bbers. By (1.30 this basis (up to a polynomial
scaling factor) is a natural one for the Higgs-bundle point of view, so the deformation
is that considered in (1.35), and the operator D, near inPnity is given (up to terms
of orderr" 1) by

DF = d+ A%”ddz+ (A %!Id)' -

' 2 2

(see (.23), and a natural extension of it to all of C can be given by the same formula.
This implies immediately that

041 I'o,
¢ o A%ld A /o;qddn

#) 5 z 5
and (D )* = . (the trivial connection) on all of C. For a section, " L2%($°)
supported in C! "( R), the condition #,, " L?($°) then automatically holds, and
(Df)*, " L?isequivalentto. , " LZ2. Therefore, on sections of® supported on the

complementary of"( R), the H-norm is equivalent to the usual SobolevL2-norm.

A similar argument shows that for sections of$2, the H*-norm is also equivalent to
the usual L?-norm. Therefore, on all of C, we must consider a natural extension of
these functional spaces, namely.>1(C,$°+ $2). In an analogous manner, orS" we

consider the extensionL?(C,$?) of L2(C! "( R),$1). Therefore, we need to prove
the
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Lemma 2.12. B On C, the Dirac operator
(2.19) # = DI %(Df) L ($°+ $%) B LS

is an isomorphism.

Proof. B Since A is supposed to be diagonal in this basis with eigenvaluey (I =
1,...,n%, we may restrict ourselves to the study of the operatorD* = d+ (!} %
1)/ 2dz + (9 %9/ 2dB. We need the following:

Claim 2.13 . b Denote by" the plain Laplace operator. on forms. Then we have

2
(220 #ewry = w0l 0

Proof. B This is an easy computation. O

Now recall that by the classical theory of the Laplace operator,"+ "2 with "> 0
is an isomorphism

(2.21) L22(C,$)) us L2(C,$)).

This statement can be for example obtained passing to the Fourier transform%|2+ " 2
of this operator.

Coming back to our situation, the condition ! I P means exactly that!, %! £ 0 for
any | =1,...,n% This immediately implies that (2.19 is surjective: indeed, clearly
Im((# )') ( L2Y($°+ $2), and #7 (#} )' is surjective by the isomorphism @.21).
For injectivity, note that a formula similar to ( 2.20) holds for the Laplace operator
#? )'# as well. This in turn implies that the L22-kernel of # vanishes. Elliptic
regularity then shows that the L?-kernel vanishes as well. O

2.2.3. Compact perturbation. b We wish to prove that near each one of the
singularities the elect of passing from the global operator to its local model,i.e.,
subtracting the perturbation term only amounts to a compact operator H*(S*' E) $
L2(S" ' E). This then bnishes the proof of the Fredholm theorem, because the sum
of a Fredholm operator and a Pnite number of compact operators is Fredholm.

Consider brst the case of a singularity at a bnite point. Recall from Lemma2.3
that near p; the spaceH!(S* ' E) is equal to the sum

L2L(S* " Ereg) + L3M(S™ " Esing),

eucl

where L2 is the usual Sobolev space on the disk df2-functions with one derivative

in L2 with respect to Euclidean metric, whereasL(z)'1 is the weighted Sobolev space
debned by +
/
/A
/
Cpry T

E !
b+l 12 1dz)? -
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Also, the order of growth of the 1-form perturbation term & with respect to Euclidean
metric is by (2.11) at most O(r" 1* %, with - > 0. We need to prove that we have
compact Sobolev multiplications for functions on the disk

)
(2.22) Loy B Liw
and
(2.23) L21 g L2,

Consider brst 2.22): since the disk is a compact manifold, for any2 < p < - the
inclusion L2¢, $ L&, is compact. On the other hand,O(r" ** *dr + O(r" ** %rd( is

in L2 for some$ > 0. Choosep such that /2 =1/ (2+ $)+1/p; (2.22) then follows

eucl
immediately from the continuous multiplication L2 & LP , $ L2,,. Now, we come

to (2.23: this is an immediate consequence of teﬁg pre\jiu(glus, for the weighted norm
L5t is stronger then L2, .

Next, let us treat the case of the singularity at inbnity. In the coordinate w =1/z
we have a second-order singularity on the disk(0 ,1/R). Let w = )e' ; by (2.13) the
perturbation is O()" " %9, and the H'-norm of a function , supported near inbnity
is given by

i 6 7 i I
L P+ 1 jdzf? = (B P G
Crio R) 0 arR) )

2,1

ouel» SO We conclude

In particular, in the coordinate w this norm is also stronger thenL
from (2.22.

2.3. L2-cohomology and Hodge theory

In this section we keep on supposing that we have on one side an integrable con-
nection D with singularities in P ,{-} , with prescribed behaviours at these points,
given in regular singularities by (2.11) and at inPnity by (2.13. In Theorem 2.6 we
proved that the deformed operators# are Fredholm between the spacesi! and L?;
in particular their indices agree. We also showed that if the metric is harmonic then
the kernel of the Dirac operator vanishes, hence the index &f; is equal to the opposite
of the dimension of the cokernelCoker(# ), this operator being considered between
functional spaces as in 2.14). This dimension is therefore a constant independent of
I, and it follows from the implicit function theorem that the spaces B, = Coker(# )
debne a bnite-rank smooth vector bundlé® over @ I P, the rank being equal to the
opposite of the index of @.14). Here we wish to interpret this cokernel as the prst
cohomology of the elliptic complex

(2.24) L2$°" E) b LS E) 96 L2($2" E),

(see Theorem?2.16), and also as the space of harmonic sections with respect to the
Laplace operator of the adjoint Dirac operator# (Theorem 2.21).
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Since the operators in @.24) are unbounded, we need to dePne their domains. In
this chapter C¥ stands for smooth sections supported in a compact subset & ! P.

Definition 2.14 . B The maximal domain of D|.: is
Dommax (D[-1) = {u" L2($i) :Du™ L2($i+l )}

where_Du L2 is understood in the sense of currents,.e., the functional v "
C¥ ($'*1) #$ 31, D' v4is continuous in the L?-topology.

By local elliptic regularity, this amounts to the same thing as Du being an L?-
section. When it does not cause any confusion, we will simply writtdDompax ($') for
Dompmax (D |- 1). It is easy to see that if we considerD on its maximal domain, then
the kernel is a closed subspace df?, and the image ofD on $'" ! is contained in the
kernel of D on $'. The image of a general dilerential operator is however not always
a closed subspace of the kernel.

Definition 2.15 . D For i "{ 0,1,2}, the i"" L2-cohomologyof D is Ker(D|-i,g)/
Im(D|-is1.+ ), where both of these operators are considered with maximal domain,
and the operators not shown in 2.24) are trivial. It is denoted by L?H?*(D).

Our aim is to obtain the following:

Theorem 2.16 . B The cokernel of# debned onH(S* ' E) is equal to the brst
L2-cohomology ofD.

Proof. B Recall that by debnition
Coker(#|y:(s+ +£)) = (IM( #ly1(s+ +)))’
(2.25) =(IM( D¢ ov ) 5 (M(D wig 20 e)))

where A+ stands for the L2-orthogonal of the subspaceA ( L2. Therefore, it is
su'cient to prove the following lemmas:

Lemma 2.17. B The maximal domain of
D:L%3$°" E)us L%$!" E)
isHY($°' E). Similarly, the maximal domain of
D' :L%(%$%" E)% L3$'' E)
is HY($2' E). In particular, the maximal domain of
#:L%(ST" E)u$ L*(S ' E)
is HY(S* ' E). Moreover, if this latter space is equipped with the norn2.2,;: debned
in (2.1), then # is a bounded operator fromH(S* ' E) to L3(S" ' E).

Lemma 2.18. B We have
(Im(D! |H1(" 2+ E)))Y = Ker( DlDommax "1+ E))-
Lemma 2.19. D The image of D : H3($°' E)$ L2($!' E) is closed.
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Indeed, Lemmas2.17 and 2.18together with (2.25 imply that the cokernel is equal
to
(IM(D |pom ey ¢ 0+ E)))" 5 Ker(D |pom pa ¢+ 1+ E))s
which in turn is identibPed to the Prst reduced L2-cohomology of @.24), i.e., to

Ker(DlDom max (" 1+ E))/Im(DIDom max (" O+ E))i

where the bar over the image stands for thel?-closure of that space. Lemma2.19
now concludes the proof of Theoren?.16

Proof (Lemma 2.18). B We brst show the

Claim 2.20 . B The adjoint of the unbounded operator

(2.26) D' :L%($2' E)u$ L3S E)
with domain H1($2"' E) is the unbounded operator
(2.27) D:L%($Y E)us L2(%2' E)

with domain Dompa ($1' E).

Proof (Claim) . D It is clear that the formal adjoint of ( 2.26) is (2.27), we only need
to prove its domain is Dommay . By debnition, a sectionu " L?($?') is in the do-
main of the adjoint operator Dom((D')') if and only if for all v" H($?' E) we
have
|3u, D' v4| * K 2v2
with a constant K only depending onu. Now, sincev " H! and u " L?, by
Claim 2.10 we can perform partial integration to the left-hand side of this for-
mula. Therefore, u is in the domain of the adjoint operator if and only if the func-
tional
v #%8$ Du,v4

is bounded inL?($?" E). But this condition is equivalent to Du " L?($2' E), and
the claim follows. O

Lemma 2.18 now directly follows from the claim and the general fact that the
cokernel of an unbounded operator is equal to the kernel of its adjoint. O

Proof (Lemma 2.17). D First we need to prove that for a sectionu of L?($°' E) we
have Du " L2 if and only if both D*u" L? and #u " LZ2. The Oif O direction being
obvious, we concentrate ourselves on the opposite statement, and suppose in what
follows that u is an L2-function with Du " L?2.

We brst study the singularity at inpnity. For |u| su'ciently large, we have the
point-wise estimate

[#ul* 2K ul,

whereK is the maximal modulus of the eigenvalues of the matrixA. Therefore,u " L?
at inPnity implies #u " L? at inbnity, and consequently D*u = Du %#u " L? at
inPnity, and we are done.
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Next, consider the case of a singularity at a Pnite point. In the orthonormal basis
(1.17), the operators we study are equal, up to a perturbation term, to the local
models (see 1.18), (1.19), (1.20)

(D*), =(d+ il Wd(),
#, =10 %) T+ 1pa()

D!, = [d+ i d(+(/ %8 T,

To simplify notation, from now on we drop the indices j and k. Note that because
of Lemma 2.3, it is su"cient to prove that #!, and (D*)!, are in L2. Notice also
that since the perturbation a may mix the regular and singular components, a pri-
ori it is not su"cient to prove for example that , g " L? and D, reg " L2 im-
ply (D), reg " L2, becauseD, " L2 does not imply directly D, e " L2 in the
presence of a mixing perturbation term. However, remark that denoting byair,r the
part of the endomorphism a that takes the regular component into the regular one,
and al,a,,,al ¢ the other parts, we have

|(Dj + aj), |2 = |(Dj + ajr,r ), reg t ajs,r ) singl2
'Cpi") 'Cpy")
(2.28) + |(Dj + ajs,s), sing T aJrs ) regl2
'Copi")
6 |Dj, reg|2+ |Djasing|2
' pj.")

%la] y reglz% |"5\J ’ sing|2,

and this estimate shows that we can treat the two components separately: the left-
hand side is Pnite by hypothesis, whereas the integrals d&/, reg|? and |&, sing|? by
KatoOs inequality and 2.12); hence the same thing holds for the integrals ofD!, req|?
and |DJ, reg/?.

On the regular component, the above expressions simplify td! = (D*)l = .
(the trivial connection), and #! = 0. What we need to show is that, req, D, req " L?
implies . , g " L2, if D = . + d with & = O(r" *%. Recall that by KatoOs
inequality and (2.12) with $ > 0 chosen su"ciently small we have

|aj ) regl2 * D, reg|2 + [, reg|2-
'Cr) 'Cr) 'Copp) Pyt 2)
It follows that _ ) )
|- ’ reg|2 * |D| reg|2 + |aJ ’ reg|2
Cr) 'Cop") Cp)
< 2 |D1 reg|2+2 |1 reglz-
Cr) 'Cr)
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Now by the hypothesis,, D, " L2, the right-hand side is bnite. Therefore. , " L2
as we wished to show.
Consider now the singular case: again, we need to show that if we have a section
, " L?suchthatD, " L2, then D*, sing,#, sing " L2. Here, usual elliptic regularity
does not give the claim, because we need to deduce thatjng/r " L2. From now on,
we write , =, sing to lighten notation. Decompose, into its Fourier-series nearp :
*#H
()= cn(r)em
n="#
Choosing $ su"ciently small, we can make the perturbation term a be smaller on
"( p;,$) then O/r for any 0 > 0. Write brst the d (-term of D/,
*H
Dy, = (#s+ i), d( = id( (n+g@), n(r)e.
n="#

By this and the estimate on the perturbation, we infer that

2Dy + @), 2o p vy 6205 Fa gy RO Zag
" 2 902y lLn (DF
(2.29) = (In + @2 %0%) 02
(P n=rg r
- *H
= (In+/ u? %0% + |L %)
P e

laOF,

By Hypothesis 1.28 we have/ p/ Z, and so if 0 is su"ciently small, then the last
expression can be bounded from below by
- *H

1 ,n(r
(2.30) : un+/uF+|1M)'”(”
' P") n="g
=1 oy e L P
2y

As in the regular case, by @.12) the left-hand side of (2.29) is Pnite, so we see that
(Dg)', " L2 and #}, " L2 The dr-part #}, of#!, isin L? if and only if

- 2
|/ H%&|2M <
' p") r2

Again by our main hypothesis/ p ¥ Z there exists a constantkK > 0 such that

i 2
|/ u0/&|2|1 n(r)l K |n+ / H
n="# n="#

As we have already seen, this last expression is integrable, therefote, " L2. Since
the perturbation is negligible compared to the behaviourO(r" ) of (2.30), we then
also have#, " L2. We conclude usingD*, = D, %#, .
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By duality, the case of a2-form vdz) dmis settled the same way. The general case
(that of S* ' E) then follows from Lemma 2.9. The fact that

# HYS"' E)us L%(S ' E)
is bounded, is then immediate (and has already been pointed out, se@.(L4)). O

Proof (Lemma 2.19). D This is immediate from Theorem 1 and Claim 2.9. O

We have established lemmata2.18 2.19 and 2.17, hence we Pbnished the proof of
Theorem 2.16 O

Theorem 2.21 . B The Prst L2-cohomology of the complex2.24) is canonically iso-
morphic to the kernel of the adjoint Dirac operator

(2.31) # L3S ' E)us L3S E)
on its domain, or alternatively to the kernel of the Laplace operator
(2.32) " = ## = %D D] %D|D, :L%S ' E)%$ LS ' E)

on its domain.

Proof. B By duality, we get from Lemma 2.18 that
(IM(Dln1¢ osg))) = Ker(D' loom e, - 1+ E))s
and this implies
coKer@#HY(S* ' E)) =ker( D' |pom e ¢ 1+ £)) 5 KET(D |pom ey ¢ 1+ E))
= ker(#' |bom (" 1+E))-
It remains to show that this latter is equal to ker(##' |pom ... ¢ 1+£)). It is clear that
Ker(##' [pom va ¢ 1+€)) 7 KET#' |pom ey ¢ 14 E))-
Suppose nowu " L?($ ' E) satisPes##' u = 0. This means that
#u" Ker(#) ( Dommax (#) = HY(S" ' E)

by Lemma 2.17. Vanishing of the L2-kernel of # on H(S* ' E) (cf. Theorem 2.6)
gives# u =0, thatis u" Ker(#), whence

Ker(##' |oom e ¢ 1+ £)) 8 KET# |bom mae ¢ 1+ E))- O
Finally, let us introduce the norm
A2rseagy = IFR+IC ) THR4 @ ) e £
and the corresponding functioncspace
H3S*' E)={f: 2f242s:4g)< -}

Then we have the following.
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Theorem 2.22 . B The domain of the Laplace operator' | = # # is H2(S* ' E). It
debnes a Hilbert-space isomorphism

H2(S* ' E)u$ L%(S" ' E).
Proof. B The fact that " | is a well-debPned bounded operator ol 2(S* ' E) follows
from the WeitzenbSck formula (2.16). Its is the setof u " L?(S*' E) such that#u"
Dommax (# ). This latter is, by computations similar to Lemma 2.17, the Sobolev space
H(S" ' E)is with 1 derivative in L?, and weight %1 on the irregular component near

logarithmic singularities like in Corollary 2.5. We deduce that the maximal domain
of" | isH?(S* ' E), and that it splits as

H2(S*' E) (% HY(S ' E)% L*S"' E).
Exactly as in Theorem 2.6, the brst map is Fredholm with vanishing kernel from the
Sobolev spaceH?(S* ' E) into HY(S" ' E), both space being endowed with the_?-
inner product. This with the identity Im(# ) = Ker(# ) implies that Ker(" )= {0}
and that Im(" ) = Im(#') = Ker(#) = L?(S*' E). Therefore," | is a bounded
bijective operator from H?(S* ' E) to L%(S* ' E). By the closed graph theorem, we
conclude that its inverse is also bounded. O

2.4. Properties of the GreenOs operator

Definition 2.23 . D Let us call the bounded linear inverse oft # provided by Theo-
rem 2.22 the GreenOs operatoof the Dirac-Laplace operator, and denote it by

G :L%S"' E)us H%(S'' E).

In this section we list the properties of this operator that we will need in later
chapters.

Lemma 2.24. B G, is diagonal with respect to the decompositiorS* ' E = ($ '
E)+ ($2' E).

Proof. B Since G, is the inverse of" , it is su"cient to prove the statement for this
latter operator. This comes from the identity
", =## =(D| %D,)(D, %D;)= %D;D, %D,D;,

which is satisbed sinceD, is Rat. O

Lemma 2.25. B There existK, K ®> 0 such that for |! | su"ciently large and for any
positive spinor/ " H(S* ' E), the following estimates hold:

(2.33) 2G1/ 2,50y * KI'I 22 202(c)

(2.34) 2G1/ 21 ey * K12 22
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Proof. B Since by debnition, for any/ the positive spinor G,/ is the solution . of

.=,
the estimates (2.33) and (2.34) can be rewritten respectively as
(2.35) 2. 202y * KI'['22" 1. 202(c)
(2.36) 2. 2410y * KA 12" 1. 200(cy.

Call I-energy of . over all C the quantity

(2.37) EC(C)= | P+ Pldz)A

(]
By partial integration, the Weitzenb3ck formula ( 2.16) and CauchyOs inequality we
have

(2.38) E(';.)= 3, " .40z
C
*2 .22 . 202,

Now, as we will see from 4.46), on the complementary of a Pnite union of disks
" (1), %o|'|" }) we have the point-wise lower bound
(2.39) #0126 P P

for somec > 0. Furthermore, we can choose%, su“ciently small so that the balls
" ('), 2%]!|" 1) are disjoint and do not meet P for |!| large. Setting

Bii= ()%l
q(!) %

we then deduce the estimation

(2.40) [#, ' . *|dz]? 6 ¢! |2 . |7 |dz)?.
C! B, Cc! B,

Of course, extending this inequality over the disks"( g(!),%]!|" ?) is not possible,
since#, has a zero inq(!). However, the integral of [#, ' . |+ |. | . |* does control
|'|? times that of |. |> on the whole plane; that is, we have:

Claim 2.26 . b There exists ¢ > 0 such that for |!| su"ciently large and for any
spinor . we have

(2.41) E(;.)6 ¢! ] . |7 |dz|?

Proof. B By KatoOs inequalityE(!;. ) can be bounded from below by

LI ?+ [d]. |? |dz|>.
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By (2.40), i_t only remains to show that for any q(!) " & this integral bounds from
aboved|! | ool s Y I |2|dz|?, for somec > 0 (not necessarily the same as before).
But since on the annulus

"(a). 2% D (o). Sl )
we already have the estimation @.39), this is just a consequence ofZ%.12) applied at
the point q(!) instead of p; to the function g=|. |, with $= %|!|' tand-=1. O

By the claim and (2.38), we have
P2 2220y ¥ 2. 202(0)2" 1. 2 2(c),

and after dividing both sides by 2. 2, >(¢), we get (2.39).
Plugging (2.35) into ( 2.38), we obtain

(2.42) EC.)* K22 . 282y
On the other hand, by the debnitions

* o= +0/!dz+ 'gdz
S = 02 2

I 4]
#, =# %Edz%édﬂ

we obtain the point-wise bounds

1

N A N L R P PO T

2 2

1

2
and therefore

/ / /2
+./2%g|!|2|. el

<ol v le 2. 12
(2.43) %2. 2210y %@INP+1) 2. 285 oy * E(1. ) * 22 2510y +(21NPHD) 2. 22y
Putting together this with ( 2.42 and (2.35), we get
2. 21c) *2E( )+ 6P +2)2 222 ¢y
2B ) TP 22 )
* (2K +TKA 22" . 20 ey,
whence @.36). O

We now investigate what happens to the GreenOs operator whenis close to one
of the points of P.

Lemma 2.27. B There existK,K *> 0 such that for |! %!,| su"ciently small and for
any positive spinor/ " H(S* ' E), the following estimates hold:

(2.44) 2G,/ 2 K%Y 22 22
(2.45) 2 G,/ 2 * Kol 12 22,

L2(C)

L2(C)
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Proof. B Analogous to Lemma 2.25 Notice that by partial integration and the
WeitzenbSck formula (2.16) one has

2. 20,6)= E(5.)
for any positive spinor . . Using this and setting G,/ = . the inequalities to prove
can be rewritten as
(2.46) 2.202c)* K1 %[ 22" 1. 202
(2.47) E( ) * Kol | 22" . 22, .

The behaviour (4.62) of the Higgs beld shows that outside of a bnite union of disks
"( (1), $ol! %!,|" 1) there existsc > 0 for which we have the point-wise lower bound

(2.48) #0126 ! %! 3. |

It follows that denoting by B, the union of all the above mentioned disks where this
estimate may fail, we have the inequality

(2.49) [#, ' .2 |dz|? 6 c|! %!|? . I?1dz|2.
C! B, C! B,
It is not possible to extend this inequality to the whole plane; however, we have again

Claim 2.28 . B There existsc > 0 such that for |! %!,| su"ciently small and for any
spinor . we have

(2.50) E(;.)6 ¢! %! ] . |? |dz|?

Proof. D Similar to Claim 2.26, using KatoOs inequality and 2.12) rescaled conve-
niently by the homothety w = (! %!,)z. O

This together with (2.38) then shows
ClI %|||22 ZEZ(C) *2. 2L2(C)2" 1. 2|_2(C),
which gives us @.46). Plugging this back into (2.38), we obtain (2.47). O

2.5. Exponential decay results for harmonic spinors

In this section we give some analytic properties of' | -harmonic spinors. They
will be needed in Section3.1, where we study the transformed Rat connection. More
precisely, they will allow us to multiply any L2 harmonic section by exponential factor
so that the result remains in L?. They will also be of use in the computation of the
parabolic weights of the transform in Section4.6.

First we set some further notation. Fix ! " @1 B, and let. be a harmonic negative
spinor with respect to ## andp" C! P any point of the plane. Finally, for any
spinor/ (not necessarily harmonic), call! -energy of/ in the disk"( p, $ the quantity

(2.51) E($1/)= | TP+ #0 P
' p")
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Lemma 2.29. B Suppose that there exist$ > 0, R > 0 and c > 0 such that the disk
"( p,(R+1)%) is disjoint from P, and all of the eigenvalues of, in any point of
this disk are bounded below in absolute value lwy> 0. Under these assumptions, we

have the inequality
<

(2.52) E(p,%.1;.)* e 2R0 22,22, o) +2['7+1)2. 25,

Proof. B Denote by C(p, r) the poundary of "( p,r), and by (% an outward-pointing
unit normal vector to it. StokesO formula gives
- : <
E(p.r!;. )= CO o) E

AR CHRPE

+ O L« (¢
C(pr) o
Since. is " ,-harmonic, the WeitzenbSck formula (2.16) implies that the brst term
on the right-hand side vanishes. Therefore, by the tic-tac-toe inequality, we have

1 1/ /

E(p,r,!;.)* > E/.+./2+c|.|2rd(.
C(p.r)
On the other hand, we have
- / /
| - 2
@) o e P
dr cr)

By assumption, forr * (R + 1) % we have the estimate

[#, " . |Prd( 6 ¢ . |?rd(.
C(p.r) C(pr)
Putting together these estimates, we see that
dE(p,r,!;.) |
—a 6 2cE(p,r,!;.),
whence
' .
dlogE(p,r,!;.) 6 2.
dr

Integrating this inequality from r = $ to r = (R + 1) $, we obtain
logE(p,%,!;. ) * 2% W (R+1)HK]+log E(p,(R+1)%,!;.).
Taking exponential of both sides, we get

E(p%,!5.)* € 2R E(p,(R+1)%,!;.)
* @ 2cR"0E(!;. ),

and we conclude using 2.43). O
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Next, we use the above lemma to obtain exponential decay results in terms df
for the energy of harmonic spinors when! is large, brst in a bxed disk ofC away
from the singularities P, then near inbPnity in C. In the brst case, the statement is as
follows.

Lemma 2.30. BLet p" C! P be arbitrary, and let % > 0 be such that the distance

betweenp and P is at least 3%. Then for |!| su"ciently large we have the estimate
2 Zag proy ¥ € M2 2,

for any " | -harmonic spinor . .

Proof. B Since p is away from P, in the Higgs bPeld(; = ( %!dz/2 the term ( is

bounded on"( p,2%). Therefore, if |!| is su"ciently large, then the eigenvalues of (,

on this disk are bounded below in absolute value by!|/ 4. Apply Lemma 2.29 with
R=1andc=|!|/4to get

y <
E(p.%,!;.) % e M2 22 .22, o)+ Q2112 +1)2 225,
* e o222 22, o)
1 ..
* ?39 0“'/32. Zﬁl(c)
for ! su"ciently large. On the other hand, we have
i / /5
2 Zng proy = LRI T P
!0 po)
; ; 2 2
(2.53) * UL R+ 1
'( p"o)
*33E(p, %.!;. ),
where the last line is a consequence d#, ' . |> 6 |!|?]. |?/16in "( p,%). Putting
together these two estimates, we get the lemma. O

In the second case, we have the following statement.

Lemma 2.31. DFor any ! I' B there existsRy = Ro(!) > 0, K = K(!) > 0 and
c = c(!) > 0 such that for any" ,-harmonic spinor . and all R > R o the following
estimate holds:

2. 2110 2ry ¥ KeTRO2 281,
Furthermore, if |!| is su"ciently large, we can choosec = |!|/3 and Ry, K constants
independent of!.

Proof. B The proof is an amalgam of that of Lemmata 2.29 and 2.30. Debne the
I-energy at inbnity of a spinor by the integral

(2.54) E(- \R!;.)= BRI
crio ,R)y
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ChooseRp > 0 and ¢ such that for |z|] > R the eigenvalues of(, (z) are all bigger
in absolute value thency. Clearly, such a choice is possible becaudd” . Moreover,

for |!| su"ciently large one can put ¢y = |!|/ 4 and Ry a constant only depending on
the initial data (. For r 6 Rp, we have the estimate
- / ],
WE(- 11 ) 6% L0 T gl prac
co,r) Co '
On the other hand, we have
- / /
E(- . 2
dEC .nti) _ g, Do e PrdC
dr c(yr) ’
By assumption, we have also
|#, " . 1°rd( 6 c3 . |?rd(.
c@,r) c@O,r)

Putting together these estimates, we see that for 6 R
dE('éirr'!")*%z%E(- ),
whence
dlog(- ,r!;.)
dr
Integrating this inequality from R to 2R and using (2.43), we obtain

E(- ,2R,!;.)*E(!;.)e Reo
(1P +3)e B2 281 ¢y,

* % 2¢p.

On the other hand,
E(- ,2R,!;.)6 oL

C! 10 ,2R)

6 c5 | 2
C! (0 ,2R)

implies

KoE(- ,2R,1;.)62. 241ci 10 .2r))
for someK > 0. This gives the lemma for! in a Pnite region. The case of!| large
also follows noting that K depends at most polynomially on!. O

Since a" | -harmonic spinor is subharmonic in the usual sense, the above results
also imply point-wise exponential decay on harmonic spinors:

Lemma 2.32. B SupposeR > R ¢. Then there existsK,c > 0 such that for any |z| >
2R +1 and any" | -harmonic spinor . we have

l. ()| * Ke" F°2. 241 ).
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Proof. b Because of the condition|z| > 2R + 1, the disk "( z,1) centered at z of

radius 1 is contained in C ! "(0 ,2R). On the other hand, by subharmonicity of .
with respect to the usual Laplace operator, we have

| (D)™ Ko | (w)ldw|?
I( z,1)
+

- v 1/ 2
* Ky |- (w)[?|dw]?
I( z,1)
t. v 12
* Ky |- (W)[?|dw]?
C! 1(0 ,2R)
We conclude using Lemma2.31 O
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CHAPTER 3

THE TRANSFORM OF THE
INTEGRABLE CONNECTION

In this chapter, we debne the transformed parabolic integrable connection induced
by the deformation D, . First, in Section 3.1, we debne the underlying Rat bundle; then
in Section 3.2 we show that its behaviour at inbnity veribes appropriate asymptotic
conditions. This then allows us to apply the results of p] in order to debne an extension
into a parabolic integrable connection over the singularity at inbnity; the same thing
for other singularities follows from [26].

Before starting these points, we need however to introduce some notation. Recall
brst that P was debned as the sef!y,...,!} of eigenvalues of the second-order
term of D at inbnity. Let 19 $ @ ! P denote the trivial Hilbert bundle with bbers
L2(C,S" ' E). By Theorem 2.21, the transformed bundle © can be given as the vector
bundle whose bber ovet " C ! P is the kernel of the adjoint Dirac operator (# ).
By the same theorem, such an element is als® , -harmonic. Now remark that on the
bundle 19 there exists a hermitian metric 3, .4 which is canonical once a hermitian
metric h(.,.) is bxed onE: for any two elementsfd,fd " 19, = L2(C,S" ' E), itis
debned by theL? inner product

3, 04= ] h(f4, 13)|dz|?.

Moreover, the trivial connection 8 on the bundle 9 is unitary with respect to this
metric. Let & denote orthogonal projection of @, onto the subspace®,, and i the
inclusion @ B 19.

Definition 3.1 . B We call transformed Hermitian metric the Pber metricA on B
which is equal on the Pbe, to the restriction of the above dePned. ? scalar product
3, .4to the subspacd®, ( L%(C,S" ' E).
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3.1. Construction of the transformed Rat connection

In this section we show that the transformed bundle admits an integrable connec-
tion, which is determined only by the deformation D, . First, we describe its intrinsic
construction, then we give it in terms of an explicit formula.

3.1.1. Intrinsic debPnition. B DePning a 3at connection is equivalent to giving a
basis of parallel sections on a dislBy around each point!q " @ ! P. Given this, in
order to see that it dePnes indeed a Rat connection, one only needs to prove that the
transition matrices on By 5 B; between two such bases (corresponding to pointsgy
and !;) are constant.

So supposd " @! P, and let fd(z),...,f(z) be a basis of the vector spacé, .
On the basis of Lemma2.32 for $ = $(!o) > 0 su“ciently small, the expressions

(3.1) Riz)=a e 'R (2) " B
make sense forl on the ball Bo = B(!o,%) of radius $ centered at lo. Tr_!erefore,
(restricting %o if necessary), they dePne an extension of the bas§, ..., f} of the

vector spacel, ; to a trivialisation of the bundle © over By.

Proposition 3.2 . B The family of sections @3.1) for all 1o " @ ! B, for j "
{1 6}, __and for all ' " By debne a local system for a Rat connectior® on
3 Q! P

Definition 3.3 . D We will call © the transformed Rat connectionon @ | B,

proof (Proposition). B Let Iy £ 1o be another pointof @1 ®, and d,(2), ..., §s(z) be
a basis for the vector spaceE’Fo. According to (3.1), the local trivialisation of © near
o we need to consider is therg;(!),..., ds(!), with

(3.2) a(;2) =& (e %4(2)

for | in a small disk By around . In order to show that the local bases @.1) and
(3.2) debne indeed a local system, we need to show that the transition matrices(!)
between them are independent of the point! " By 5 By. We will make use of the
following:

Lemma 3.4. DFor any !,! *" By, and any ko " ker(D,,|S" ' E) we have
; (X " < In
B el " zp (el T IZkg(2)) = @ (el T 0)Zko(2)).
Proof (Lemma). B Setk, (z) = el'" '9)Zky(z); we need to prove that

2ol D78 (ki (2)] = @1 (e 7k (2)),

or equivalently that
B [e" " D2(1d %8 )(k )] =0,
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which is still equivalent to

(3.3) e "D2(1d %1 )(k )9 B,

Since®, is orthogonal projection to B, , we have

(3.4) (1d %3, ) (k) " B .

Moreover, observe that for!y and ! bxed, the relation

(3.5) e!"'IZ D, =Dy, %(! %!o)dz) = Dy,

holds, and so

(3.6) k = e!'"tozkym gt t0)Zker(D, ) ( ker(Dy)=Im(D}) =Im(D,)+ B,

From (3.4) and (3.6) it follows that (Id %8, )k, " Im(D,). Now using (3.5) for (! $%!)
instead of (! %!,), we deduce thate!' " )Z(Id %8, )k, " Im(D::), whence @.3). This
Pnishes the proof of the lemma. O

Let us now come back to the study of the transition matrix: let !,! " By 5 By,
and suppose we have

*0

(3.7) )= mya(),

1=1

where (m; ) is the transition matrix between the two bases at the point!. Lemma 3.4
means that for |! %!9 su"ciently small, we have

(3.8) 009 =" ()
(3.9) a(y=an (e 7g()).
Now plugging (3.7) into ( 3.8), then using (3.9) we obtain
+ . ,
Be9=ar "D mya()
1=1

mj (e D2G (1))
1=1

my & (19,

=1

so the transition matrix at the point !®is the same as the one at, whence we obtain
the Proposition. O
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3.1.2. Explicit description. B We now give an explicit formula for the Rat con-
nection constructed above, following page 13 ofi6]. First dePne a unitary connection
on © with respect to the transformed Hermitian metric by

(3.10) 60=g:8:.i

The fact that this connection is indeed R-unitary can be seen as follows: lef,g " %)
be local sections around! g, then from orthogonality of 2, to E with respect to the
norm 3,.4we have in!g

B(R( g) = 830 g4= AP g4+ 0 B4
= 3010 g4+ 0 Oga= A(OM g)+ A 9g),
where 8 stands for exterior dilerentiation of functions along the coordinate ! as well
as for the trivial connection with respect to ! on the trivial Hilbert bundle 19. Finally,

we dePne an endomorphism-valuelL, O)—fq_rm (a candidate to be a transformed Higgs
peld) by mapping a" | -harmonic sectionf!; z) to

(3.11) A(90;2) = %58 (21052,

where d stands for the standard generator of the holomorphiq1, 0)-forms on @. This
peld will indeed be holomorphic provided that the original metric h is harmonic (see
Section 4.2).

Proposition 3.5 . D The connection 0 +2@is equal to the transformed 3at connection
O debned above.

Proof. B We need to show that for all g and all f(z) " Pf’!o, the local ©-parallel
section in! " Bg given by

(3.12) At z) = @ (' 19?1 z))
is parallel in By with respect to 9 +20. First, let us check it in !o:
(O +20P(1o) = @, [(BO(10) %zf!o)d!].
We observe that by (3.12) we have
(BO(10) = (821):,fA! o) + @1, (21 0)d),
hence

(O +200(1o) = @, [(821)1, 1! )]
Now 8, : & = @, implies
82. D+ @ 82[ = éﬁ!,
therefore
2, [(82),,1!0)] = (82)),, : (Id %B,,)!0) =0,

sinced,, is the projection to B,, and fY!o) " B,,.
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Next, Px an arbitrary ! " Bg. Then, as we have just shown, the local section debPned
for |'%%! | su"ciently small by

019 = @ (e " A1 ; 2))

is parallel in ! (compare with (3.12), setting !o = !,! = 19. But Lemma 3.4 tells us
that the local sections f® and O coincide in a neighbourhood of! ; in particular fOis
parallel in !, O

The following is now immediate:

Proposition 3.6 . B The unitary part of the transformed Rat connection @ is

B = 5+ 0%0 =a Q%%zd!) +%w9

Definition 3.7 . D We will call the above unitary connection®* the transformed
unitary connection. The covariant derivative associated to it will be denotedo™* .

Remark 3.8 . B The fact that the formula for the transformed unitary connection
involves extra multiplication terms by z and B compared to the usual formulae of
other Nahm transforms is an artifact: as we will see in the next chapter, the transform
admits an interpretation from the point of view of Higgs bundles, in which the formula
for the transformed unitary connection agrees with the usual one.

3.2. Extension over the singularities

At this point, it should be pointed out that a priori we have no guarantee that
the constructed Rat connection is indeed of the form required by Section 2 of5]
(and therefore extends nicely over the singularities); that is, in an orthonormal basis
with respect to its harmonic metric it is not necessarily the model (1.20) up to a
perturbation described in (2.11) and (2.13). However, there is a theorem of O. Biquard
and M. Jardim which allows us to show that this is the case. Namely, Theorem 0.1 of
[6] states the following:

Theorem 3.9 . P Let A be anSU(2)-instanton on R*, invariant with respect to the
additive subgroupZ(Jx—S+ Z(JX—A, and suppose that its curvatureF » has quadratic decay
at inPnity (that is, |Fx| = O(r" ?), wherer? = x% + x3). Then there exists a gauge
near inbnity in which A is asymptotic to the following model:

Ko=d+ i " 10x3+ " 2dx4 + (1 CcOS( %stm()$
# (uasin(+ pzcos() X+ v

where z = re’® are coordinates for the (x1, X»)-plane. Moreover, the dilerence a be-
tween A and this model satisbes

o i o
lal=o(" %, /. & =o0(" ¥%.
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58 CHAPTER 3. THE TRANSFORM OF THE INTEGRABLE CONNECTION

In order to be able to apply this result to our case, consider the Euclidean space
(R*)' spanned by orthonormal vectors(lxv forj =1, 2,34, and identify the subspace
J

spanned by(ixjir and (szr with the line @ with complex coordinate ! underlying B. By

Section 1 of [L4], ® then induces an instantonA on (R4)" with singularities, invariant
with respect to the subspaceR (ng +R &T In particular, A is invariant with respect
4

to Z(ijs,— + Z(JXTZ, so Theorem3.9 can be applied to it, provided that its curvature

has quadratic decay. In order to have an explicit description ofA and its curvature,
remember that @ decomposes as

D=206"+0+0,
where 0* is the transformed unitary connectiop, Pthe peld dePned in8.11) and @ its
adjoint with respect to the harmonic metric of . Now as we will see in Sectiod.2, this

harmonic metric is in fact the transformed Hermitian metric R given in DepPnition 3.1.
The unitary part of © decomposes further into its(1, 0)- and (0, 1)-part:

0% = (6%)L0 4 (6+)01,
Finally, we write ® for the endomorphism-part of €:
0= 2d.
The instanton over (R*)! corresponding to® is then given by the formula
A= 0%+ Qdx; + 18dx},

where we recall that ( )
# 1 # #

- = _ —F ooil

#] 2 #X;  #X
is the Qatural complex coordinate of @, and the connection9* on (R*)! acts as9*
along € and as the trivial connection alongR (ijg +R (fo Furthermore, as it can be
seen from the results in Section 1 of]4], we then have the formula

Fr= %9 9 (dx}) dxj+ dxj) dxj)
(3.13) +(0%)ys/ 9(dx}) dxj%dxy) dx})
+(07),18(dx} ) dxjy + dxh) dxb),

where we have written (0 ).+ to denote the action of the unitary connection in the
L -direction. Hence, before we can apply Theorer8.9 we need to check the following:

(x*

Theorem 3.10 . B There exists a constantk > 0 such that the commutator[®, & ] is

bounded byK |!|" 2 as! $- . The same estimation holds for0+* 9.

Proof.  We start with the case of the commutator. Let f{!;z) " B, = Ker(#)' be
arbitrary; we wish to show the estimate

h@,@qf@(;)iﬁ* KT 21001,
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with K independent offdand of ! . Recall the well-known formula from Hodge theory:
(3.14) B = Id %# G # .

Using this, we obtain

©.910)

38, (2B, (21(1)) %28, (21(1))
%2! (2 Gi# (21!)) %k G # (z1Y!))).

(3.15)

SinceD, is a connection, the following commutation relations hold:

[D1,z] = dz2) [D:,2 = dB
! _# ! _#
[Dy,2z]= %! [D),7 = E!.

where ! stands for contraction of a dilerential form by a vector beld. It follows
immediately

(3.16) #,2]= %# ,z]= dz) % #%!: dza

(3.17) .8 = %# , 8 = dB) % %! = ded

where the Clilord multiplication ~ ais dePned by these formulae. Plugging these in the
expression 8.15), using # f{!;z) =0 and 2, |im(» = 0 together with the depnition of

R, we get

<

/ / = . .
;[g@]@(!)fﬁ: %;a! 0z 4G, dpafl!) %odpaG dz af(t) = |

(3.18) * %EG! dwaf!) + %EG! dz &)

L2(C) L2c)’

since the norm of the orthogonal projection of a vector to a subspace is at most the
norm of the vector and the action of Clilord multiplication by d z and dwzis point-wise
bounded. We conclude by the brst statement of Lemm&.25
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Next, let us come to 0+ 9. Similarly to the above, using (3.14) and the commutation
formulae (3.16)-(3.17) we obtain
: = X

’ e . ’ Py s Py . < .
0*9 Q)= B : 2% D" )

VL < L 27
=@, 8% Zd + 242 B, %> ()
7% 2 'L

’ < L Y.
%, %g 2 Q%gd! + gdlﬂ 1)
>, . < , . <
=3, 8w Zd + 248 #G,#  Zf))
2473 L2
z s Z B
>( )
=@, %d! ) dz %%d!ﬂ) dw éG;d—zzéiﬁ(!)
gz (1 1 ) 2
% 4G Sd!) dz%dP) dp &)
@ A

(here dz and da act on the spinors by Clilord multiplication, whereas d! and d? by
wedge product). Noticing that |d!| = |[d9 = 2, the brst term in the last expression
can be treated exactly as in 8.18). For the second term, one only needs to remark

that the commutation relations
> ? @ I [} A

8D = Q,D%'édz+ 5dB
I [}
_ %d' )2dz) N ol. )zdm)
and
> ?
- ! dl) #, d9 #
oL T 222 T
8D =%t 2w
show that
P | 1
4 =% 8# = %Ed! ) dz &+ Eol!f?f) deé
holds. Therefore we can proceed again as ir8(18). O

On the basis of Theorem3.9, the behaviour of the transformed Rat connection
at inPnity satisbPes the hypothesis considered in5]. Namely, in a suitable gauge its
di'lerence from a model with second-order pole is in the weighted Sobolev space
L5, $1" E) considered in Section 2 of that article. Indeed, passing to a coordinate
w = z'1 |w|] =) in which the double pole is in 0, the norm of the perturbation
is O() """, whereas that of its derivative is alsoO()1* %) (because the norm of1-

forms near inPnity is |dz| = |dw|/|w| = 1), and we conclude since)1*%) 2" L2, ..
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It follows from the results of its Sections 7 and 8 that the analytic Rat connection®
debned outside inbnity extends to an algebraic integrable connection with a parabolic
structure on the singular bber at inbnity. On the other hand, such an extension
over logarithmic singularities (that is, singularities in which the eigenvalues of® or
equivalently those of ® have at most brst-order poles) is ensured by Theorem 2 of
[26]. Therefore, by Theorem 4.30 the Bat connection® on € ! P can be extended

. L . 1 .
into a meromorphic integrable connection onEP ~ with parabolic structures at the
singularities.

Definition 3.11 . B The transformed meromorphic integrable connectionis the
meromorphic integrable connection with parabolic structure in the singularities in-
duced by the above extension procedures, subject to local changes of holomorphic
trivialisations near the singularities to take all weights between0 and 1. We will
continue to denote it by (B, §). The underlying extension will be calledtransformed
extension of the transformed bundle.

Remark 3.12 . B We will see in Section4.6 that the parabolic structures are adapted
to the harmonic metric; namely, the weight0 * %, < 1 of a subspaceFy I’§'|p of a
singular Pber corresponds in local coordinatez vanishing at the puncture to a decay
bounded above byz|?"x of the norm of a parallel section extending an element of
Fk@|p, as measured by the harmonic metric. However, in Sectiond.4.1 and 4.4.2
we will construct a dilerent extension over the punctures B more suited to analytical
study B, where the behaviour of the norm of parallel sections near the singular points
will no longer be bounded. We then pass back to the transformed extension in Corol-
lary 4.39, where we remark that it is the one that establishes a "good" correspondence.
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CHAPTER 4

INTERPRETATION FROM THE POINT OF VIEW
OF HIGGS BUNDLES

Let (E,D, h) be a Hermitian bundle with integrable connection. Throughout this
chapter, we suppose that the original metrich is harmonic. This metric then debnes
a Higgs bundle (E () starting from the integrable connection, via the procedure de-
scribed in Section1.5. We brst prove that the transformed metric A is then harmonic
for O. Next, we give an interpretation of the transformed Higgs bundle of(E () in
terms of the hypercohomology of a sheaf map ove€P 1. These results will then be
used to debne thenduced extension' Eof the transformed bundle over the punctures
@, {} , and to compute the topology and the singularity parameters of this ex-
tension of the transformed Higgs bundle. This will enable us to eventually compute
the topology and the singularity parameters of the transformed Higgs bundle with
respect to its transformed extension given in Debnition3.11

4.1. The link with the transformed integrable connection

Recall that we have debned the deformation of the Higgs bundle by the formula
(1.35), and we write D #*for the D ®2operator of this deformation. Explicitly, we have

D= #5+ (,,

where(, = ( %!/ 2dz. Moreover, as we have noticed in Sectiord.7, nonabelian Hodge
theory identiPes the deformation of the Higgs bundle structure (.35 and that of the
integrable connection via the unitary gauge transformation

g(Z,!) — e[!’%" 1z ]/2.

In other words, writing g = g(.,!) for the gauge transformation restricted to the pber
19, , we have

| 2]
(4.1) g.D,=DM"=D %édz)%'édz) .
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64 CHAPTER 4. HIGGS BUNDLE INTERPRETATION

Since the gauge transformationg, is unitary, in addition to ( 4.1) we have as well
(4.2) gDy =(Df")".

Definition 4.1 . B The operator #' = D" % (D{")" will be referred to as theHiggs
Dirac operator. In the same way, we le#®stand for the Dirac operator D$*6(D 59" .
The transformed smooth bundle underlying the Higgs bundleis the bundle¥ over @!

® whose bber ovet is the brstL2-cohomology spacé.2H1(C') of the operator D! .

Proposition 4.2 . B This way we debne a smooth vector bundl®. Furthermore,
there exists a canonical bundle isomorphism between the smooth bund@eunderly-
ing the transformed integrable connection and the smooth bund® underlying the
transformed Higgs bundle.

Proof.  Theorem 2.16tells us that the transformed bundle underlying the integrable

connection is the bundle of brstL2?-cohomologies oiD}”t . For any !, the gauge trans-

formation g of E induces a natural isomorphism between the_?-cohomology spaces
of the complexes (.7) and

(4.3) $0 E Sbobs st E SHOBG$2 E.
which is just C,H . In Theorem 2.6 we have shown that the0-th and 2-nd cohomology
of G vanishes for all! * @1 P, whereas Corollary2.7 implies that the cohomology

spacesL2H(G) debne a smooth vector bundle ove@ ! B. This then implies the
same thing for C,H , whence the bundle isomorphism between the bundles ove® !
in question. O

Theorem 2.21 has the following interpretation:

Theorem 4.3 . B The brst L2-cohomology$ = L2H!(C') of the operator D" is
canonically isomorphic to the kernel of the adjoint Dirac operator

(4.4) #) L3S E)u$ L3(ST ' E)
on its domain, or alternatively to the kernel of the Laplace operator
(4.5) "Ho B EN) LS E)us LS ' E)

on its domain.

Proof. B Apply the gauge transformation g to Theorem 2.21and notice that (4.1) and
(4.2) imply

(4.6) g # =(#')

and

(4.7) g ="

and in particular that

(4.8) g (Ker(#)) = Ker(( #')") O
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and
(4.9) o (Ker(" 1)) =Ker(" ).

This result enables us to put similar debnitions as in the integrable deformation
case.

Definition 4.4 . B The hermitian bundle metric on ¥ given byL?2 scalar product of
the (#)' -harmonic representative will be called thetransformed Hermitian metric,
and will be denoted byA. Also, B will stand for R-orthogonal projection of L?(S" ' E)
onto 9.

Remark 4.5 . B Starting from a Higgs bundle with any Hermitian metric (not nec-
essary harmonic), we can debne in the same way its transform on the transformed
bundle 9.

Next, we recollect the above considerations in terms of the transformed bundles.

Proposition 4.6 . B The family of gauge transformationsg induce a Hermitian bun-
dle isomorphism betweer® and ¥. Furthermore, the bber¥, can be identibed with the
pbrst L2-cohomology of the single complex associated to the following double complex,
denoted by D :

$

$0’1|'| E 7‘_ !$2I|| E
" s
$0 E " lg10 E.

Remark 4.7 . B Notice that commutativity of this diagram follows from the hypothesis
#5 =0, which is just the debnition of the harmonicity ofh.

Proof. B By (4.9),the D,-harmonic representative of a class is mapped by into a
D! -harmonic class. Since the transformed metric from both points of view is induced
by L2-norm of the harmonic representatives, andg is unitary, this gives the brst
statement. For the second, remark that by Theorem1.25 the Laplace operator” !
is equal (up to a factor of 2) to the Laplace operator" $¥= #3{#%', therefore their

kernels coincide. This then identibes® with the brst L2-cohomology of the complex

D/ D}
(4.10) $°" E%6 $'' E %8 $2' E.
Finally, recall that the formula
D= #5+ (,
gives the decomposition oD #¥into its (0, 1)- and (1, 0)-part respectively. This means

that the complex (4.10) is the single complex associated to the double compleXD .
However, it is not necessarily true that the domain of D $%is the sum of the domain of

#E and that of (,, it could in principle be larger. Still, the two L2-cohomologies are
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66 CHAPTER 4. HIGGS BUNDLE INTERPRETATION

the same. Indeed, supposé = f10dz + f%1dp" L?($1' E) is in the kernel of D
that is

(4.11) #% 1%z + (,) f%'dm=0.

We wish to represent the D 2cohomology class of by a classf°dz + f%1dm such
that #710" L2 and (, o1 " L2. Away from logarithmic singularities, one can simply
choosef itself, for there locally f%* " L2 implies (,f%! " L2 and by (4.11) then
#5 10 " |2 a5 well. Thus we only need to modifyf in a neighbourhood of the
logarithmic punctures. By Claim 4.11near any such puncture we can bnay" L?(E)
such that (,g" L%($ %" E) and

fOldp+ #9=0.
Using #X, =0, the last two identities then also imply
#5f 1%z + (,9)=0.

Put f1.0dz = f1.9dz+ (, g; as bothf 2:0 and (, g are supposed to be irL.2, so isf0dz.
This then shows that f is cohomologous in thel.? complex of (4.10) to a class locally
represented by a sectiorf:%dz, where f1.0 " L2 and #5109 " L2 |n dilerent terms

1.0dz " Dommax (#5), and this shows that the brstL 2-cohomology of @.10) is indeed
equal to that of D). O

Next, let us investigate what the transformed integrable connection® and its
unitary part ©* become under this gauge transformation. Notice that since the gauge
transformation g is unitary, the orthogonal projection @ onto B is transformed into the
orthogonal projection " onto ¥, with respect to the sameL 2-metric on the bbers;
in dilerent terms g, .2 = @!'. The image of the transformed integrable connectior®
under the gauge transformationg in the point ! is given by

o" = g0

(4.12) = g.(ﬁ(. : (8%zd!))) )
=@M 9%%(zd!) +ad9)

(see @.10, (3.11) and Proposition 3.5), and that of the candidate Higgs Peld is the
endomorphism

¢ =gf
g.@; : (Yz/2d!)))

(4.13)

%%a!” (zd!)).

Therefore, if we decompose the transformed [Rat connection in the point of view of
Higgs bundles into its unitary and self-adjoint part, we obtain

(4.14) (I§H)+ = Q!H (9) (@H)sa - EH +(p—|)|
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(these formulae can also be deduced directly from Propositior8.6). This then gives
the desired interpretation of the transformed unitary connection O* in this point of
view.

Definition 4.8 . B We let #E stand for the (0, 1)-part of (8")* . Moreover, we call
the holomorphic bundle¥ with partial connection #E the transformed holomorphic
bundle and we denote it byE

4.2. Harmonicity of the transformed metric
In this section we prove the following result:

Theorem 4.9 . D If the original metric h is harmonic, then the same thing is true for
R.

: i . 0,1
Proof. B First remark that by ( 4.14), the formula for #Fis B (87). Also, the (1,0)-

part of (D)2 is just @1 . By depnition, harmonicity of the transformed metric A
resumes then in the equation

(4.15) #5 = 0.

By Proposition 4.6 we have ¥ = L2HY(D®, with D®*= D% !/ 2dz. From this
formula it is clear that D $*depends holomorphically on!, so we are in the situation
described in part 3.1.3 of 2] of chain complexes

D/ D/
$°" E %8 $'' E %8 $%' E
varying holomorphically with !'. There it is shown that if the Prst cohomology spaces
¥, of these complexes are all Pnite dimensional, of the same dimension, then the
bundle ¥ constructed out of them over the parameter space of carries a natural
holomorphic structure. Explicitly, this is given by by saying that a section f " %) in
a neighbourhood of! o is holomorphic if and only if it admits a lift " %(Ker(D?Tv- 1))

which is itself holomorphic with respect to the holomorphic structure induced by the
(0, 1)-part 8> of the trivial connection @ on the Hilbert bundle K. This holomorphic
structure is the same as the one debned by the operatd?‘""E, since both are induced by
@ and 8" . The section@ " End(¥)’ $ 4 is then holomorphic for this holomorphic
structure if and only if it maps each holomorphic sectionf into a holomorphic section.
In particular, this is the case if it admits a lift

Ker(D# 1) ——'Ker(D§ 1) $go

5 L j '+ «1.0

such that

SOCIfTf MATHfMATIQUE DE FRANCE 2007



68 CHAPTER 4. HIGGS BUNDLE INTERPRETATION

(1) ' passes to the quotientKer(D. 1) $ Ker(D#.1)/Im(D#-0) = 9, the
quotient being @, and

(2) ' is holomorphic with respect to the holomorphic structure induced by Qo'l.
Recall from Section 2.3 that Ker(D?.1) is a closed Hilbert subspace otd,; call
2er(p!') Orthogonal projection of 19, to it. We now claim that the map

“:Ker( D 1) %8 Ker(Dff 1) $é-’°
F7 4966 % 2car 0 (217 (2)) !

veripes the hypotheses needed.
For (1), we need to show'(Im( D:0)) 8 Im(D-0). Let g be a local section of
the trivial Hilbert bundle L2(E) $ @. Then we have

1
'( DY) = %ézKer(D;!)(ZDisb!)d!

1
%52,@,( D) (DF?ZQ! (Z))) d!

%DMz0 (2))dL,

because the operatorD® = #E+ (, commutes with multiplication by z, and
Im(D%. o) 8 Ker(D$¥. 1). This shows that Im(D$. o) is invariant by ' ; the quotient
is clearly @ .

Next come to (2): we remark that the formula debning' only depends on! via
the projection 2y p!y. But since the operator D!$$depends holomorphically in!, so
do the subspaceé(er(D??, and since the metric is independent ofl , the same thing
is true for the projections 2y pry. This shows that ' , and so('j4 is holomorphic
in!. O

4.3. Identibcation with hypercohomology

In this section we will often use basic properties of hypercohomology; for an intro-
duction to this topic, we refer to Section 3.5 of [L3] and Section V.12 of [L1].
Before we start, we need to debne the functional spaces

E7(E) = DOM max (Dﬁ 0+ E)
={u" L¥E) : () u,®u" LY
'-:_!2($ 0L E) = DOom max (Dﬁ 0.1+ E)
= {vdp" L%2($%!" E) : (\) vdB" L%}
E2($0" E)=Dom max (D 104 )
= {udz" L%$°" E) : #Xudz) " L%},
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for the Euclidean metric |dz|?> on C and the hermitian metric h on the bPbers, adapted
to the parabolic structure with weights {*!,...,*1}. Notice that we may drop the
index ! of these spaces, since they all coincide: indeed, in a logarithmic singularity
the deformation ! dz is bounded, and at inbnity the condition ! I ® implies that
no eigenvalues of(, vanish, and this gives equivalence of the corresponding norms
exactly as in Lemma2.3. We identify these functional spaces to the sheaves of their
local sections. In what follows, we are going to debne sheavdsand F of sections of
$°' E and$%°" E respectively onCP * with the property that the L2-cohomology

L2H¥(D P of (4.10) identibes to the hypercohomologyH*( Eobs F) of the sheaf map

E‘%/ZB F. This latter is then explicitly given in terms of a sky-scraper sheaf over the
zero set&, of det((,) by a simple use of the spectral sequence of the double complex.

4.3.1. Debnition and resolution of the sheaves. b Recall that the parabolic
structure on E with adapted Hermitian Pber metric means that the holomorphic
bundle Eon C! P has a natural extension to allCP *: the holomorphic sections at a
singular point are the holomorphic sections outside the singularity which are bounded
with respect to the metric. By an abuse of language, fotJ ( CP ! an open set let By
be the set of holomorphic sections of the bundleEin U. In other words, we denote
by Ethe sheaf of local holomorphic sections ofE (extended over the punctures as
above).

Next, let us debne F: for an open setU ( CP! containing no singular point, let
Flu be the set of #&holomorphic sections of$2%' E. If U contains exactly one
singular point pj " P (and does not contain the inPnity), then let F|, be the set of
#Emeromorphic sections+dz of $1:°* E such that + be #5meromorphic in U with
only one simple pole atp;, and such that its residue in this point be contained in
the subspacelm(Res((, pj)). Finally, if U contains the inPnity (but no other singular
points), then let F|y be the set of all#5meromorphic sections+dz of $1°* E with
a double pole at inPnity, and no other poles inU. Notice that since in the coordinate
w =1/z of CP! the section dz has a double pole at ingnity, this amounts to say that
+ is a #E&holomorphic section of E in U. Writing + = &+ in the holomorphic
basis (1.30) at inPnity, it is still the same thing to say that f} be a holomorphic
function in U for all k (in particular bounded at inbnity). It is easy to check that this
way we debned a sheaf.

We introduce some further notation: setr = c 1+|z|]2 on C; then for a"{ 0,1}
we denote byrE2($20" E) the space of sectionsi of $2°' E such that ¢ tu " E2.
This way we only loosen the condition on the behaviour ofu at inPnity with respect
to £2, namely that r” 1u be in E2 in a neighbourhood of inbnity. It is immediate that
there exist an inclusion of vector spaces

(4.16) F2($%°" E) ¥ rE2($%°" E).
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Lemma 4.10. B The sequence

(4.17) Eus r2(E) 96 £2$01 E)

is a resolution of E

Proof. B Itis known that away from the singularities, the sequence of usual 2-sections
with respect to Euclidean metric gives a resolution of the sheaf of holomorphic sec-
tions. Therefore, we only need to show that 4.17) is a resolution at the singularities.

Consider brstp; " P. We brst prove that (4.17) is locally exact in F2(E). Let
E be trivialised in "( p;,$) by the local sections{+j} given in (1.27). As we have
seen in (L.28), in this trivialisation up to a perturbation term (= dlag("' )dz/z, with
"l = (W %8&)/2, and the parabolic weights are given by*] = /épk) %[/ (H)]. By
debnmon any holomorphic section+ of E/ can be given as a sum  , ‘k I, where, |
are holomorphic functions debned iff'( p;,$), in particular bounded by a constantK .
This implies that +" L2(E), so that +" E2?(E) if and only if () +" L?. Recall that
L? is debned with respect to the parabolic structure{*L}, and that the perturbation
term in ( behaves asO(r" 1* %) with - > 0, wherer = |z %p; |. This implies that

- U - *r

I(+]?* K® r 1% 124 KO Ir" L+
'Cpi") k=1 k=rj+1
=l - *r
* K$$ |I’" l+c%12+ K$$ | l+) |2
k=1 k=rj+1

By Hypothesis 1.28 *j >O0forallj"{rj+1,...,r}. It then follows that this last
expression is Pnite, WhICh proves that any holomorphlc section oE is in 2. On

the other hand, if a section+ =~ , 'k+f( of E is meromorphic in p;, then there is
at least onek " { 1,...,r} such that , i has a pole inp;. Supposek " { 1,...,rj}:
then |, +|; r, and + is clearly not in L. Suppose nowk "{ r; +1,...,r}: then

again by Hypothesis 1.28 we have"! £ 0, and therefore|( ) ,,+.|; r" 2% and so
() + L2 Hence, the sections of=2("( pi, 9, E) in the kernel of #E are exactly the
local holomorphic sections ofE, in other words the local sections of E This shows
local exactness int?(E).

The next thing we show is that in "( p;, $) the complex (4.17) is exact at £2($ %1
E): let vz " CE2("( p;,9),$%" E) be an arbitrary section; for $ > 0 su"ciently
small we wish to Pndu " E2("( p;,$),E) such that

(4.18) #% = vdp

We can suppose without restricting generality that v = f+1, with f a function debned
in "( pj,9$). Since+, is a holomorphic section ofE, solving (4.18) boils down to solving
the usual Cauchy-Riemann equation on the disk

#9 _

(4.19) i
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with u = g+{( "E2(( pi . 9, E). Exactness near a singularity at a bnite point is given
by the following claim:

Claim 4.11 . BFor f " L? the equation @.19) has a solutiong such thatgr” %" 2
for any - > 0. For f such thatfr) " L2 with 0<*< 1, (4.19) has a solutiong such
that gr 1*) " L2,

Proof. B The Pbrst statement is established combining the usual resolution of the
Cauchy-Riemann equation forf " L? by an L2*-function g and the estimation (2.12).
The second one is a direct consequence of Proposition 1.3 &][ One might also
prove it by direct estimations on the solution given by the Cauchy kernel, as in
Proposition 2.5 of [2]. O

Now let us come back to exactness at a singularity in a Pnite point: for the regular
casek "{ 1,...,rj} we havef " L2 and|() g#|*| glr" *** so we can apply directly
the brst statement of the claim; for the singular casek " { rj +1,...,r} by debnition
I() f+1dg ;| f|r" *) isin L2 with *> 0 by Hypothesis 1.28 therefore we can apply
the second statement of the claim. Remark that in this case even a stronger condition
then the assumptionfr) " L2 of the claim holds. However, we will need the claim in
its full generality to show exactness at inPnity.

We now come to exactness at inbnity. Recall that! I ® implies (, is an isomor-
phism L2($°°) $ L2($1P) for b" { 0,1}. Therefore, the sections at inPnity of the
sheavesE?($°P) and L2($°P) coincide. First, we consider exactness ire2(E) =
i 2(E): by the Igiel:nition of E its local sections are the holomorphic linear com-

binations + =, { + . First we check that these sections verifyr" 1+ " L2
since|, § | * K and |+ | ; r")« with *{ > 0 by Hypotgesis 1.28 we see that
r'1, ¢ +f " L2 Onthe other hand, if we have a section+t =~ , ¥ + in the kernel

of #E then for all k the function , # is either holomorphic or meromorphic; but if
r' 1+ " L2, then it implies that , # is holomorphic for all k. This proves exactness in
the brst term.

Next we come to the termL2($%!" E): for a sectionvds" L?(C! "( R),$%!" E)
we searchu " rL2(C! "( R),E) such that #%u = v. Supposev = f+{ andu= g+
again. In the coordinatew = 1/z = )e" ® on"(0 , /R ) we bnd (for simplicity we took
R =1 and wrote "="(0 ,1R)):

If 12)2" #dw|? =
|

02" 2wl = |glPr 2 jdzf < -
! !

If Pr" 2 |dz|? < -
cr!

On the other hand, the Cauchy-Riemann equation
#9 _
b
transforms into
#9 f

= %—.
#o 2
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and we conclude applying Claim4.11to %f/ \w’. O
We can also show the counterpart of Lemmad.10for F:
Lemma 4.12. B The complex

(4.20) Fus re2$10 E) 9B L2821 E)

is a resolution of F.

Proof. B Away from the singularities this is also given by classical elliptic theory,
therefore we focus our attention on a neighbourhood of a singular point.

Let us prst treat the case of a singulgity at a bnite pointp; " P. A local section
of F is then by dePnition a section+ = ~ , , } +,dz such that , | is holomorphic for
k"{ 1,...rj} and has a pole of order at most one ip; fork "{ r; +1,...r}. From the
form of the parabolic structure, it follows that |, jk+{<| ; O@) fork"{1,...r;} and
|4+ O ™)) fork"{r; +1,...r}. By Hypothgsis 1.28 we have*] > 0, thus
+" L2($1" E). On the other hand, if a section+ =, )+ dz of $1.0" E satisPes
#5 =0, but +7 L2($10" E) then either , has a pole for somek " { 1,...r;} or
.} has an at least double pole for somé " { r; +1,...r}, and therefore + is not a
local section of F. This shows exactness in the prst term.

Consider now exactness at the second term irf( p;,$): here we need to solve
(4.19), for f " L2 with the solution g in L? in the regular case; and forf such that
fr) " L2 with the solution g such that gr’ " L? in the singular case. Both follow
from Claim 4.11

There now remains to show exactness at inbnity: this is done similarly to the case
of E O

4.3.2. Hypercohomology and L2-cohomology. B We can use the results of the
last section in order to deduce the following:

Proposition 4.13 . B The brst L2-cohomology¥ = L2H(D ¥ of (4.10) is isomor-
phic to the hypercohomologyH*( Edos F).

Proof. B By Lemmas4.10and 4.12 (, debnes a morphism of resolutions

(4.21) E2$01 E) o lL2$llt E)
@E @E

FEZ(E) — RE2$L0" E)
E—— > IF
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Therefore, by general theory, the hypercohomology of the sheaf ma;EO%/_&S F iden-
tiPes to the cohomology of the single complex formed by the double compleld :
. $ -
(4.22) E2$01" E) —L2$1L E)
e =
. $ - :
FE2(E) —RE2($10" E).

We show that the brst cohomology of the single complex of this double complex is
isomorphic to the brst cohomology of the single complex associated to the double
complex D :
. $ -
(4.23) E2$01 E) —L($1Ll E)
(s =

E2(E) L!,_:—z($ L0+ E),
We debne a map
4:HY(D)ws HY(D)
as follows: represent a cohomology class ¢f%( D) by a couple
(5dp,0dz) " [2($%1" E)+ E2($L0 E),

and use the inclusion @.16) to map it into the cohomology class represented by the
same couple(5,0) in HY( D). This is well debned, since if(5dB+ #E 0dz+ (1) is

a couple inH!( D) representing the same class adp, 0dz), for " " E2(E), then in

particular " " #2(E), and so the two couples are cohomologous ikl (D) as well.

This also shows that4is injective.

We only need to prove surjectivity: suppose we have a couplégsds, 0dz) " E2($ %1
E)+ eE2($ 10" E) representing a class irH1(0). It is clearly su"cient to prove that
this class can be represented by a couple vanishing in a neighbourhood of inPnity. Since
(1 is an isomorphism at inPnity, we can put (restricting to a smaller neighbourhood of
inPnity if necessary)" = (, *(0dz). This is then a section in #2(E), and the couple
(5dp%#=,0dz % (,") is cohomologous to(5d®, 0dz) in H( O). By depnition, the
(1, 0)-term of this couple vanishes at inbnity. The same thing is true for the(0, 1)-part,
because(, (5dB%#E") = %#50dz %(,") = 0 near inbnity and (, is an isomorphism
there. This bnishes the proof of the proposition, for theL 2-cohomology of @.10) is
by Proposition 4.6 the cohomology of the single complex associated td) . O

4.3.3. The spectral curve. B In the explicit identibcation of the hypercohomology,
the following notions will be of much importance. Recall that (up to wedge product
by dz) (; is a meromorphic section ofEnd(E) over CP 1.

SOCIfTf MATHfMATIQUE DE FRANCE 2007



74 CHAPTER 4. HIGGS BUNDLE INTERPRETATION

Definition 4.14 . DFor ! " @1 B, the set of zeros ofdet((,) is called the spectral
set corresponding to!. We denote it by &, .

Lemma 4.15. D For each! " @ ! P, the spectral set is an elective divisor of CP 1,
in other words a bnite set of points with multiplicities in N .

Proof.  The section det((,) of End(V) is holomorphic with respect to #E We only
need to check it does not vanish identically for any! . Suppose there existd such that

det((: () =0

forall " C! P. In dilerent terms, ( has a constant eigenvalue ovelC ! P; in
particular, the residue of this eigenvalue at inbnity is 0. This contradicts "# £ 0 for
allk"{1,...,n} (see @) of Hypothesis 1.28). O

A basic property is the following.

Claim 4.16 . B The points of & debne a multi-valued meromorphic function ofl "
e.

Proof. B By assumption, det((, (z)) depends holomorphically on! " @ and mero-
morphically on z. We conclude using the implicit function theorem, namely that the
solutions of a meromorphic equation depending holomorphically on a variable are
meromorphic in this variable. O

Definition 4.17 . D The graph of the multi-valued meromorphic function

6! Pusp cp?
| HUBE&,

is called the spectral curve of the Higgs bundle. It is denoted by.
This object was brst studied by N. Hitchin in Section 5 of [L5]. By Claim 4.16the
spectral curve is an analytic subvariety
&% (81 M &cp?,

of (complex) dimension one. (Here6 stands for inclusion.) Moreover, by construction
it is naturally a branched cover of @ via projection to the prst factor.

Here is an important property.

Proposition 4.18 . B The spectral curve & is reduced; in other words,det((,) van-
ishes only up to the Prst order except for a bPnite set of points &.
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Proof. B Supposeé& has inbnitely many points (g,!) where det((,) vanishes up to
order higher than one. Since& has a natural extension into a compact curve in

1
CP1&EP " (see Sectiord.4), this means that for any ! some zerog(!) * & of (, has
multiplicity higher than one; in dilerent terms, some irreducible component of & has

multiplicity higher than one. In particular, as ! $- , at least two of the g (!) must
have the same Laurent expansions. This is impossible by4(37) and the assumption
"} £ "1, for k £ k®made in (1) of Hypothesis 1.28 O
4.3.4. Explicit computation of the hypercohomology. b Let us now compute
the hypercohomology of

(4.24) Eobs F

Consider arbitrary algebraic resolutions of the sheavedEand F such that (;) induce
a morphism of resolutions

$ -
(4.25) KL% It
% %
K 00 $ - 'K 3,0
Lt

For example, one might take resolutions by #ech cochains. By debnition, the brst
bltration K of the single complex associated t04.25) is given by

Ko= (K%L + KO0 + (K114 K10
Ky= KM+ KO,
The brst page of the spectral sequence corresponding to this Pltration is given by
(4.26) (HOWcpt) (HhHmcph
% %
(H)PI(cP (HHI(cP

where H is the j -th cohomology sheaf of the map 4.24), and the vertical sequences
come from resolutions

H® ws (H)O & (H)W
H' v (HHO & (HYHW

by taking global sections. Let us now describe explicitly the cohomology sheaves. Re-
call from debnition 4.14 that q " & are exactly the points where the map(, (q) :
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E(g) $ E(q) is not surjective. After all this preparation, we have the following char-
acterisation:

Lemma 4.19. b The cohomology sheafH° of order 0 of the sheaf map 4.24) is 0. If
det((:) has a zero of orderl in all points of q" &, then the brst cohomology sheaH*
is the sky-scraper sheafR whose stalk over a pointg" &; is the Pnite-dimensional
subspacecoKer((: (g)) ( E(q), and all other stalks are0.

Remark 4.20 . B The cokernel of (; (q) is naturally identibPed with the orthogonal of
the image with respect to the bber metric, or, which is the same thing, with the kernel
of ({ (d). This allows us to think of coKer((, () as a subspace oE ().

Proof. D Let us start with H°: suppose we have a section " Hy on an open set
U ( CP?! suchthat (,, =0. Since on the open subset) ! &, the map (, : E(q) $
E (g) is an isomorphism, we deduce that = 0 on this set. But a holomorphic section
vanishing on an open set vanishes everywhere, thus= 0 on all of U. This gives the
brst statement of the lemma.

We now come to H*: let U ( CP! be anopensubset. lU5& =" then (, is an
invertible holomorphic endomorphism of Eon U, therefore H'|y = 0. Suppose nowJ
contains exactly one pointg" & . Then, for any section, " Hy the vector ((,, )(q)
lies by debnition in the image of(, (g), which is just the orthogonal of coKer((, (q)).
Therefore, this latter is contained in Hllu. On the other hand, the condition that (,
has a zero of orderl in g means that any section/ " Hy such that/ ()9 coKer((; (1))
is in Im((1). This proves the second statement. O

Remark 4.21 . B By Proposition 4.18, the condition of det((,) having a Prst-order
zero in all points of & is generic in!: it is veribed for all ! except for twice the
eigenvalues of((q) for the Pnite number of pointsq of & of multiplicity higher than
one. For the discrete set of! where there exists ag" & with a multiple zero, one
introduces the Rag

E(q) = FoE(q) 7 coKer((:(d)) = F1E(q) 7 444 OF E(q) = {0},

the subscript ofF being the order of zero of | () along the given subspace, and proves

that the cohomology sheaiHllu over an open set containingq as the only element of
&, is in this case equal to the jet space

rE)" 1

FmE(q).

m=1

The assumptions that for bxed) " { 1,...,n} all the ‘k be dilerent for k " { rj +
1,...,r} and for bxedl " { l,...,n$} all the "ﬁ be dilerent for k"{ 1+ a,...a+1}

1
(see (1) and (2), Hypothesis 1.28), mean that in the punctures of EP ~ the limit states
have brst-order zeros.
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Now since a resolution of the sky-scraper sheaR is given by

R RS$ O
the prst page of the hypercohomology spectral sequencd.R6) becomes
0] 0
% %
E
0 Qo coKer((: (@)).

All this implies the following:

Proposition 4.22 . B The hypercohomology spectral sequence corresponding to the
brst Pltration collapses in its brst page, and we have a natural isomorphism

D
HI(ESS8 F)<  coKer((: (q).

qYe#

Proof. B This is a consequence of the standard fact that a spectral sequence collapses
as soon as non-zero elements only appear in one of its rows. Furthermore, an explicit
isomorphism can be given as follows: bPx a radially invariant bump-function7 on the
unit disk " ( C, equal to 0 on the boundary of " and to 1 in 0, and such that
d7 is supported on the annulusl/3 < r < 2/3. For any complex nhumbera £ 0
set 7a(z) = 7(z/a). Now choose$, > 0 so that the distance in C between any two
distinct points of the pbnite seEP, &, is at least3%. For any (vq)qu, "+ coKer((: (0))
consider the sectionv-, = o, Vol (z % q). Because d-, is supported on the

annulus $/3 < r < 2%/ 3, the section #Xv. dz) " $11' E is supported outside a
neighbourhood ofé&, . Since this latter is the zero set ofdet((:), it then follows that
there exists a sectiont-,ds" $%1' E such that (, ) (t-,dB) + #Xv.,dz) = 0, and
t-, is supported on the support ofﬂEv--O, that is outside a neighbourhood of&, and
of inbnity. The couple (v-,dz,t-,dB) therefore debnes a cocycle in the single complex
associated to D, and using Proposition 4.13we can debne a map

D
(1:  coker((:(q) % HY(D)= HY(E%E F)

qY6t
(4.27) (Vq)q%#x #YSB([(v-,dz,t-,dB)],

where [(v-,dz,t-,dB)] stands for the cohomology class irfH (D) of this couple.

We need to show that this map does not depend orfj, > 0 chosen, provided
that it is su"ciently small as explained above. Consider therefore the sectionv-, for
$, < $. Since in the union of the disks of radius$,/ 3 around the elements of&, we
havev-, = v~ , and (, is invertible outside this set, there exists a sectionu " %E)
such that (;u+ v-,dz = v~ dz. Then, as in the proof of Proposition 4.13 the couple
(v-,dz,t-,dp) is equal to (v-,dz + (yu,t-, dB+ #R), and the two couples debne the
same cohomology class itd 1( D). This then allows us to bx$, > 0 su"ciently small
once and for all.
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In a similar way, one can prove that( , is independent of the actual cut-o! function
7 as well.

Finally, the inverse of (, can be obtained as follows: let the cohomology class
8 " HY(D) be represented by al-form 8%°dz + 8%1dm where 8%:° and 8%! are
sections ofE. Then we have

(4.28) (,'8=(evaly8 %) qum, ,

where eval,8%0 stands for evaluation of the section8™-? in the point q. O

Remark 4.23 . D Notice that the formula (4.28) is independent of the 1-form rep-
resentative of 8; in particular, the (1,0)-part of the harmonic representative of a
cohomology clasg 1 (Vq)qu#, vanishes in theq" & wherevg =0.

4.4. Extension of the Higgs bundle over the singularities

The interpretation of the holomorphic bundle underlying the transformed Higgs
bundle in terms of hypercohomology established in the previous section allows us to

extend it over the singular points ® , {-} in the parameter spacetP 1. At each
puncture, we need to do two things: Prst, dePne the Pber of the over it. This then
extends the holomorphic structure induced by#% over the puncture in a natural way:
a holomorphic section through the singular point will be a continuous section in a
neighbourhood of it, that is holomorphic in the punctured neighbourhood. (Continuity
is debned at the same time as the exceptional Pber.) The second thing to do then
is to give an explicit basis of holomorphic sections with respect to this extended
holomorphic structure. It is important to note that the extensions ' Ewe debne here
are not the transformed extensions given in DebPnition3.11, but rather ones induced
by the original Higgs bundle, and for which computations are more comfortable. This
is why we will call "&the induced extension We study the link between these two
extensions in Section4.7.

4.4.1. Extension to logarithmic singularities. B First, we consider the case of
points of the set ®. We shall now describe the extension Eover such a point. Notice
brst that as the deformation (; has a well-debPned extension over these points, its
hypercohomology spaces are also well-debPned there. In particular, in view of Propo-
sition 4.13 we may extend the' ¥ by putting

¥ = HY(Edss F)

This is the debnition of the bPber over such a point.

In order to give explicit representatives of holomorphic sections, let us examine
what happens to the Pber) when! approaches one of the points o = {!4,...,!},
say!|. First, let us bPnd the spectral points.
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Claim 4.24 . DAs! $ !, exactlym, = a+; %a branches of the meromorphic func-
tions gk " & converge to inPnity, while all others remain in a bounded region o€C.
Moreover, labelling the spectral points converging to inPnity byh+a, (!),..., ., (1),
they admit the asymptotic behaviour

n

(4.29) a(!) = (,z/—k,l)+ ot %[ %,

where- > 0 can be chosen arbitrarily small. In particular, the branches converging to

- CP ! of the spectral curve are not ramibed over the point;.

Proof. B As it can be seen from (.31), exactly m, of the eigenvalues of the leading
order term near inPnity of the Higgs Peld(, converges to0. Recall from Debnition4.14
that & is the vanishing set ofdet((,). This implies that (counted with multiplicities)

exactly m, of the points q(!) " & converge to inbnity; label these byl + &y, ..., a1 .
All the other spectral points remain therefore bounded. By assumption (see 1.31))
in a holomorphic trivialisation of the bundle Ein a neighbourhood of- " CP?,

ignoring the factor dz the beld (; is of the form
1 ;
é(A %!1d) + §+ o(z' ?),

where O(z" ?) stands for holomorphic terms independent of . Suppose Prst that the
beld is exactly equal to the polar part in this formula, in other words the O(z" 2) term
is equal to 0. Then the solutions e, (!), ..., & (!) are clearly given by

2"y
(%)’

In general, sincedet((,) is holomorphic in z, we can apply RouchZOs theorem to
compare the position of the zeros ofdet((;) with those of the polar part studied
above. This yields that the solutions gk (!) " C of det((:)(q(')) = 0 near inbnity are
close tog (!); more precisely for any- > 0, there existsK > 0 such that for all |! %!|
su"ciently small we have

&(!) =

la(!) ek ()] <K |t %! %

Remark here that as! $ !, the behaviour of |! %!|" *is small compared to|e(!)| =

¢! %!i|" L. In other words, we have the expansion 4.29 so that g (!) converges
indeed to inbnity asymptotically proportionally to (! %!,)" * for a <k * a1, while
all other holomorphic families of zeros ofdet((,) remain bounded.

The condition that the "1:+4,,...,"a,, are all distinct (see (2), Hypothesis 1.28
now implies that there is no splitting of the solutions at inPnity, that is to say locally
near! = !y any ok (!) with &y <k * a; itself forms a meromorphic function without
branching. Indeed, the occurrence of a branching at inbnity implies that the Puiseux
series of the corresponding solutions agree, which is not the case here because of the
asymptotic behaviours 4.29 with dilerent leading coe"cients. O
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Now, recall that for bxed! " @ ! B, in the explicit description of ¥ given in the
proof of Proposition 4.22, we considered the zerosi (!) for k =1,...,r of det((:)(q),
and for eachgc(!) an elementv,(!) of the subspacecoKer(()q, (1) ( Eg.()- Then we
extended eachvy(!) holomorphically into a neighbourhood of g (!), and multiplied
the section we obtained by a bump-function equal tol in a small disk around g(!)
and to 0 on the boundary of a slightly larger disk. This section of F constituted the

(1, 0)-part of the element in H( EO%S F) < ¥, and we chose the(0, 1)-part in such
a way that the couple be in Ker(D!$§. In what follows, we wish to do the same thing,
but for all ! in a neighbourhood of!, at the same time.

Let us consider one meromorphic family of zerogk(!) with a <k * a; . We
have just seen thatgc(!) converges to- as! $ !;; therefore, we need to take a
holomorphic section of Eat inPnity, extending an element of the cokernel of(,,. One
can check from formula (.31) that this cokernel is equal to the vector subspace of
the Pber Fy = E4 ' dz generated by{+} (- )dz}m2, 5. Where {+% }5,_, is the
holomorphic trivialisation of Eat inPnity considered in (1.30). Furthermore, since the
metric h is mutually bounded with the diagonal model

diag(z| 2 ),

the orthogonal of the image of(, in E(c(!)) converges to+ (- ) as! $ !|. Let &(2)
be a holomorphic extension of+{ (- ) to a neighbourhood of inPnity such that for any
I " @ su"ciently close to !, the vector & (c(!))dz be in the cokernel of (; (g (!)).
Such an extension exists becausg varies holomorphically with ! and by Claim 4.24
ok (1) is a genuine (single-valued) meromorphic function of . A holomorphic section
# of Earound !, is then given by the section constructed as follows: fot su'ciently
close to!| such that & is debned ingc(!), set

(4.30) V(1) = Togee 1y 1 (2 %0 (1)) (D),

where we recall from the proof of Proposition4.22that 7. - 1 ys 1 is @ bump-function
on a disk centered at0 and of diameter $|! %!,|" * with % su"ciently small only
depending on the parameters of the initial connection, bxed once and for all. (The
importance of this choice will become clear in Theoren¥.35) Also, let tx(z,!)ds "
%C,E"' $°!) be the unique solution of the equation

(4.31) #5, (z,1)dz = %(, t(z,!)dm.

Then consider the cohomology class (') in Hl(E‘%/'GS F) < ¥ of the couple
(vk(z,")dz,tk(z,!)d®) debned as above. Since the choice &f is independent of!
and moreover (; and o(!) depend holomorphically on!, it follows that #} is #E
holomorphic in ! outside of!;.

Definition 4.25 . D Let the extension! €of Eto !, be debned by the holomorphic
trivialisation given by the sections #}, for all choice of k" { 1+ &j,..., a1} and for
some holomorphic extensiorf, of +f (- ) such that for any! " @ su'ciently close
to !}, we haveQ (g (!))dz " coKer((i (ck(!))).
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4.4.2. Extension to inbnity. B In order to debne the Pber over inPnity, we Prst
rephrase what we have done until now to obtain the holomorphic bundieE= (9 ,#5
underlying the transformed Higgs bundle: we considered the sheavekand F over
CP !, we pulled them back to CP ! & @ by the projection map 2; on the brst factor,
and formed the sheaf map

2, E%% 2\ F
equal to (; on the bberCP ! &{!}. We then debned the vector bundle

W = HY(2) E%% 2} F),

over 81 B and we let #E be the partial connection induced by@”". In what follows,
we keep on writing Eand F for their pull-back to the product, whenever this does not
cause confusion. Notice thaf(y is holomorphic in both coordinates. We wish to extend
the hypercohomology of this sheaf map over inpnity; we will be done if we can extend
the map (¥ over inbPnity in a holomorphic manner. Indeed, the hypercohomology of a
holomorphic family of sheaf morphisms is a holomorphic vector bundle over the base

space of the deformations, in our cas€P 1. Notice that by debnition (; = (%!/ 2dz) ,
so it becomes singular as we lelt converge to inPnity. However, we can slightly change
the sheaf F in such a way that there exist a natural extension of(y. Again, we follow
[16] (Section 4).

Consider the projections2; to the j-th coordinate in the product manifold CP l&
ep l, and set F = 2} Q,:(1)" F.Recall that Q_ (1) admits two global holomor-
phic sectionssy and sy , characterised by the fact that if G, and Q. are the standard

neighbourhoods of0 " EP Yand-" &P with coordinates ! and: = !" 1 vanishing
in 0 and - respectively, then we have

(4.32) so(!) = ! sz (1)=1 in G,

(4.33) so(:)=1 sy (1)=: in @ .

Notice that here ! is the standard coordinate ofC we used to debn€, . Therefore for
8" P we put
(4.34) ¢.: Eus F
1
(4.35) (= sk (8)" (%5%0(8)" dz),

We remark that by (4.32, on Gy = C we have(; = ( %!/ 2dz) = (,, so (x is indeed
an extension of the deformation(y to inPnity. Therefore, in what follows we keep on
writing ( for (" whenever this does not cause any confusion. In the same manner, we
see that

1
(# = %ESO(!)!:# ' dZ) . EO/C$ F Qpl(l)!:#.

From the debnition of the sheavesEand F one can see that the cohomology sheaves
of this map are H%(dz) ) =0 and H*(dz) ) = R , the sky-scraper sheaf supported in
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points of P and having stalk equal tosg(!),=% ' coKer(Res(,p)) inp" P. Therefore,
as in Proposition 4.22 we obtain that the prst hypercohomology space of this map
equalsso(!)i=# ' (+ puw cOKer(Res((, p))), and all its other hypercohomology spaces
vanish. The extension of the vector bundle¥ to inbnity is then given by setting

.. 1 . .
VY, = HY( E‘% F) forall 8" €P | P. In particular, any local section at : =0 of @
is a family of sections of the sheaf=, and therefore can be written

(4.36) so(:)" 1 (z,:),

where/ (z,:) are sections of F depending on the parameter: .

Definition 4.26 . D The extension! €of the holomorphic structure of Eto inbnity is
the extension whose holomorphic sections at inPnity can be written as im(36), with
/ (z,:) holomorphic in :.

We come to the explicit description of a holomorphic section of Eat! = - with
respect to this extension. We make a similar construction as in the case of logarithmic
singularities: prst, we make a basic remark.

Claim 4.27 . DAs ! $ - , all zeros of det((;) converge to one of the points of.
Moreover, supposingq(!) $ p;, we have the asymptotic behaviour

i

(437) q(l) = p] +2 k + O(!" 2+ij

where k is a non-vanishing eigenvalue of the residue of at p; and - > 0 can be
chosen arbitrarily small. In particular, the spectral curve is not branched over the
point ! = - .

Proof. D Let us consider the deformation of the Higgs Peld in terms of the coordinate
:=1"1in 09y . As we see from 4.33 and (4.35), it is given by

- 01
(. = %5dz) .

Notice thatas: $ 0, the brst term on the right-hand side in a bxed pointz* CP*! P
becomes insignibcant, and, (z) converges to%1/ 2dz) . Therefore, for |: | su“ciently
small, all zeros ofdet((,) are in a neighbourhood ofP. In order to determine the
asymptotic of this convergence, remember that in a holomorphic trivialisation of E
in some neighbourhood ofy; the Higgs Peld is equal to the model 1.28) up to terms
in O(z%p;). As in the case! $ !/, the solutions are close to those of the diagonal
model det(diag((. (&))) =0 (see Claim4.24). This equation is

+

i 1’
- kK 9> =0.
) k=1 q%pj 02
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The solutions e{(:) are clearly given by

A . ni
d((l)= 9] +2:"jk= pj +2Tk.

Here the upper index of the solution stands for the pointp; " P it converges to, and
the lower indexk " { r; +1,...,r} is determined by the extension of the cokernel of
(, at the point. An application of RouchZOs theorem gives again the claim.

Finally, & is not ramibed at! = - because this would imply that at least two of
the g« (!) admit the same Puiseux expansion, which is impossible because of.87)
and (1) of Hypothesis 1.28 O

Furthermore, by Claim 4.16 the points of & debPne a multi-valued meromorphic
function in the variable ! near inPnity. Let c{<(!) " & be such a holomorphically
varying zero ofdet((, ), and suppose it converges tg; " P as! $- . We can let the
index k to vary from r; +1 to r. Consider the diagram

;

cplatp’

/ x
% 1

cp! Ep
where 6 is inclusion and the two other arrows are canonical projections. In order
to debne a local holomorphic section of the transformed bundle, we need to choose
elements ofcoKer((, (c{((! ))) for all !', such that they depend holomorphically with !.
It is clear that this is equivalent to choose a local holomorphic sectiorl of 6 2 F over
the branch (c{<(! ).!) near the point (p;,- ) such that for all !, we have/ (q;(! ),H"
coKer((, (d<)). Since any local section ofF near p; multiplied by (z %p;) is a local
section of the sheafE' dz, the section (. (!) %p;)/ of 6 2 F near (pj,- ) is in fact
a local holomorphic section of6 2] (E' dz) on the branch (o{((! ),!) of the spectral
curve & ( CP' & EP g Furthermore, because of Claim4.27, (d<(! ). D) #$ d<(!) is a
simple cover nearg; without branching. In particular, for all g su'ciently close to p;
there exists a unique! (q) such that g = OL(! (@)). Therefore, (o{((! ) %p; )/ (dk(! ),!)is
the lift from CP?! of a sectionQL(z)dz of E' ! !in a neighbourhood ofp;, such that
for all g we have

(4.38) 9 (q)dz " coKer(((q)(a)-

In particular, q'((pj)dz " coKer((# (pj)) = Esing ' dz, as it can easily be checked
using formula (4.35). Conversely, we may consider any sectiod} (z) satisfying (4.38),
lift 9, (z)dz to a section of6 2; (E' dz), and divide the result by q%p; to obtain / .
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Fix now forall k = {r; +1,...,r} a sectiondK satisfying (4.38). All that we have said
above motivates the debnition:

PN oy 3
(4.39) vi(z,!) = 7u0!$1(z%c{<(!))Z%pj so(!),

where we recall again from the proof of Propositio.22that 7- ,s 1 is a bump-function
over the disk of radius$y/ |! |. Remark that evaluation of v{((z, Ndzin z= o(!) is by
debnition in the cokernel of (,. Also, as in the case of logarithmic singularities, for
all ! close to inpnity, let t{((z, 1) be the unique section ofE satisfying the equation
(4.31) for all z, in other words such that D}Vl (z,1)dz, t. (z,!)d®) = 0. A holomorphic
trivialisation of ' Eat inbnity is then given by the D!$$harmonic representatives#f (!)
of the couples(vl (z,!)dz,t, (z,!)d®) forall k = {r; +1,...,r} and allj = {1,...,n}.

4.5. Singularities of the transformed Higgs Peld

In this part, we describe the eigenvalues of the singular parts of the transformed
Higgs beld@' at the singularities. This establishes points @), (6) and (7) of Theo-
rem 1.32

4.5.1. The case of a logarithmic singularity. B Recall from (4.13) that the trans-
formed Higgs Peld is debned as multiplication by the coordinaté&sz/ 2 of a harmonic
spinor, followed by projection onto harmonic forms.

Lemma 4.28. B The set of eigenvalues of the transformed Higgs De(?i* on the bber
BH (with multiplicities) is equal to %& /2 (with multiplicities), where &, is the set
of zeros ofdet((,).

Proof. D Let a cohomology class in the spac& = H1(D) (see4.23 be represented
by 1-forms (v(!)dz,t(!)dg) " ($1°+ $20) ' E. Since this spinor is not necessarily
harmonic, brst of all we need a technical result:

Claim 4.29 . D Let (v(!)dz,t(!)dB) " ($+°+ $2%) ' E be annihilated byD® Then
we have
2" (za (v(!)dz,t(!)dB) = @ (z(v(!)dz,t(!)dB)).
In words, the action of the Higgs beld can be computed on any representative section
in Ker(D$.
Proof. B This is straightforward: we need to show
2l (z(1d %8} )(v(!)dz, (! )dB) = 0,
which is equivalent to
#5G, (#9' (v(!)dz,t(1)dB)9 Bf .
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Now the only thing to remark is that if (v(!)dz,t(!)dg) " Ker(D®, then this implies
that

#9' (v(1)dz,t(1)dB) = (D P’ (v(!)dz,t(!)dB) " $°' E,
and by diagonality of G, with respect to the decompositionS* ' E =($°' E) +
($2' E) (see Lemma2.24), also

G #%' (v(1)dz,t(1)dp) " $°' E.
Therefore we have
#°G, #%' (v(!)dz,t(!)dB) = DG, (D' (v(!)dz,t(!)dB),
and we conclude using the commutation relation
[z,Df{=0
combined with Im(D$99 B} . O

The proof of the lemma is now immediate: via the map 4.28),
(1, H(z(v(!)dz, t(!)dB) = ( qéevalgv(!)) g,

multiplication by z goes over to multiplication by g in the point q" &, and via (4.27)
this is then re-transformed into multiplication by the constant q on the component of
v(!) localised nearq. O

Theorem 4.30 . B The eigenvalues of the transformed Higgs pel have brst-order
poles in the points of ®. Furthermore, the non-vanishing eigenvalues of its residue in
the puncture !, are equal to{%"%, ,,....%"5  }, where {"%,,,...,"% } are the

eigenvalues of the residue of the original Higgs Peld at inPnity, restricted to the
eigenspace ofA corresponding to the eigenvalué.

Proof. B As we have seen in4.29), the point g (!) " & converges to inPnity at the
prst order with 2"# (! %!,)" Y as! $ !, wherek "{ 1+ a,...,a.1} is an index such
that the eigenvalue "} of the residue term of ( at inPnity appears in the eigenspace
of the second order termA corresponding to the eigenvalue ;. By Lemma 4.28 the
transformed Higgs Peld has a logarithmic singularity at!,, and the corresponding
residue is%"' | . O

4.5.2. The case of inbnity. B We wish to show the following.

Theorem 4.31 . B The transformed Higgs Peld has a second order singularity at in-
Pnity. The set of eigenvalues of its leading order term i§%p1/ 2, ..., %pn/ 2}, where
{p1,...,pn} = P is the set of punctures of the original Higgs bundle. The multiplicity
of the eigenvalueXop; / 2 is equal tor %r; = rk(Res((, pj)). The set of eigenvalues of the
residue of the transformed Higgs beld restricted to the eigenspace of the second-order
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Proof. BIn Claim 4.27 we have proved that as: $ O, all zeros of det((,) must
converge to one of the points ofP. Furthermore, the expansion of a spectral point
O« converging to p; is (4.37). By Lemma 4.28, on the corresponding components{j*

is just multiplication by %&, d!/ 2. Hence, we see that the eigenvalues of the leading-
order term of the transformed Higgs Peld are equal td%p;/ 2}j=1,..n , while those of
its brst-order term are {%"{(}jzl ,,,,, nok=r L r - O

4.6. Parabolic weights

Here we compute the parabolic weights of the transformed Higgs bundle with
respect to the induced extension.

4.6.1. The case of inbnity

Theorem 4.32 . B The parabolic weight of the extensior € of the transformed Higgs
bundle at inPnity described in Subsectiod.4.2, restricted to the eigenspace of corre-

sponding to the eigenvalué/p; / 2 of its second order term and the eigenvalués’}, of

its residue is equal to%1 + ) Where*L is the parabolic weight on thef'jk—eigenspace
of the residue of the original Higgs bundle ap; .

Proof. B We prove the statement in two steps. In the brst one, we show that it is true
supposing the original Higgs bundle only has one logarithmic point of a precise form.
In the second one, we show how the case with only one logarithmic point and the
exponential decay results of Sectior2.5 imply the general case.

Step 1.D Let us brst suppose that the set of logarithmic singularities is reduced to a
single point p;, that we may take to be 0 without restricting generality. Furthermore,
we suppose thatE is a holomorphically trivial bundle over C and that in a global
holomorphic trivialisation {+¢} the Higgs beld is equal to

( =diag dz

and the metric is just
(4.40) h(+,+) = 217,

This debnes a parabolic Higgs bundle with weight$ ¢ at 0 and %"  at inPnity, the
beld having deformation

(. )
(4.41) (, =diag —< %~ dz
z 2 k=1,..r
and the D ®*2operator ( )
!
(4.42) D= #+diag " kd?z %'édz
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Recall from Subsection4.4.2 that a representative (v, dz,t, dg) of any spinor/, is
supported in the Pnite collection of disks, g1y, "( o(!),%|!|" ). By Claim 4.27, the
points q(!) are given by

2ll
(4.43) a(l)= ==

Debne a family of homotheties indexed by " @1 P

h] :Cu$ C
(4.44) wHASZ =
in such a way that
h, '(0)=0
(4.45) h, Y(a(1)=2"« for k=rq,...,r

Therefore, this corresponds to a family of coordinate changes= w in the plane, such
that the position of the zeros of the Higgs Peld(, after applying h, * is constant (the

2" for k =rq,...,r), as well as that of the poles Q0 and - ). Moreover, dz = ! dw
implies
(4.46) h!(, = diag < dw % Ldw
w 2 k=1,..., r

and so

@ dw 1
(4.47) hi D®= #+diag " — % =dw ,

w 2 k=1,..., r

where# stands this time for the Dolbeault operator with respect to the w-coordinate.
The crucial observation is that this operator is independent of! . On the other hand,
remark that the Euclidean metric on the base space and the Pber metric4.40) behave
under these coordinate changes as

(4.48) (ho): fdwl? = |1[?|dz[?
(4.49) [ @)7 = 112 w|?
In other words, if we denote byh™) the model hermitian metric on h{ E equal in the
basish; +¢ to
h") = diag(jw|? *),

then the homotheties h, induce a family of tautological isomorphisms of Hermitian
Pber bundles

(4.50) (hiE,h"™)) o (E,h)
(hi +)(w) #9%8 | P * + (2).
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We deduce from @.48) that in the basis hj +¢ the pull-back h{" | of the Laplacian of
the Dirac operator #**has the form

F / / G
(4.51) 7 " +di 1 gL i
. > "+diag 0= ,
! w 2/ k=1,..., r

where" stands for the usual Laplace operator on functions with respect to the metric
|dw|?. The operator" () between brackets in this formula is a bounded operator from
the weighted Sobolev spacéd2(S* ' E, |[dw|?) to L?(S* ' E, |dw|?). The weight at
0 is determined by the condition that for a sectionu " H? we haveu/ |w|> " L2,
and this gives therefore exactly the of" (W) (see Theorem2.22). We infer that the
pull-back hi G, of the GreenOs operator df | is

(4.52) I 26,

where GM) s the inverse of" (), It also follows from Theorem 2.22 that G) is
a bounded linear operator fromL?(S* ' E, |dw|?) to H?(S* ' E, |dw|?). Because
" (W) is diagonal in the basis+y, the same is true for GM). Remark that the pull-
backs h; & of the orthogonal projections onto" | -harmonic spinors are all equal to
the orthogonal projection 3™) onto " (W)-harmonic spinors: indeed, the conformal
factor |!|? in (4.51) changes neither the space of harmonic spinors nor the orthogonal
projection operator onto them. In particular, since " ), G and h are diagonal in
the basis+y, the same thing is true for all 8, .

Now notice that by the debnition of the ﬁ‘E-holomorphic extension to inbnity of
the transformed bundle given in 4.39 and via the identibcation (4.50), the sections
1P« hi (vk(z,!)dz) (modulo the value of the sectionsy of QP 1(1)) coincide: indeed,

1P 7 (2% () (D) Z = 72, (w962 ) (] ) (W)

It then follows from formula (4.47) together with the debnition (4.36) that the co-
e"cient of sp in |!P xhjtx(z,!)d® is also independent of!. From the fact that the
projections &, are also constant, we deduce that the coe"cient ofsy in the pull-back

(4.53) (hi & )(w, 1) = 1P 8 (z,1)

of the spinors |! P« & (z,!) representing |! «(vk(z,!)dz,t«(z,!)dB) does not de
pend on!. Therefore, denoting by f«(z,!) the coe"cient of sq in & (z,!) and by
(hi fk)(w,!) the coe"cient of sq in (hi & )(w,!), we see by invariance of theL 2-norm
of 1-forms by conformal coordinate change that

2D ez = 2 I WD o el

for all !, with the integral on the right-hand side a constant independent of!. On the
other hand, recall from (4.32) that on the a"ne chart Gy of CP 1 we havesy(!) = 1!.
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Observe also that the transformed Hermitian metric A is debned in the chart@,, and
that for any harmonic spinor f we have

ACE I ) = |PPR(F, T ) = |1 2R(f,f )

with : = 1" ! the local coordinate centered atO of the singularity at inbnity. This
means that the elect on the parabolic weights of multiplying by sq is adding %1. On
the other hand, the %" «-eigenspace of the residue of the transformed Higgs bundle
at inPnity is spanned by #{ . From all that has been said above, we deduce

(4.54) R o )= M| 22,

where M is independent of!; in dilerent terms, that the parabolic weight of the
transformed Higgs bundle at inbnity on the %" ¢ -eigenspace of the residue is equal to
%01 + * .

Step 2.b Starting from now, we drop the assumption that the set of logarithmic
singularities is reduced to a point. In this part, we patch together solutions to local
problems provided by Step 1, and use the results of SectioR.5 to estimate the defect
of these patched sections to be solutions of the global problem. We bnd that the
interaction between solutions to local problems near dilerent punctures is small as
|'| gets large.

Let (#E () be a Higgs bundle with some logarithmic singularitiesP = {ps,...,pn}-
In a holomorphic trivialisation {+{(}L:1 near each one of these points, up to terms in
0O(1)dz, the Higgs Peld has the form
Al

i A
(4.55) (=5 5

where the Al are some diagonal matrices as in1(.1). The deformation of these local

models is
b= @ % Ad
(= z2%p 2 z
and similarly the deformation of the local D*2operators (D%} is
(DFY = #5+ (,
A
= #E+ % dz
z %pj 2 '

Finally, that of the Dirac operator # = (D% % (D%)' is
# = (DY %((DFY)',

adjoint being taken relative to the harmonic metric corresponding to (D%j!. Now for
all j we can consider the extension of! to a trivial bundle E! over the whole plane
by keeping the same formula 4.55) for it, endowed with the model metric

h = diag(|z %p |2 }), -
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It is clear that this extension only has one regular singularity (in p;) and an irregular
one at inPnity, so all the results of Step 1 hold for them. In particular, for represen-
tatives

(vl (z,1)dz,t(z,!)dB)
as described in Subsectiort.4.2we have a harmonic representative
& (z,1)" Ker(#)' ( HYC,S" ' EJ)
with -
I8¢ (2,)lf) jozpe 1022 = 112 21
This growth is measured with respect to the diagonal model metrich! ; however, since

the spinor #{ is exponentially concentrated nearp; and here hi"is mutually bounded
with the harmonic metric h of (E (), this implies

(4.56) U Dk ] 16} (2, D)1}, g2 10212 * CJt[Z 2%

for some0<c<C . Let 71 be a cut-o! function supported in a disk "( pi , 3%), equal
to 1on"( pj,2%), such that|. 7/|* K. Then for $ > 0 bxed su"ciently small, the
global section ofS" ' E debned by

8(z,') = 7 (2)8f (z,))
has a meaning, for the holomorphic trivialisation{+{(} is dePned in"( pj, 3%) provided
% is suciently small. Now notice thatif q(!)$ p, as! $- and more precisely

"j
a) =+ 2w O ),

in other words on the component of the transformed bundle with eigenvalue of the
second-order part ofP at inPnity equal to %p;/ 2 and eigenvalue of the residue of at
inPnity equal to %", the holomorphic extensmnq( of the cokernel has as parabolic
weight the *{( corresponding to the eigenspace of the elgenvalue' of the residue
of (. Recall that the harmonic metric on the transformed side is just L?-metric of
the " | -harmonic representative with respect to the harmonic metrich of the original
Higgs bundle. The statement of the theorem will therefore follow once we prove that
the harmonic representative of#(z,!) satisbes the inequality

(4.57) Al 2k x [Bie(z, I} g0 1dzIP* CILE DK
c ,
for some0 < c < C . Our brst aim is to prove the following.

Lemma 4.33. B There exists- > 0 and K > 0 such that for |!| su"ciently large the
inequality
—. " 20hm i 2
#‘ ®(! ) LZ(C) * K| 226(1) 200 )
holds.
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Proof. b Covering the annulus centered atp; of radii 2% and 2R by a Pnite number
of disks of radius $,, we deduce from Lemmas2.30 and 2.31 that the #{ -harmonic
spinor & (z,!) is concentrated in H-norm, up to a factor decreasing exponentially
with !, in the disk "( pj,2%). In particular, it is concentrated up to an exponen-
tially decreasing factor in the same disk inL?-norm as well. Denoting by aClilord
multiplication ( 3.16)-(3.17), we have the estimation

T . / T /
TH @ @8 @) ®|dz]? * Tams ey ?|dz)?
T ) /
1Py 88 (2.) P 1dz?
C
) / | a# /2 2
* T# o (z,1) “|dz|
' p;,3"0)
+ K 8¢ (z,1)[? |dz[>.
'( pj.3"0)! I pj.2")

Again, by Lemma 2.30 the second integral on the right-hand side is bounded by an
exponentially decreasing multiple of 2&} (z,!)ZEz(C) as|!| $- . Therefore, we only
need to treat

E | o # ;2
—#! o (z,!) L2(( p;.3"0))

Remark that by hypothesis,
#)' 8 (z,1)=0,

so we have R

> ¢
#of (z,))= # w#) & ().

This is then bounded by
& (z,1)0(z%p| ",

where O(|z%p; | 1* %) stands for a term bounded from above by a constant (indepen-
dent of 1) times |z %p;|" 1*% because# and (#)' are Dirac operators having the
same local model at the puncture and their dilerence is clearly independent of . In
order to study this quantity, we make use of the coordinatew = ! (z%p;) analogously
to that introduced in ( 4.44). Under this coordinate change, the disk"( p;j, 3%) goes
into the (varying) disk "(0 ,3%]|![). Hence, we need to prove

v a2 01 12 204 / .
wl" 22017 2% (i e yw, 1) 2L 1] 2ldw]?
0 ,3"01]) ' Iz,
* 2" 2%- f (e f 2 "2 2
K |I | c (hI 6k )(W1 I) |dz|2,h |I | |dW|
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Recall from (4.53 that in the coordinate w the spinors|!|" ) kh! &/ are independent
of . Therefore this boils down to

R A /
|w]| 2+2 %f (h! éf )(W)/ 2 |dW|2
10 ,3"0]']) : |dz|?
- /
(4.58) * K ] ! (h! & )w)! |2dz|2 ldw|?

for a suitable constantK > 0. Because
(hi 8¢ )(w) " HY(C),

in particular we have
(hi 8¢ )(w) " L*(C),

and also 1
S(hi e )W) " L.

near the origin. This implies |w|" * {h} & )(w) " L2(C). Therefore,
= =)
Slw|" ¥ A hi & )(w)=

K =2 W=, )

=i 6 W)=,

has the desired property. O
The lemma has the following consequence.
Lemma 4.34. BAs || $- , we have the estimate
6(1)2°, %ia!“ é(!)giz K|t 2%28(1)27,
with K > 0 independent of!.

Proof. B It is su'cient to bound

=6(!) %2 8(1)=,
as in the lemma. The # -harmonic representative 8 #(!) of #(!) is given by the
formula

(Id %# G, #)8(!),
so the dilerence with #(!) itself is

#G#H 8().
Since for any positive spinor. the estimation
2 * 2 2
2. 200y * K2 25y + KI'P2 25,

holds, we deduce that

=

=+ K|IPEG# (! =)

= Uy =2 * = L s \=
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Lemma 2.25 implies that both terms on the right-hand side are bounded from above
by _ _
woo Z " -2
KI 254 6()= 4 ¢ -

We conclude by Lemma4.33 O

We can now Pnish the proof of Theoren#.32 as|! | goes to inPnity, by Lemma4.34,
we have

=" 8(!)=
— L w1

26(1)2 .
In words, the norm of the harmonic representative of the spinoré(z,!) is asymptot-
ically equal to the norm of #(z,!) itself. On the other hand, as it has already been
remarked in the proof of Lemma4.33 we have

28(z,1)20 2 (c 1)

- %b 1
28 (2,122 ¢ py
exponentially as! $ - . Finally, by (4.56) the L2-norm of the spinors & (z,!) as
measured by the harmonic metrich satisfy
(4.59) UZ Dk *2 ¢ (z,1)22, * C|1[* D«

for some0O<c<C, where*L is a parabolic weight of the original Higgs bundle at
the point p;. All this then implies (4.57), so it follows that the parabolic weight of
the transformed Higgs bundle on the given component is equal td{( %1, as it was
stated in the theorem. O

4.6.2. The case of logarithmic singularities. B Next we compute the parabolic
weights at a puncture !, corresponding to the extension of the holomorphic structure
of Egiven in Subsection4.4.1

Explicitly, here is the result we wish to show.

Theorem 4.35 . B The parabolic weight of the extension € of the transformed Higgs
bundle at the puncture!,, restricted to the %' | -eigenspace of the residue of the trans-
formed Higgs Peld (herek "{ 1+ &,...,a+1}) is equal to%l + * ¥ , where*{ is the
parabolic weight of the original Higgs Peld at inbnity, restricted to the|-eigenspace
of the second-order term and the'} -eigenspace of the Pprst-order term of the polar
part of the Higgs Peld.

Proof. B We follow the proof of Theorem 4.32 Again, we divide the proof into two

steps according to the number of distinct eigenvalued, of the second order term of
D at inPnity. Recall that some of the spectral pointsg " & converge to inPnity as
I' $ !, whereas others remain bounded.
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Step 1.D First we suppose thatn®= 1, that is to say A is a simple diagonal matrix,
and that in a global holomorphic basis{+{ } the Higgs Peld has is of the form
Iy . dz
= = + " —
( 2dz diag(" ¢ ) -
with one regular singularity in 0 and an irregular one at inPnity, and pnally the
harmonic metric is
(4.60) h* = diag(|z|' 2 )i, .

This induces a parabolic structure on Ewith weights %2* { at 0and 2*{ at inPnity.
The deformed Peld is

1 %! P o V4
(= “5—dz+diag("{ ),

and the spectral points are

2"

1 opl,
Making the coordinate change

h :C% C

(4.61) W #Yz = %
the Peld writes
(4.62) (= %%dw+diag("I< )dWW.
The Euclidean metric |dz|? on the base and the bber metrich” are transformed into
(4.63) [' %!4]" 2|dw]|?
(4.64) diag(! %4 [P« | 2« )iey
and the position of the spectral points become simply

2",

independent of !. As in the case of the singularity at inbnity, writing h") for the
diagonal model metric )

diag(Iwl” 2« )iy
the coordinate changes induce tautological isomorphisms of Hermitian Pber bundles
(4.65) (h E,h™M)y o (E,h#)

(hi (W) #%85 | %! * +c(2).
Via this isomorphism the representativesvy(z,!) given in (4.30) behave as follows:
' 9%!4] ) v (z,!) = vik(w),

which is independent of!, or equivalently

' %!1] ) v(z,1)(! %!1)dz = vy (w)dw,
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independent of! . By the equation (4.31), this implies
' %!4] )ty (z,1)(P%E)dB = t)(W)dws,

independently of ! . Exactly as in the case of the singularity at inPnity, the Laplacian

and the GreenOs operator o in the coordinate w only depend on! through a

conformal factor |! %!4|" 2 and |! %!4|? respectively, so the pull-backh|®, of the

projection onto #' -harmonic spinors is independent off . We deduce using invariance
of the L2-norm of 1-forms by conformal coordinate change that for the# -harmonic

spinor & (z,!) representing the cohomology class ofvi(z,!)dz,tx(z,!)dB) we have

" 2 2 _ 2) k" 2 " 2 2
|8 (2, )i azp2 1d2]” = [P %!4] Jk |81 (W) ) jaw 2 1AWI%,
c

where #(w) is the harmonic spinor representing (v (w)dw, tx (w)dws). We see also
that the integral on the right-hand side is independent of!, hence we have the desired
behaviour giving parabolic weight %1 + * , on this component.

Step 2.B We drop the assumption that the second-order termA of the original Higgs
Peld is a simple matrix. Let7 be a bxed cut-o! function supported on the complemen-
tary C! "(0 ,1$o) of a large disk, equal tolonC! "(0 ,2/$g). In C! "(0 ,1U$y),
the Higgs Peld is up to a perturbation

dz

z

with A and C diagonal matrices as in (.31), therefore decomposes into a direct
sum of problems studied in Step 1. In particular, for each such model problem with
eigenvalue of the second-order termi; we have harmonic spinors# (z,!) wherek "
{1+ &,...,&4+}, such that

(* = %Adz+ c

Hé'k(z,!)E‘lezhn ldz|? = |t %[ ) .
. ,

Again, since the harmonic metric h of the Higgs bundle (E () is mutually bounded
with h* in a neighbourhood of inbnity and 8| is supported there, this implies

(4.66) ot ool 2Bk "k(z,!)tl'dzlz,h ldz|® * C|! %[ 22
for some0 < c < C . The section

8(z,!) = 7(2)8L(z,!)

is well-dePned because the local holomorphic trivialisation+f of Eis dePned in
C! "(0,U$y) for & > 0 su"ciently small. The statement of the theorem will again
follow if we prove

(467) Lo E B - Ct’a!m(z,!)ﬁ'dm,h jdz? * CJt 91" )

where B{! 6(z,!) is the harmonic representative of §(z,!). As a Prst step in this
direction, we prove:
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Lemma 4.36. B There exists- > 0 and K > 0 such that for |!| su"ciently large the
inequality
2

:‘:LIII

* K% 22 %28(2,1)2 5 )
holds.

Proof. D We follow the proof of Lemma 4.33 We set (D = #E+ (* and let
#'  (respectively (#/ )') stand for its Dirac operator (respectively its adjoint). By

Lemma 2.30, # is supported in L2-norm up to an exponentially decreasing factor
in!inC! "(0,V$,). Therefore, the lemma reduces to the same estimation fo#}..
Moreover, by assumption we have

#' ) 8 (z,1) =0,
S0
#e(z,)=[# %@ ) 18(z,").
The dilerence on the right-hand side of this formula is bounded above byK |z|" 1" %
for someK > 0 independent of!, because the two Dirac operators depend oh in
the same way, hence their dilerence does not depend on it at all. Introducing the

coordinate w = z(! %!,), this becomesK |w|" " %! %!,|** % Therefore, it is su"cient
to prove

w on oo o/ J "
wl" 2 290 9011 2% 6l 2,1)] [ 1t 900 2w
Cl IO ' |l o) e

u- / . /2 "
KIEgen T e @) g, It T P,

for a suitable K > 0, or more simply

R W
w2 2 6 (z,1)) |y, o, AW
CL IO ' | o) '

T /5
(4.68) * K C/e,L(z,!)/ gz p 1AW,
This goes similarly to (4.58): because in the coordinatew = h, *z the spinor |! %

1|2" 2« 8l (z,!) is independent of! (see Step 1) anch and h* are mutually bounded,
it boils down to

" " 0/ ] /
| 2 2%/ (h! @L)(W)/ 2d . |dw|?
CLIO ' Y1) el
RS } 2

. Lol 2

K GR-AIC L s I
Now remark that hl#, " HZ(C,|dw|?,h* ) implies in particular that h}#) "
L2(C,|dw|2,h* ). Furthermore, near the origin |w|" ¥ *hl &l " L2_(Jdw|?,h* )
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provided that - <* # . Hence|w|" ¥ %h} &, " L2(C,|dw|?, h* ), and

= =2
Spwl” T %] 6|2
_ K L2(C,|dw|2,h" )

K =2 =

hi &} )
L2(C,|dw[2,h" )

has the desired property @.68). O
This has the following consequence.
Lemma 4.37. DAs! $ !, we have the estimate
6(z,1)27, %ia!” (B(z,!)ifz K[! %![2%26(z,1)2,
for some K > 0 independent of! .

Proof. B Again as in Lemma4.34, it is su"cient to bound
=6(z,!) %2l 6(z,1)=,
as in the lemma, where
21 #(z,!) = (1d %# G # )é(z,!)
is the #/ -harmonic representative of$(!). Thus by Lemma 2.27 we have for the norm
of the dilerence
T Gi# 6(2,1)7, ¢ KIL %[ 27H 8(z,1)7,
and we conclude using Lemmat.36. O

We are now ready to Pnish the proof of Theoren¥.35 by Lemma 4.37, as! $ !
the norm of the harmonic representative of the spinoré(z,!) veribes

=2 6(1)=
L2 oyg 1.
26(1)2%,
On the other hand, since the support of7 in the coordinatew is C! "(0 ,|! %!|/$,),
and these sets exhausC as! $ !|, we have that
26(1)2,
= =2
=6,(1)=,

By (4.66) the L2-norm of #}(z,!) as measured by the harmonic metrich satisbes

uh 1.

ot %!y #2)k * ) 'L(z,!)':ﬁdzp,h |dz[> * C|! %!|" #2)« .
Putting together all this, we obtain ( 4.67), so that on the component of © near !, on

which the transformed Higgs Peld has eigenvalués'{ , the parabolic weight of the
induced extension is%1 + *{ . O
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4.7. The topology of the transformed bundle

In this section, we compute the topology of the underlying holomorphic bundle &
of the transformed Higgs bundle (see4.8)) relative to its extension over the punctures
given in Section4.4. We then deduce the topology of the transformed Higgs bundle
relative to its transformed extension given by Debnition3.11 We recall that we have
denoted

(4.69) 6= rk(Res((,p))).
pY%eP

The result we wish to show is the following:

Theorem 4.38 . D The rank of ' Eis equal to B, whereas its degree is equal ta +
deg(B + r, wherer and deg(E are the rank and degree ofE respectively.

Notice that it gives in particular ( 1) of Theorem 1.32

Proof. B Recall that we have denoted by Ethe sheaf of holomorphic sections of the
bundle Eunderlying the original Higgs bundle; F was debned as a sheaf of mero-
morphic sections of E' $1° having singularities at P , {-}  with singular parts
in prescribed spaces (see Subsectich3.1); and bnally F = 2} F' 2} Q,:(1). By
hypothesis, ( (and so (+ for any 8) is holomorphic with respect to the holomorphic
structure #E Thus we may consider the holomorphic chain complex

E—'o
o |
E.¥ g
s
0o—'F

1
in 8" €P . The hypercohomology long exact sequence associated to it yields the
exact sequence of cohomology spaces

0% HO(CP, B 9% HO(CP!, F) % H(E F)
(4.70) % H(CP®, B 9% HYCPL F)us O,
since we have seen thaH®( Ed% F) = H¥( Ed% F) = 0. All of the spaces in this
exact sequence come with a natural holomorphic structure oveEP 1:

1
b the cohomology spaces ofEbecause this latter is trivial over EP
b those of F because this latter is the tensor product of a trivial vector bundle

over EP * and Q.:()
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Ppnally, HY(E9% F) = W has its holomorphic structure #& induced by G
extended to the singularities in Section4.4 by the induced extension' &

Moreover, all of the maps in the exact sequence4(70 vary holomorphically in 8 "

1 . . .
€P ~ with respect to these structures and extensions: this follows from the depbnition
of F and that of the induced extension. Therefore, it induces an exact sequence of the

1
sheaves ove£P ~ of holomorphic sections of the corresponding cohomology spaces:

0us QH(B) % QHO(F) s Q'
% QHY(B) % QH'(F) %8 0,
where Ostands to denote the sheaf of regular sections oré:P1 with respect to

the above mentioned holomorphic structures. By additivity of the Chern character,
we deduce the equality

4.71) ch( & = ch(QEP ", HO(E)) %ch(QEP ', HI(E))
4.72) %ch(QEP ,HO(B)) + ch(QEP H(B))

1 1
in H' (EP 7). Put 2 = 2,, the projection onto the second factor inCP* & EP . One
1
has direct image sheave®, Eand 2, F on €P "~ debned by

2, By = QU,H°(CP Y, B)
2 Fly = QU,Ho(CP*, F)))= QU,HO(CP, F))' Q,:(1)(V),

for any open setU " CP !, and one can form the Ovirtual® sheaves

2By = QU,H°(CP*, B) % QU,H*(CP*, B)
2, Flu = QU,H%CP?Y, F)) % QU,HY(CPY, F)).

Again by additivity of the Chern character, the right-hand-side of (4.71) is equal to
ch(2, F), which is in turn equal to

21 (ch(F), Td(T.)),
by the Grothendieck-Riemann-Roch theorem, where
T. =T(CP'&EP ) %2' TEP = 2,TCP!

is the relative tangent bundle of 2, and Td stands for its Todd class. Moreover,2, is
just evaluation on the fundamental cycle of CP 1. Similarly, we see that (4.72) is just

%ch(2,B = %2, (ch(B, Td(T.)),
and thus we obtain

(4.73) ch(' & = [( ch(F) %ch(B), Td(2,TCPYH/[CP1].
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Now we have

ch(B=r+c(B «

ch(F)=Jr+c(B+h  rk(Res((,p))L @1+ A)
pU%P

TdTCPY) = Td(Qp:(2)=1+ h,

wherer is the rank of the bundle E c,(B is its brst Chern class, andh and A are
the hyper-plane classes oCP ! and €P ' respectively. Putting all this together, we
obtain )

ch(F) %ch(B = ah +[r + c,(B + a]R,
and plugging this into (4.73),
(4.74) ch(' & =6 +[r +deg( B + 81A,
as we wished. O

We are now ready to pass back to the transformed extension of the Higgs bundle in-
troduced in DePnition 3.11, hence establishing points 2), (5) and (8) of Theorem 1.32

Corollary 4.39 . B The parabolic weights of the transformed Higgs bundle endowed
with its transformed extension are *{ at the logarithmic punctures (on the same
subspace as in Theorend.35) and *L at inPnity (on the subspace in Theorem4.32).
The degree of the transformed Higgs bund IEwith respect to its transformed extension
is equal to the degree ofE

Proof. B Recall from Theorems4.35and 4.32that the parabolic weights of the trans-
formed Higgs bundle relative to the induced extensions considered in SubsectioAst.1
and 4.4.2are equal to%l+ *{ at the logarithmic punctures and to %1+ *} at inpPn-
ity. On the other hand, by Debnition 3.11, the parabolic weights of the transformed
Higgs bundle with respect to its transformed extension are required to have parabolic
weights between0 and 1. This means that a local holomorphic trivialisation of the
singular component of the transformed extensionEnear the puncture ! is

(! %18 (1),
where #| (!) is the local holomorphic section of the extension € at !, debned in
Subsection4.4.1and k " { 1+ a,...,a3+1}. On the regular component of &, the

harmonic representatives have bounded norm, which give8 parabolic weight. There-
fore on this component one does not need to change the trivialisation. Similarly, a
local holomorphic frame of Enear inbnity can be expressed by

e (1),
where ¢/ is the local holomorphic section of the extensiori Eat inbnity debned in
Subsection4.4.2 localised nearp; for somej "{ 1,...,n},andk " {r; +1,...,r}.
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Clearly, this way we increased all non-vanishing parabolic weights byl.. On the other
hand, by Remark 1.12 even if the algebraic geometric degree of the bundle depends
on the choice of extensions, the parabolic degree with respect to a bxed metric is

independent of them, because it is alway®. Recall from DebPnition 1.11 that
* *r

deg,. (6 = deg( B+ (%1 + *1).

J9%{1,...n, #} k=r;+1

This quantity is therefore equal to

(4.75) degy (& = deg(§ + *h.

j9%{1,..,n, #} k=r;+1
Putting these expressions together, we deduce that
deg(® = deg(' B %6 %r,
where we recall again that we have debned

*nN
6= rk(Res((,p;)).
i=1
Using formula (4.74) we get

(4.76) deg(® = deg( B. O
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CHAPTER 5

THE INVERSE TRANSFORM

In this chapter we construct the inverse of the transform introduced in the previous
chapters. In line with the properties of the ordinary Fourier transform and its algebraic
counterparts, the inverse is debPned by a formula which only dilers from the transform
in a sign.

Recall from Section3.1 that the transformed Rat connection on By = L2H 1(Dy) is
debned by theL 2-orthogonal projection of 8%zd!) . For any parabolic vector bundle
with integrable connection (F,DF,hF) on @ satisfying the conditions of Section1.1
(i.e., having a bnite number of simple poles in Pnite points and a second-order pole at
inbnity, such that the eigenvalues and parabolic weights meet the conditions imposed
in Theorem 1.17), one can debne the inverse transformed bundle with integrable
connection (¥, 37 ,#7) on C by a procedure similar to the one debning(®, B, A)
starting from (E, D, h): namely, consider the deformation

(5.1) DF = DF + zd!)

of the connection parametrised byz in C minus a bnite set, and let¥, be the brst
L2-cohomology of
DF 1. DF 2,

Foot $5' F OB $5' F.
These vector spaces are of the same dimension and form a smooth vector bundle
over C minus a bnite number of points. The critical points are easily seen to be
the opposites of the eigenvalues of the second-order term & at inbnity. The proof
goes similarly to the case of the direct transform. We also debne the Hilbert bundIéf
over C, the L2-metric ¥ and the orthogonal projection 2, : i, $ ¥, in an analogous
manner as in Section3.1. Next, let the inverse transformed integrable connection
F be debned by the parallel sectiong,(ez" 2!, , (1)) for any harmonic section
vz (1) Iyzo. Equivalently, denoting by ¥ the trivial connection with respect to w in

the trivial Hilbert bundle H, the inverse transformed Rat connection can be given by
the formula

(5.2) BF =, + zd!),
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as it can be seen by the argument given in Sectioi8.1, changing signs. Finally, we
debne the inverse transformed metridiF on the DberfyZO again as theL ?-norm on e
of a DF0 -harmonic representative. We can now state the

Theorem 5.1 . B The inverse transform of N : (E,D,h) #$ (B,0,8) is N'! :
(F,DF hF) #$ (¥,0F HF). In dilerent terms, for any bundle with integrable
connection and harmonic metric (E,D, h) satisfying the conditions of Section1.1
and the ones imposed in Theoreni.17, there exists a canonical Hermitian bundle

isomorphism ; between® and E such that; 'D = Iﬁ

Remark 5.2 . B As one can check using the transform on the level of singularity pa-
rameters described in Theoreml.17, the assumptions (1) and (2) of that theorem are
symmetric, in the sense that if they are fulblled by(E,D) than the same is true for
(B, D). Therefore, the transformy can be applied to this latter, so the a"rmation of
the theorem has a meaning.

Proof. B The proof is done in four steps: Prst, we prove that the Pbers oved " C

of E and ® are canonically isomorphic. Next we show the same thing for the other
bPbers. Then we prove that the integrable connections are the same, and Pnally we
establish equality of the harmonic metrics and parabolic structures.

Step 1.D Consider the product manifold C & @, and let 2; and 2, be the projection
to the brst and second factor, respectively. Denote bye the pull-back vector bundle
2, E on the product, and dePne the connectiorD = 2;D %! dz %zd! . Notice that on
the bberC &{!o} this just gives the deformation D,,. Now form the double complex

D= $§(E),

where$"C (respectively $‘é) denote smoothp-forms (smooth g-forms) on C (@); and

with dilerentials d 1 = D,,ds = Q%Zd!) . Remark that these dilerentials commute

(in the graded sense), and their sum is justD. The desired isomorphism will result
from the study of the spectral sequences corresponding to the two dilerent Pltrations
of this double complex.

Namely, consider the brst bltration of D. the brst page of the corresponding spectral
sequenceE;*

(5.3) 0 $3°, B 0
d;

0 $3, B 0
d;

0 © 0
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where d, stands for the operator induced by ¢. More precisely, this operator is
obtained as follows. Consider for example a local section d®: if B(!o) is an open
ball in @, it is given by cohomology classeqd, ;] in L?H*(D,) changing smoothly

with | " B(!g). Here,, =, (2) is a global L2-section of E over C, in the kernel of
# . In particular, D,,, =0, and since the two dilerentials commute, we then have
D, :d,,, =0. Inother words, d,, | is a d;-closed section ofD"*onC & B(!o); hence

we may consider its cohomology class with respect to,d and letting ! vary these give a
section of$1' B over B(!,), which is by debnition d>[, 1 ]. Now remark that under the
isomorphism of the brstL 2-cohomology of the elliptic complex @.24) and the space of
# -harmonic sections given in Theorem2.21, this induced connection goes over td®
debned in Section3.1; in other words, under these identibcations ¢ = ©. Moreover,
the connection® also satispes the conditions of Sectio.1. Therefore, by Chapter 2
and Section 2.3 the L2-cohomology of® = B, is non-trivial only in degree 1, and so
when passing to the second pagEZ‘ ¥ of the spectral sequence, we obtain by debnition

E% L= PZSO and all other terms equal to 0. In particular, the spectral sequence collapses
at the second page, and the total cohomology of the double complex is canonically

isomorphic to @o in degree2 and vanishes in all other degrees.

Consider now the second pltration of D, in order to form the brst page Ef’¥ of
the corresponding spectral sequence, we Prst take cohomology on each column of the
double complex with respect to ¢ = 8%zd!, and so it is equal to

(5.4) 0 0 0

$ $

L2(C.E)e —Bl2c 8L By — N 2(C,$2 E)e.

In words: for example, the (0, 0)-term consists of L 2-sections ofE on C & @ which
are a product of an arbitrary section of E on C and the function €*. Now notice
that the only possibility for a non-zero section of this form to be in L2 on {z} & @
is for z = 0. Put another way, the cohomology along the slicedz} & € vanishes for
all z £ 0. Hence we may replace the double comple) without changing the spectral
sequence associated with this Pltration (and so the total cohomology), by the double
complex (germ D) whose component of bidegreép, o) is the space ofl2-forms with
values in E of bidegree(p, g debned onVy & @ for any neighbourhoodV, of 0" C
and where we identify such forms if they coincide on an arbitrary neighbourhood of
{0}& 6. Of course, the dilerentials of this new double complex are induced by those
of Din a trivial way.

The idea now is to consider the spectral sequencgerm E) corresponding to the
brst bltration of (germ D): by the general theory of spectral sequences, this will
then abut to the total cohomology of (germ D), which is, as we saw in the previous
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paragraph, equal to that of D, that is to @0. First trivialise E in Vp: this just
means that we idgntify the total space of the bundle with Vy & Eq. Since the vector
bundle E on C & @ is just the pull-back of E on C, this also gives an identibcation of

E $ Vo & @ with the trivial bundle (Vo & @) & E,. Without loss of generality we
may assume0 7 P, so forV, su"ciently small the connection D can also be taken by
a gauge transformationg to the trivial one. Thus in this trivialisation and gauge we
have d; = d %!dz where d stands for the trivial connection in the z direction. The
brst page (germ E)f¥ is then equal to the cohomology spaces with respect to this
di'erential:

(5.5) $2' L%(@,Eq)e* 0 0
d;

$3 ' L%(G, Eq)e* 0 0
d;

L2(6,Eq)e 0 0,

where, as beforeL2(@,Eg)e? stands to denote functions with values inEq of the
form ' (1)e? but this time on Vy & @, and the L2 condition now only implies that

' must be rapidly decreasing as|!| $ - . The next remark is that since we only
have terms in degreep = 0, the dilerential induced by d ; is just itself: indeed, it is by
debnition d, modulo the image of d, but this latter vanishes for p= 0. Thus, in order
to obtain the second page(germ E)}"¥ of the spectral sequence, we take cohomology
with respect to d, = 8%zd!) . Notice that via the gauge transformation €' 2' the
whole picture can be rephrased as the de Rham cohomology of rapidly decreasing
sections+ on @ with values in Eq, WhICh is similar to compactly supported de Rham
cohomology. Therefore in(germ E) all elements except for the one corresponding
to bidegree (0, 2) vanish, and this latter is canonically isomorphic to Eq via mapping
an element' o " Eg into the germ

[07(1)e d!) dA,

where 7 is a bxed exponentially decreasing bump-function or€ with integral (with
respect to the volume form|d! |?) equal to 1, and [.] stands to denote the de Rham co-
homology class of exponentially decreasing forms o8 with values in Eq. Conversely,
for an arbitrary class [' o(!)e* d! ) d¥9 where' o(!)€* is a germ of exponentially de-
creasing functions on@ with values in Eo and in the kernel of d; = (d %!dz), we
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may debne

[o(l)e? d! ) db #%evaly ' o(!)e” |d! |2
_ e

(5.6) = o(Hd!P" Eo
e

and verify readily that it is independent of the section representing a cohomology class.
The fact that Eq and @0 are canonically isomorphic now follows from the fact that

they are both canonically isomorphic to (dilerent gradings of) the total cohomology
of the double complex D,

Step 2.D The-Prst thing to do is to describe explicitly the isomorphism obtained
above. Let ?250 be an element inl@o: it is a class in the cohomology spaccE%‘1 in the

spectral sequence corresponding to the Prst bltration oD, Hence it is represented by
a (1, 1)-form B,(z;1) over C & @ such that

(1) (D %!dz) ) B(z1) =0
) (8%zd!) )-50(2; 1) =0; in other words, there exists a(0, 2)-form ' ¢(z;!) over
C & @ satisfying )
D' o(z;!) = (8 %zd!) B,
Concatenating the map )
B #8 o(z;!)
with an analog of (5.6), namely

(5.7 [o(z:!)] #%Beval,o ' o(z:!)
(&)

we get the canonical isomorphism
>. ? -

1o 50 #Y$-o = eval=o ' o(z;!)
@

between @0 and E provided by the previous step.

Fix now an arbitrary z, " C, and consider the double complexD,, having the
same(p, 6)-components asD, but with dilerentials d 1 = D,,d, = 8% (z %z0)d!) .
In order to obtain the components of the brst page(EZO)i"¥ of the spectral sequence
corresponding to the Prst Pltration of D,,, we need to take cohomology with respect
to d1, hence these will be the same as those dDin (5.3), and the dilerentials will
be induced by ¢. Now since zg is a constant, observe that for any local section
,1(2) " Ker# in! of harmonic sections overC the relation

dy, 1 =[(B%(z%z0)d!) ), 1 1= [(B%zd!)), ]+ zod! ) , 1 = Dy(, 1),

holds, WhereI§ZO is the deformation of 9 introduced in (5.1). To get the second page
of the spectral sequence, we take cohomology with respect to,& 9, and therefore
if zo does not belong to the set of opposites of eigenvalues of the leading term Bf
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then this is a Pnite-dimensional space, equal by depPnition t@zo. Notice that by the

results of Subsection4.5, the set of zo where this does not hold is exactlyP, the set
of singularities (at Pnite points) of E. Similarly, the second Pltration of D,, gives rise
to a spectral sequence whose brst page is (analogously t6.4))

0 0 0

$ $

LZ(C,E)e(Z" 2p)! L!LZ(C,$(1: [ E)e(z" zp)! L!LZ(C,$% ! E)e(Z" 20)!

Hence the only bber{z} & @ over which these spaces are non-trivial is foz = zo,

so we may consider the double compleXgerm D,,) whose components are germs
of forms in a neighbourhoodV,, & @ of the bber{z,} & @, two such germs being
identibed if they coincide in any such neighbourhood, and with dilerentials coming
from those of D,,. As before, the spectral sequences corresponding to the second
bltration of these double complexes agree starting from the brst page, so in particular
their total cohomologies are the same. Now, we pass back again to the prst bltration
and compute the spectral sequence digerm D,,) with respect to it: in a convenient
trivialisation of E in Vy and gauge, the brst page is equal to

(5.8) $2' L%(Q,Ey)e” 0 0
d;

$5 ' LA(Q Ep)e” 0 0
d;

L2(8,E,,)e” 0 0

with dilerentials given by d , = 8%(z%z,)d!) . As in step 1, the second page therefore
contains only one non-vanishing component: the one corresponding to bidegrée, 2),
and it is canonically isomorphic to the vector spacek,; this proves that the vector

spaegsE;, and @20 are canonically isomorphic to each other. Again, an element
Mzo of @zo is represented by a(1, 1)-form MZO (z;!) over C & @ satisfying (Q % (z %

Zp)d! )-BZO (z;!)=0, i.e., there exists a(0, 2)-form ' ,,(z;!) over C & @ with
D: (" 2(z:1)) = (8% (2 %20)d!) )B,, (z;1),
and an explicit way of descrlblng the obtained |somorph|sm is given by

(5.9 V2o M HYB-,, = eval=z, ' 5(Z;!)
é
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Step 3.B By the previous points, we have that the bundlel@S is isomorphic to E via

the isomorphisms; y. Now we prove that the integrable connectlonlﬁ on @ is carried
into D on E by this bundle isomorphism: for this, it is clearly su"cient to prove that

any local parallel section for® is carried into a parallel section forD. For simplicity,
we shall consider a local section neaw = 0, but we will see that the proof does not
use this.

For this purpose, we need to work on the productC & @ & C, parametrised by
(z,!,w); we keep on writing the variable w in lower index. We shall considerE as
heing a bundle over this space by pull-back, without writing it out explicitly. Let

MW be alﬁ—parallel local section of®. As in Step 2, such a section is represented by

giving a global (1, 1)-form Bw(z; 1) of E on C & @ for eachw in a neighbourhoodV,
of 0" C, verifying

(1) D1, B,(z;1) = 0 for all Pxedwo " Vo and 1o " @
(2) (d2 %(z %wg)d!) )'5W(z; 1)=0 for all bxedwg " Vg )
(3) the section inw of the cohomology classes of the above elementslﬁparallel.

ByJHodge thegry, we may suppose thalBWO(z; o) is the Dy, -harmonic represegtatiye
of Mwolc*{ 1,3 and also that MWO (z;1) is the Iﬁwo-harmonic representative of MWO
This way we rephrase the above conditions as

(1) for all bxed__wo " Vp and !0 " @ its restriction to the Pber C & {10} &{ wo} is
in B, that is # B, (z;10) =

(2) for all Dxed Wp " Vo the gIobaI section in! of the above elements of®, is in
@WO, in di'erent terms #W WO(z =0

(3) and for all wo " Vo, $w : 4+ 1dw) )B,(z;1)|w=w, = 0.

As before, ) means that for all w " Vy there exists' ,(z;!) " %C & €,$2°"' E)
such that

(5.10) Dy w(z:!) = (8% (z%w)d!) B, (1)
and by Hodge theory, such a section can be debned by the formula
(5.11) "w(zi!)= G/ D} (B%(z%w)d!) B, (z:1),

where G, is the GreenOs operator (#!’ # . (Here we used thatG, is diagonal with
respect to the decomposition$2 + $2, a standard consequence of the fact thatt #
is diagonal with respect to the same decomposition, which comes immediately from
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harmonicity of the metric.) Now by ( 5.9) and (5.10) we have
( - )

D- (W)lw=w, =D eval=y o "w(zih)

Jw=wq

8 D' wo (Z;D)]z=wo + o w(Wo; 1) [w=wo

tdz) g (woi!)
é

+ (8% (o Yowo)d!) )BW()(WO; D)+ B w (Woi )lw= we

(remember that ¥ stands for the trivial connection with respect to w in the trivial
Hilbert bundle B, whereas8 is the trivial connection with respect to ! in the trivial
Hilbert bundle K). The integral of the middle term in this last formula vanishes by
StokesOs theorem. Furthermore, on the diagonal= w of C & C we have & = dw, so
we are left with

@+ 1dw) ) we (Wos ! ).
é

Applying to this quantity ( 5.11) and the commutation relations

(5.12) [+ dw) ,8%(z%w)d!)]=0 [d+ 1dw),D,]=0
we obtain )
(5.13) ~G/D{ (8% (z%w)d!) )(¥ + ! dw) )BWD(WO;!).

(&)

.. .l
Consider now condition (3) above: dgnoting by#, and 8, the positive and negative
Dira|c operators of the deformation @ + wd!, moreover by G,, the GreenOs operator
of 8,8, it can be rewritten as

(Id %8, &, 8. )(# + 1dw) B, (z:1) = 0.
In order to Pnish the proof, it is su"cient to prove the commutation relation
(5.14) M+ tdw) ,8,]=0.
Indeed, this then implies
[+ tdw) ,8,]=0 [4+1dw) ,8,]=0,
and interchanging ¥ + !dw) turn by turn with QfNO, @,, and #,, using each time
condition (2), we get
(H+ 1dw) )By, (woi1) = (8 + 1dw) )(1d %R, Guvo Bl ) o (Woi 1)

= (1d %8, Bu, By, (8 + 1dw) B, (wo; 1)
= O,
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and so (.13 is equal to O; but on the other hand it is just the expression for
D- (W)|w= wo s and this shows that - (w) is parallel in wgp. There remains to show 6.14):
recall that 8, = B,, %D}, , with

D, = & (8% (z %w)d!).

Now the Prst relation in (5.12 and 8 = (Id %# G,# ) combined with the second
relation in (5.12) show that

[+ dw) ,0,]=0
and we conclude.

Step 4.B Here we wish to show that the double transformed metricﬁ__ is equal to
h. In Step 3 we have already shown that the 3at connectiond and L] agree. On
the other hand, using the results of Section4.2 twice, we see thatH is a harmonic
metric for B = D. Therefore by uniqueness (up to a constant) of the harmonic metric
corresponding to an integrable connection, we get thal = h.
An equivalent way of deducing the same assertion would be as follows: using again

the already proved equality I§ = D and uniqueness of the harmonic metric, we will
be done if we can prove that the unitary part Iﬁ* (with respect to ﬁ) of the double

transformed RBat connection Iﬁ is equal to D*, the unitary part of D with respect
to h. This can be done in a completely analogous way to Steps 1-3. The changes we
have to make are the following: consider the double compleﬂ;0 having the same
components asD,,, but with dilerentials d ; = D!H and d, = 8%z/2d! ) % =l 2d9 .

One establishes that these operators commute, thereforeDjO really forms a double
complex. We then see from 4.14) that the deformation

o = OH + %wd! ) +%wd!®)
induced from the di'erential
Q%%(z %w)d! ) % %(z%w)d.ﬂ)

is the natural deformation of the Higgs-bundle structure induced by the deformation
By . In concrete terms, they are related by the gauge transformationg’ 1. Therefore
the double transformed bundle BH is isomorphic to g’ *gE = E, and the unitary
connection ( )

B =g, e+ ldw) + dw)
= P 2 2
is identibed to D™* just as ® with D, using the commutation relatjgns

. | 14 R
¥+ 'édw) +'§dw) ,9%%(z%w)d! )%%(z%n)dﬂ =0,
A
&l+!—dw)+?dw) DM =0
2 2T T
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instead of (5.12), which tog%her imply the analog
Lo v H
M"’ EdW) +§dW) ’#W =0

of (5.14) for the deformed Dirac operator

H
#, =DM DM,
This then allows us to conclude equality of the unitary connections.

Since the Hermitian bundles(@, ﬁ) and (E, h) coincide, so do the Rags of their
parabolic structures in the singular points; as well as the parabolic weights, because
they are supposed to be betweerd and 1, and there is a unique way of choosing
holomorphic sections with such behaviours. O
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