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NAHM TRANSFORM FOR INTEGRABLE
CONNECTIONS ON THE RIEMANN SPHERE

Szil‡rd Szab—

Abstract. Ð In this text, we deÞne Nahm transform for parabolic integrable connec-
tions with regular singularities and one PoincarŽ rank1 irregular singularity on the
Riemann sphere. After a Þrst deÞnition usingL 2-cohomology, we give an algebraic de-
scription in terms of hypercohomology. Exploiting these di!erent interpretations, we
give the transformed object by explicit analytic formulas as well as geometrically, by
its spectral curve. Finally, we show that this transform is (up to a sign) an involution.

RŽsumŽ(TransformŽe de Nahm pour les connexions intŽgrables sur la sph•re de Riemann)
Dans ce texte, nous dŽÞnissons la transformŽe de Nahm pour les connexions intŽ-

grables paraboliques ayant des singularitŽs rŽguli•res et une singularitŽ irrŽguli•re de
rang de PoincarŽ1 sur la sph•re de Riemann. Apr•s une dŽÞnition en terme de coho-
mologie L 2, nous donnons une description algŽbrique en terme dÕhypercohomologie.
En nous servant de cette double interprŽtation, nous dŽcrivons lÕobjet transformŽ ˆ la
fois par des formules analytiques explicites et gŽomŽtriquement en utilisant la courbe
spectrale du probl•me. Finalement, nous dŽmontrons que la correspondance dŽÞnie
est (ˆ un signe pr•s) une involution.
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INTRODUCTION

Nahm transform is a non-linear analog for instantons of the usual Fourier transform
on functions. It has been extensively studied starting from the beginning of the 1980Õs,
inspired by the seminal work of M. F. Atiyah, V. Drinfeld, N. J. Hitchin and Yu. I.
Manin on a correspondence (theADHM-transform ) between Þnite-energy solutions
of the Yang-Mills equations and some algebraic data (see [1] and Chapter 3 of [12]).
The Yang-Mills equations are the anti-self-duality equations for a unitary connection
on a Hermitian vector bundle deÞned overR 4; their Þnite-energy solutions are called
instantons.

Since then, it turned out that the general picture concerning this correspondence
is as follows: letX be any manifold obtained as a quotient ofR 4 by a closed additive
subgroup! . The solutions of the Yang-Mills equations invariant by ! (that are clearly
not of Þnite energy in the case! != { 0} ) can be identiÞed in an obvious manner to
solutions of a system of di!erential equations onX , called the reduction of the Yang-
Mills equations. On the other hand, denoting by (R 4)! the dual of the vector space
R 4, ! determines a closed additive subgroup! ! called the dual subgroupby saying
that an element ! " (R 4)! is in ! ! if and only if ! (" ) " Z for all " " ! . Hence, we
can form the dual manifold X ! = ( R 4)! / ! ! of X , that also admits a reduction of the
Yang-Mills equations. Nahm transform is then a procedure that maps solutions of the
reduced equations onX to solutions of the reduced equations onX ! bijectively up
to overall gauge transformations on both sides. One remarks that there is a canonical
isomorphism between((R 4)! )! and R 4, as well as between(! ! )! and ! . Therefore, if
we start from a solution of the reduced equations onX and iterate Nahm transform
twice, we again get a solution of the reduced equations onX . One important property
analogous to usual Fourier transform is that in some cases the solution we get this
way is, up to a coordinate changex #$ %x, known to be the solution we started with;
that is, Nahm transform is (up to a sign) involutive. Moreover, in some cases one
knows that the moduli spaces of solutions of the reduced equations modulo gauge
transformations on X and on X ! are smooth hyper-KŠhler manifolds with respect
to the metric induced by L 2-norm and the complex structures induced byR 4; Nahm
transform is then a hyper-KŠhler isometry between these moduli spaces. This is to be
compared with ParsevalÕs theorem which states that usual Fourier transform deÞnes
an isometry betweenL 2-spaces of functions.

SOCIƒTƒ MATHƒMATIQUE DE FRANCE 2007



8 INTRODUCTION

Putting ! = { 0} , one getsX = R 4 and ! ! = R 4, soX ! = { 0} . In this case, Nahm
transform reduces to the ADHM-transform. The other examples of Nahm transform
in the literature for di!erent subgroups of R 4 are as follows. For ! = Z4, staring
from an ASD-connection on the four-dimensional torusX = T4, its transform is an
ASD-connection on the dual torus X ! = ( T4)! , see P. Braam and P. van Baal [7],
S. Donaldson and P. Kronheimer [12] and H. Schenck [25]. Notice that [ 12] also
describes a holomorphic interpretation of this transform, which reproduces MukaiÕs
Fourier transform for holomorphic bundles on tori. For X = R 3, X ! = R one gets a
correspondence between monopoles (solutions of BogomolnyÕs equation onR 3) and
solutions of an ordinary di!erential equation, called NahmÕs equation, on the open
interval (%1, 1), with Þxed singularity behaviour at the end-points. This was Þrst
described by W. Nahm [21], then complemented by others. The caseX = R 2 &
S1, X ! = R & S1 was treated by S. Cherkis and A. Kapustin [10]: here, one gets a
correspondence between periodic monopoles onR 2 & S1 with logarithmic growth at
inÞnity and solutions of HitchinÕs equations onR & S1 with exponential growth at
inÞnity. When X = R 3 & S1, X ! = S1, the correspondence relates calorons (periodic
instantons) on R 3&S1 and solutions of NahmÕs equations on the circle with singularity
in a discrete set of points. This was studied by T. Nye [22] and T. Nye and M. Singer
[23]. In these works invertibility is not yet completely proved; however, J. Hurtubise
and B. Charbonneau recently announced [9] that they completed its proof. In the
caseX = R 2 & T2 the works of M. Jardim [16], [17] and O. Biquard and M. Jardim
[6] establish the transform between doubly-periodic instantons (ASD-connections on
R 2 & T2) with Þxed behaviour at inÞnity, and solutions of HitchinÕs equations on
X ! = T2 with (at most) two simple poles and Þxed singularity data. Finally, for
X = R & T3, B. Charbonneau described a transform from spatially periodic instantons
to singular monopoles onX ! = T3 [8]. For more details on the history of these
examples, see the survey paper [18] of M. Jardim.

In this work, we are concerned with one of the last cases not treated before, namely
! = R 2. In this case, the base manifold isX = R 2, and its dual X ! is another copy
of the real plane that we shall denote by öR 2. These are non-compact manifolds, with

compactiÞcations the Riemann spheresCP 1 and !CP
1

respectively. The reduction of
the original (Yang-Mills) equations can be viewed in two di!erent ways depending on
the complex structure that we choose: they are the equations deÞning an integrable
connection with harmonic metric, or equivalently, those deÞning a Higgs bundle with
Hermitian-Einstein metric. Now, it turns out that there are no smooth solutions on the
Riemann sphere of either one of these equations except for the trivial ones (cf. [14]).
However, there are solutions with prescribed singularities in some points, and the
solutions of one equation are still in correspondence with those of the other: this is
proved by O. Biquard and Ph. Boalch in [5]. For this correspondence to work, one
needs to have a parabolic structure in the singular locus on both types of objects.
We establish, under some hypotheses on the singularity behaviour, Nahm transform
for parabolic integrable connections (or equivalently, parabolic Higgs bundles) on the

MƒMOIRES DE LA SMF 110



INTRODUCTION 9

Riemann sphere. On the other hand, using di!erent techniques, B. Malgrange has
deÞned in [20] a so-called Fourier-Laplace transform for integrable connections with
singularities on the Riemann sphere, behaving in the same manner on the level of
singularity data as the transform we deÞne here. One di!erence between these works is,
however, the transformation of a parabolic structure and an adapted harmonic metric
at the singularities in our case; for details, see Section1.3. The author has proved that
Nahm transform for parabolic integrable connections is the natural generalisation of
Fourier-Laplace transform to the parabolic case, see [27].

The construction follows the main ideas of other Nahm transforms found in liter-
ature. Namely, in Section 2.1 we deÞne positive and negative spinor bundlesS± over
CP 1, as well as a Dirac operator

/# : S+ ' E %$ S" ' E.

We then let ! " öC ! öP be a parameter, whereöP is the singular locus of the transformed
objects, and for all ! twist the operator /# by some ßat connection to obtain a family of
operators /#! . In Section 2.2 we prove that the kernel of these twisted operators vanish
and that the cokernels form a Þnite-dimensional space. Furthermore, this dimension is
independent of! ; we then deÞne the transformed vector bundleöE on öC as the vector
bundle with Þber over ! given by coKer(/#! ). In Section 2.3 we carry out an analog of
L 2-Hodge theory of a compact KŠhlerian manifold in this case; namely we establish an
isomorphism between this cokernel and the ÞrstL 2-cohomology of an elliptic complex,
as well as harmonic1-forms with respect to the Laplacian of the Dirac operator. We
then go on to deÞne the transformed ßat bundle and the transformed Hermitian metric
in Section 3.1, and we extend the ßat bundle over the singularities Ð so deÞning the
transformed parabolic integrable connection Ð in Section3.2. The transformed metric
is then shown to be Hermitian-Einstein in Section4.2. Next, in Section 4.3 we give a
completely explicit description of the Þbers of the transformed bundle, Þrst in terms
of hypercohomology of a sheaf map, then in terms of the corresponding spectral set.
Then come the constructions of the extensions of the transformed Higgs bundle to
the singular points (Section 4.4). This allows us to deduce the singularity data of the
transformed Higgs bundle in Sections4.5 and 4.6, and we complete the transform
by computing the topology of the transformed Higgs bundle in Section4.7. Finally,
Chapter 5 deals with the involutivity property of the transform.

SOCIƒTƒ MATHƒMATIQUE DE FRANCE 2007





CHAPTER 1

NOTATIONS AND STATEMENT OF THE RESULTS

1.1. Integrable connection point of view

Let C be the complex line, with its natural holomorphic coordinate z = x + iy and
Euclidean metric |dz|2; and let CP 1 be the complex projective line. LetE $ CP 1 be
a rank r holomorphic vector bundle on the Riemann sphere, andD be a meromorphic
integrable connection on it, with Þrst order or logarithmic singularities at the points
of a Þnite set{ p1, . . . , pn } = P ( C and a second order singularity at inÞnity. In other
words, on a small disk"( pj , $) centered atpj " P in a holomorphic basis{ %j

k } k=1 ,...,r

of E , D is of the form D j + bj where bj is a holomorphic 1-form on the disk and

D j = d +
Aj

z %pj
dz ) .(1.1)

We suppose furthermore thatAj is diagonal:

Aj =

"

#
#
#
#
#
#
#
#
#
#
$

0
. . .

0

µj
r j +1

. . .

µj
r

%

&
&
&
&
&
&
&
&
&
&
'

;

it is called the residue of D at pj , and 1 * r %r j * r is the rank of Aj . For convenience,
we put µj

1 = á á á= µj
r j

= 0 , so that Aj = diag( µj
k )k=1 ,...r . We will often make use of

the holomorphic local decomposition

E j = E j
reg + E j

sing ,(1.2)

into the regular and singular components of E near pj ; here by deÞnition E j
reg is

the holomorphic subbundle ofE j = E |!( pj ," ) spanned by{ %j
k } k=1 ,...,r j , and E j

sing is

the one spanned by{ %j
k } k= r j +1 ,...,r . Intrinsically, E j

sing is the sum of the generalised
eigenspaces corresponding to all eigenvalues converging to inÞnity of the integrable
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12 CHAPTER 1. NOTATIONS AND STATEMENT OF THE RESULTS

connection, whereasE j
reg is the sum of the generalised eigenspaces corresponding to

the eigenvalues that remain bounded.

In a similar manner, at inÞnity D is supposed to be equal (up to a holomor-
phic term) to a meromorphic local model having a second order pole, so that in a
holomorphic basis { %#

k } k=1 ,...,r on a disk C ! "(0 , R) corresponding to a standard
neighbourhood of inÞnity in CP 1, it is of the form D = D # + b# where b# is now a
holomorphic 1-form in the given neighborhood of inÞnity, and

D # = d +
(

A +
C
z

)
dz)(1.3)

is the second order model with diagonal leading term

A =

"

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
$

! 1

. . .

! 1

. . .
. . .

! n !

. . .

! n !

%

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
'

and residue

C =

"

#
#
$

µ#
1

. . .

µ#
r

%

&
&
' .

Here { ! l } n !

l =1 are the distinct eigenvalues ofA. Each ! l appears in neighbouring posi-
tions k = 1 + al , . . . , al +1 , in particular its multiplicity is ml = al +1 %al . Of course,
we must then have a1 = 0 and an ! +1 = r . In line with the above notation, we set
r # = 0 and C = diag( µ#

k )k=1 ,...,r . Furthermore, we will write

A = diag( { ! l , ml } )l =1 ,...,n !

for the diagonal matrix A as given above, meaning thatA is diagonal with ml neigh-
bouring eigenvalues equal to! l .

Definition 1.1 . Ð The integrable connections having singularities near the points
of P , {-} as described above will be calledmeromorphic integrable connections
with logarithmic singularities in P and a second-order singularity at inÞnity, or for
simplicity meromorphic integrable connectionsalthough they are by far not all the
meromorphic integrable connections.
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1.2. THE TRANSFORM OF THE INTEGRABLE CONNECTION 13

1.2. The transform of the meromorphic integrable connection

Let (E, D ) be a stable vector bundle with a meromorphic integrable connection
on the sphere. Our aim in this paper is to deÞne another complex bundleöE with a
meromorphic connection öD on the sphere out of(E, D ), which we call the transformed
meromorphic integrable connection. Just as the initial connection, the transformed one
will also admit a Þnite number of simple poles in points of the line and a second-order
pole at inÞnity.

In order to deÞne the transformed vector bundle öE, Þrst we need to set some
notation. Let öC be another copy of C. (The importance of distinguishing the two
copies of C is to help us avoid confusions.) For a parameter! " öC, consider the
following deformation of D :

D int
! = D %! dz) ,(1.4)

where ! : E $ E stands for multiplication by ! . Since we only change the(1, 0)-
part of D , and by an endomorphism that is independent ofz, this is then another
meromorphic integrable connection, with the same underlying holomorphic bundle as
for D . Furthermore, its unitary and self-adjoint parts are given by

D +
! = D + %

!
2

dz +
ø!
2

døz(1.5)

# int
! = # %

!
2

dz %
ø!
2

døz.(1.6)

Consider the following family in ! of elliptic complexes Cint
! over C ! P:

(1.7) $ 0 ' E
D int

!%%%$ $ 1 ' E
D int

!%%%$ $ 2 ' E.

Fix a Hermitian metric h on E for which the holomorphic sections of the extension at
the singularities are bounded (above and below) by a positive constant, and denote
by öE int

! the Þrst L 2-cohomology of the complex (1.7) for this metric. In Theorems 2.6

and 2.21we show that there exists a Þnite setöP ( öC such that for ! " öC ! öP the Þrst
L 2-cohomologies of this complex are Þnite-dimensional of the same dimension for all
! .

Definition 1.2 . Ð The transformed vector bundle öE is then the vector bundle over
öC ! öP whose Þber over! " öC ! öP is the Þrst L 2-cohomologyL 2H 1(D int

! ) of Cint
! .

Let ! 0 " öC ! öP, and let f (z) " öE! 0 be a class in the Þrst cohomology ofCint
! 0

.

Definition 1.3 . Ð The transformed ßat connection öD is by deÞnition the ßat con-
nection whose parallel sectionf (! ; z) extendingf in some neighbourhood of! 0 is given
by the ÞrstL 2-cohomology classes inCint

! of

e(! " ! 0 )z f (z).

SOCIƒTƒ MATHƒMATIQUE DE FRANCE 2007



14 CHAPTER 1. NOTATIONS AND STATEMENT OF THE RESULTS

Finally, h induces a natural Hermitian metric öh on öE as follows: in Theorem2.21
we show that any class inL 2H 1(D! ) can be represented by a unique harmonic1-form
with respect to the Laplacian of the Dirac operator.

Definition 1.4 . Ð The transformed Hermitian metric öh on öE is deÞned by theL 2-
norm of harmonic representatives.

All this will be explained in more detail in Section 3.1 and in DeÞnition 3.1.
When one considers an integrable connection, there exists sometimes a privileged

Þber metric on the bundle, namely a harmonic one. In order to be able to deÞne
harmonicity, decompose as usualD into its unitary and self-adjoint part

(1.8) D = D + + # ,

put . D + or simply . + for the covariant derivative associated to the connectionD +

(so that . + t makes sense for a tensort of arbitrary type (TCP 1)p ' (T ! CP 1)q '
E r ' (E ! )s) and denote by (. + )!

h the adjoint operator of . + with respect to h.

Definition 1.5 . Ð The Hermitian metric h is called harmonic, if it satisÞes the equa-
tion

(. + )!
h # = 0 .(1.9)

This is a second-order non-linear partial di!erential equation in h.
Here is the main result of this thesis in a special case (the one without parabolic

structures, see DeÞnition1.8).

Theorem 1.6 . Ð Let (E, D, h ) be any meromorphic integrable connection with loga-
rithmic singularities in P as in (1.1), and a double pole (1.3) at inÞnity, endowed
with a harmonic metric h. Suppose that the eigenvalues of the polar part ofD in the
punctures satisfy the following assumptions:

(1) for Þxed j " { 1, . . . , n} , the complex numbersµj
k for k = r j + 1 , . . . , r are all

di!erent, and / µj
k /" Z

(2) for Þxed l " { 1, . . . , n$} , the complex numbersµ#
k for k = 1 + al , . . . , al +1 are

all di!erent, and / µ#
k /" Z

Then the set of punctures öP " öC of the transformed bundle is the set{ ! 1, . . . , ! n ! } of
distinct eigenvalues of the leading order termA of D at inÞnity. For ! /" öP, the Þrst
L 2-cohomologies of (1.7) are Þnite dimensional vector spaces of the same dimension.
They match up to deÞne a smooth vector bundleöE of rank

(1.10) ör =
n*

j =1

(r %r j )

over öC ! öP. öD is a ßat connection on öE. It underlies a meromorphic integrable
connection (that we continue to denote( öE, öD)) of degree deg(öE) = deg(E), called
the transformed meromorphic connection. It has logarithmic singularities in öP and
a double pole at inÞnity. The non-vanishing eigenvalues of the residue in! l " öP are
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{%µ#
1+ al

, . . . , %µ#
al +1

} . The eigenvalues of the second-order term of the transformed
meromorphic connection are {%p1, . . . , %pn } , the multiplicity of %pj being (r % r j );
the eigenvalues of its residue at inÞnity on the eigenspace of the second-order term
corresponding to%pj are {%µj

r j +1 , . . . , %µj
r } . Finally, öh is harmonic for öD .

Remark 1.7 . Ð The assumptions (1) and (2) of the theorem are clearly generic in
the parameter space of all possible eigenvalues.

This theorem actually follows from the more general statement1.17. In order to
understand the more general setup, one needs to consider meromorphic connections
endowed with a parabolic structure.

1.3. Parabolic structure and adapted harmonic metric

We can suppose more structure on the integrable connection: namely, that it comes
with a parabolic structure on P and at inÞnity.

Definition 1.8 . Ð A parabolic structure on (E, D ) is the data of a strictly decreasing
Þltration by vector subspaces

Ep = F0Ep 0 F1Ep 0 á á á 0Fbp " 1Ep 0 Fbp Ep = { 0}

(where 1 * bp * r ) of the ÞberEp of E in each singular point p " P , {-} , called the
parabolic ßag, such that eachFm is spanned by some of the restrictions{ %j

k (p)} r
k=1

of the holomorphic basis to the singularityp = pj or - , together with a sequence of
corresponding real numbers

0 * ÷&j
1 < á á á< ÷&j

bp
< 1

called the parabolic weights.

Remark 1.9 . Ð All parabolic weights can be assigned a natural multiplicity, namely
the dimension of the corresponding graded of the Þltration: more precisely, the multi-
plicity of ÷&p

k for any p " P , {-} and any k " { 1, . . . , bp} is by deÞnition

dim(Fk" 1Ep/F k Ep).

We will write
0 * &p

1 * á á á * &p
r < 1

for the parabolic weights repeated according to their multiplicities, and use this num-
bering of the weights throughout the whole paper instead of the one in their deÞnition.
Moreover, we write &j

k instead of &pj

k .

Remark 1.10 . Ð The order of the %#
k spanning Fm E# in the above deÞnition is not

necessarily the same as the one in which the eigenvalues of the second-order term A
at inÞnity appear in one group, as supposed in (1.3). However, this will not cause any
confusion in the sequel, because the basis vectors at inÞnity in this latter order still
have well-deÞned parabolic weights (which are then not necessarily increasing).
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16 CHAPTER 1. NOTATIONS AND STATEMENT OF THE RESULTS

Definition 1.11 . Ð A meromorphic integrable connection(E, D ) with described local
models and parabolic structures at the punctures will be calledparabolic integrable
connection. The parabolic degreeof E with respect to the given parabolic structure is
the real number

(1.11) degpar (E ) = deg(E) +
*

j %{1,...,n, #}

r*

k=1

&j
k ,

wheredeg(E) is the standard (algebraic geometric) degree ofE , and the sum is taken
over all parabolic weights for all puncturesp. The slope of the parabolic integrable
connection is the real number

(1.12) µpar (E ) =
degpar (E )

rk( E )
,

and (E, D ) is said to be parabolically stable (resp. semi-stable) if for any subbundle
F invariant with respect to D and endowed with the induced parabolic structure over
the singularities, the inequality

(1.13) µpar (F ) < µ par (E )

(respectively µpar (F ) * µpar (E )) holds. Finally, (E, D ) is said to be parabolically
polystable if it is a direct sum of parabolically stable bundles that are all invariant by
D and of the same slope asE.

Remark 1.12 . Ð The notions of stability, semi-stability and polystability make sense
for meromorphic connections without a parabolic structure as well: in the correspond-
ing deÞnitions, one only needs to set all parabolic weights equal to0. Notice however
that by the residue theorem we have

deg(E) = %/ tr (Res(D, - )) %
*

j %{1,...,n }

/ tr (Res(D, pj ))

=
r*

k=1

/ µ#
k %

*

j %{1,...,n }

r*

k=1

/ µj
k ,

(the change of sign coming from the fact that the eigenvalues of the residue at inÞnity
are %µ#

k because in the local coordinatew = 1 /z we have dz/z = %dw/w .) Therefore
(1.11) is in fact equal to

r*

k=1

(&#
k + / µ#

k ) +
*

j %{1,...,n }

r*

k=1

(&j
k % / µj

k ) =
*

j %{1,...,n, #}

r*

k=1

' j
k ,

where ' j
k are the parabolic weights of the local system atpj (Proposition 11.1, [4]).

On the other hand, the parabolic degree of an integrable connection is always equal
to 0: this follows from the Gauss-Chern formula 2.9 of[3]. Therefore, the case where
the parabolic weights&j

k of the integrable connection vanish is not the one where
the parabolic weights' j

k of the representation of the fundamental group vanish, and
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where by Remark 8.2 of[5] stability reduces to irreducibility of the corresponding
representation.

Definition 1.13 . Ð A Hermitian Þber metric h on E is said to be adapted to the
parabolic structure if near the logarithmic punctures in the holomorphic bases%j

k it is
mutually bounded with the diagonal model

(1.14) diag(|z %pj |2# j
k )r

k=1 ,

and at inÞnity in the holomorphic basis%#
k it is mutually bounded with

(1.15) diag(|z|" 2# "
k )r

k=1 .

Remark 1.14 . Ð In general, without the hypothesis of semi-simplicity of the residue
in the punctures made in Section1.1, the local models of the metric near the punctures
are more complicated than in the above deÞnition: e.g. for the regular singularities one
has to take into account an extra Þltration induced by the nilpotent part of the residue,
and add a factor | ln( r )|k on the correspondingk-th graded, see the Synopsis of[26].

Here is the important existence result of the theory:

Theorem 1.15 (Thm 1.1, [24]; Section 9, [5]). Ð Let (E, D ) be a parabolically stable
parabolic integrable connection. Then there exists a unique harmonic Hermitian metric
h adapted to the parabolic structure.

Remark 1.16 . Ð Actually, in the above articles this theorem is proved to hold for
parabolic integrable connections having poles of arbitrary order in the punctures. On
the other hand, for integrable connections with only regular singularities, it had already
been shown by C. Simpson, see[26].

We are now ready to describe the more general version of Nahm transform: that
for parabolic integrable connections.

Theorem 1.17 . Ð Let (E, D ) be any parabolic integrable connection on the sphere
with logarithmic singularities in P as in (1.1), and a double pole (1.3) at inÞnity.
Suppose that the eigenvalues of its polar partsµ and the parabolic weights& in the
punctures satisfy the following assumptions:

(1) for Þxed j " { 1, . . . , n} , the complex numbersµj
k % &j

k for k = r j + 1 , . . . , r
are distinct and di!erent from 0, the parabolic weights&j

k for k = 1 , . . . , r j are 0 and
Þnally / µj

k /" Z for k = r j + 1 , . . . , r
(2) for Þxedl " { 1, . . . , n$} , the complex numbersµ#

k %&#
k for k = 1+ al , . . . , al +1

are distinct and di!erent from 0, and / µ#
k /" Z
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18 CHAPTER 1. NOTATIONS AND STATEMENT OF THE RESULTS

Then, in addition to the conclusions of Theorem1.6, the transformed bundle( öE, öD)
carries a natural parabolic structure in the punctures (that we will call transformed
parabolic structure), such that the transformed metric of the harmonic metric is
adapted to it. Moreover, the set of its non-vanishing parabolic weights in! l " öP
is equal to the set of parabolic weights{ &#

1+ al
, . . . , &#

al +1
} of E at inÞnity, restricted to

the eigenspace ofA corresponding to the eigenvalue! l ; whereas the parabolic weights
of öE at inÞnity restricted to the eigenspace of the second-order term oföD correspond-
ing to the eigenvalue%pj are equal to the parabolic weights{ &j

r j +1 , . . . , &j
r } of E at

pj . All these statements are to be understood with multiplicities.

Remark 1.18 . Ð Again, the conditions (1) and (2) of the theorem are generic in the
parameter space of all possible eigenvalues and parabolic weights. They will regularly
appear along this paper, both in analytical and geometric arguments.

This theorem is a consequence of Theorem1.32.

Definition 1.19 . Ð The map

N : (E, D ) #%$( öE, öD)(1.16)

described in Theorems1.6 and 1.17 will be called Nahm transform.

Finally, as we have already mentioned, Nahm transform has an involutibility prop-
erty:

Theorem 1.20 . Ð Let (E, D ) be a parabolic integrable connection on the sphere sat-
isfying the assumptions of Theorem1.17. Then

N2(E, D ) = ( %1)! (E, D ),

where %1 : C $ C is the map z #$ %z, and (%1)! the induced map on Þber bundles
with connection. In particular, Nahm transform is invertible.

This will be proved in Theorem 5.1, using arguments of the same type as Theorem
3.2.17 of S. Donaldson and P. Kronheimer in [12], namely the study of the spectral
sequence of a suitable double complex.

1.4. Local model for parabolic integrable connections

We suppose in this section that near each singularity,h coincides with the diag-
onal modelshj and h# given in DeÞnition 1.13 (that is, without the extra O(|z %

pj |2(# j
k " # j

k ! ) ) and O(|z|" 2(# "
k " # "

k ! ) ) factors in (1.14) and (1.15); in particular, this
metric is then not harmonic). For computations, it will be useful to express the local
models of the integrable connection near the singularities in some orthonormal bases.
As in Section 1 of [5], we consider the orthonormal basis deÞned by

(1.17) ej
k = |z|" # j

k " i & µ j
k %j

k k = 1 , . . . , r
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around pj . The h-unitary part (D + )j of D j becomes

(D + )j = d + i / (Aj )d((1.18)

where / (Aj ) = A j +( A j ) #

2 = diag( / µj
k )k=1 ,...,r stands for the real part (and 1 (Aj ) =

A j " (A j ) #

2i = diag( 1 µj
k )k=1 ,...,r for the imaginary part) of Aj , and r and ( are local

polar coordinates aroundpj such that we havez %pj = rei$ . For the self-adjoint part
# j of D j in this basis we get:

# j =
Aj

2
dz

z %pj
+

(Aj )!

2
døz

øz % øpj
%&j dr

r

= [ / (Aj ) %&j ]
dr
r

% 1(Aj )d(,(1.19)

where&j = diag( &j
k )k=1 ,...,r . These together imply that with respect to this basis, the

model for the operator D in polar coordinates is

D j = d + iA j d( + [ / (Aj ) %&j ]
dr
r

.(1.20)

In an analogous way, in the orthonormal basis{ e#
k } k=1 ,...,r given by

(1.21) e#
k = |z|#

"
k + i & µ "

k exp [(! k z % ø! k øz)/ 2]%#
k

near inÞnity the unitary part of the model connection D # is given by

(D + )# = d + i / (C)d(,

where we have put again/ (C) = C + C #

2 = diag( / µ#
k )k=1 ,...,r and z = rei$ . Moreover,

putting / (zA) = diag / ({ z! l , ml } )l =1 ,...n ! and 1 (zA) = diag 1 ({ z! l , ml } )l =1 ,...n ! , the
self-adjoint part of D # has the form

# # =
1
2

(
A +

C
z

)
dz +

1
2

(
A! +

C!

øz

)
døz + &# dr

r

= [ / (zA + C) + &# ]
dr
r

+ 1 (zA + C)d((1.22)

(the inversion of the sign of & comes from the fact that if we make a coordinate
change w = 1 /z , |w| = ) = 1 /r = 1 / |z|, then d)/) = %dr/r ). Remark that in
these expressions the terms in d(, dr/r, dz/z, døz/ øz are of lower order then the ones in
dz,døz, zdr/r, z d( ; hence the leading order term of the singular part ofD in this basis
is just

d +
A
2

dz +
A!

2
døz.(1.23)
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1.5. Higgs bundle point of view

The idea of the proofs of Theorems1.6 and 1.17 will be to exploit the correspon-
dence known as nonabelian Hodge theory between parabolic integrable connections
on one side and parabolic Higgs bundles on the other side. Let us recall the deÞnition
of the latter notion:

Definition 1.21 . Ð A parabolic Higgs bundle is given by:

(1) a holomorphic bundle E with holomorphic structure ø# E over CP 1 called the
holomorphic bundle underlying the Higgs bundle, and with underlying smooth vector
bundle V ;

(2) in each point p " P , {-} a strictly decreasing parabolic ßag

Vp = F0Vp 0 F1Vp 0 á á á 0Fcp " 1Vp 0 Fcp Vp = { 0}

for some 1 * cp * r , with parabolic weights

0 * ÷* p
1 < á á á< ÷* p

cp
< 1;

(3) a ø# E-meromorphic section ( " $ 1,0(CP 1, End(V )) (called the Higgs Þeld),
having a simple pole at the points ofP with semi-simple residue respecting the parabolic
ßag (that is, such that Res((, pj ) leaves Fk Vpj invariant for each pj " P and all
0 * k * cp), and a second-order pole at inÞnity, such that there exists a holomorphic
basis of Enear inÞnity compatible with the parabolic structure in which the residue
and second-order term are both diagonal.

Again, we write
0 * * p

1 * á á á * * p
r < 1

for the parabolic weights repeated according to their multiplicities

dim(Fk" 1Vp/F k Vp),

and we shorten* pj

k to * j
k . Finally, we set

(1.24) D $$= ø# E+ (,

that we call the D $$-operator associated to the Higgs bundle.

The notions of parabolic degree, slope and (poly/semi-)stability of parabolic Higgs
bundles are deÞned analogously to the case of integrable connections, see DeÞni-
tion 1.11. O. Biquard and Ph. Boalch in 2004 showed the following.

Theorem 1.22 (Theorem 6.1, [5]). Ð There exists an isomorphism between the mod-
uli space of parabolically stable rankr s with Þxed diagonal polar part and parabolic
structures up to complex holomorphic gauge transformations respecting the parabolic
ßags, and the moduli space of parabolically stable rankr Higgs bundles with Þxed
diagonal polar part and parabolic structures up to complex holomorphic gauge trans-
formations respecting the parabolic ßags.
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Remark 1.23 . Ð Actually, this is a consequence of the existence of a harmonic metric
(Theorem 1.15), and hence also proved for parabolic integrable connections with poles
of arbitrary Þxed order and diagonal polar part in the punctures and parabolic Higgs
bundles with poles of the same order with diagonal polar part.

The transition from integrable connections to Higgs bundles is given as follows:
Þrst, the underlying smooth vector bundle of the integrable connection and the Higgs
bundle are the same. Furthermore, supposeh is the harmonic metric, consider the
decomposition (1.8) of the integrable connection into its unitary and self-adjoint part,
and decompose the terms further according to bidegree

D + = ( D + )1,0 + ( D + )0,1(1.25)

# = # 1,0 + # 0,1.

The partial connection (D + )0,1 deÞnes then the holomorphic structure ofE, and # 1,0

will be the Higgs Þeld ( . The D $$-operator is of course(D + )0,1 + # 1,0. Harmonicity
of the metric implies that ( is holomorphic.

The transition in the other direction is also established using a privileged metric.

Definition 1.24 . Ð Let ( E, ( ) be a Higgs bundle. We say thath is a Hermitian-
Einstein metric for ( E, ( ) if, denoting by D +

h the Chern connection (the uniqueh-
unitary connection compatible with ø# E), by FD +

h
its curvature, and by ( !

h the adjoint
of ( with respect to h, then these objects satisfy the real Hitchin equation

FD +
h

+ [ (, ( !
h ] = 0 ,

where [., .] stands for graded commutator of forms.

Let ( E, ( ) be a parabolically stable parabolic Higgs bundle. By Section 9 of [5],
there exists a unique Hermitian-Einstein metric h adapted to the parabolic structure.
The connection

(1.26) D = D +
h + ( ( + ( !

h )

on V is then integrable, and h is the corresponding harmonic metric adapted to the
parabolic structure. In what follows, in order to simplify notations, we are often going
to omit the subscript h in the notation of the Chern connection and adjoints.

Let now (E, D ) be a parabolically stable parabolic integrable connection and( E, ( )
the associated parabolic Higgs bundle. One important application of the Weitzenbšck
formula for connections we will be constantly using is the following

Theorem 1.25 (Thm. 5.4, [4]). Ð Suppose the metrich is harmonic. Then, with the
previous notations, the Laplace operators" D = DD ! + D ! D and " D !! = D $$(D $$)! +
(D $$)! D $$satisfy

" D = 2" D !! .

In particular, their domain and kernel coincide.

SOCIƒTƒ MATHƒMATIQUE DE FRANCE 2007



22 CHAPTER 1. NOTATIONS AND STATEMENT OF THE RESULTS

1.6. Local model for Higgs bundles

In this section, we give the eigenvalues of the residue of the Higgs Þeld and the
parabolic weights of the Higgs bundle in the punctures that correspond to those
of the integrable connection via the Theorem1.22. To obtain local models for the
operators in this setup, suppose again that nearpj the metric h coincides with the

diagonal modelhj given by (1.14) (without the correcting O(|z %pj |2(# j
k " # j

k ! ) ) term;
in particular, it does not satisfy HitchinÕs equation). Then, according to formulae
(1.7)-(1.11) of [5], in the local ø# E-holomorphic trivialisation

+j
k = |z %pj |' µ j

k
ej

k

(z %pj )[' µ j
k ]

(k = 1 , . . . , r )(1.27)

around pj , the Higgs Þeld is equal up to a perturbation term to the model Higgs Þeld
given by

( j =
Aj %&j

2
dz

z %pj

= diag

+
µj

k %&j
k

2
dz

z %pj

,

k=1 ,...,r

= diag
(

" j
k

dz
z %pj

)

k=1 ,...,r

,(1.28)

where we have put" j
k = ( µj

k %&j
k )/ 2. Moreover, in the same trivialisation, the parabolic

weights are

(1.29) * j
k = / (µj

k ) %[/ (µj
k )],

where [.] denotes integer part.

Remark 1.26 . Ð In fact, this formula is not completely correct, because the* j
k deÞned

by it are not necessarily in increasing order, although they should be by deÞnition. One
should instead write the same formula for* j

s(k ) , wheres is a permutation of { 1, . . . , r } .
However, in the sequel we discard this minor technical detail for the sake of simplicity
of the notation.

Remark 1.27 . Ð Since the gauge transformations between the bases{ %j
k } k=1 ,...,r and

{ +j
k } k=1 ,...,r are just multiplications by some functions (in particular diagonal matri-

ces), it follows that the smooth subbundle spanned by the sections{ +j
k } k= r j +1 ,...,r is

the same as the one spanned by{ %j
k } k= r j +1 ,...,r , which is by deÞnition the underlying

smooth vector bundle ofE j
sing ; and similarly, the subbundle spanned by{ +j

k } k=1 ,...,r j

is equal to the underlying smooth bundle ofE j
reg . The same remark also holds for the

bases{ ej
k } instead of { +j

k } . In particular, the residue of the model Higgs Þeld( j in
the point pj " P belongs toEnd(E j

sing |pj ).
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Near inÞnity, the situation is slightly di!erent: for h = h# the diagonal model, in
the local ø# E-holomorphic frame

+#
k = |z|"' µ "

k z[' µ "
k ]e#

k (k = 1 , . . . , r )(1.30)

the Higgs Þeld is equal up to a perturbation term to the model Higgs Þeld given by

( # =
1
2

Adz +
µ# %&#

2
dz
z

=
(

1
2

diag({ ! l , ml } )l =1 ,...,n ! +
1
z

diag(" #
k )k=1 ,...,r

)
dz,(1.31)

where we have put again" #
k = ( µ#

k %&#
k )/ 2, with parabolic weights being, as in the

case of simple poles,

(1.32) * #
k = / (µ#

k ) %[/ (µ#
k )].

From these data, as above, one can form the modelD $$-operator

(1.33) (D $$)j = ø# E+ ( j (j " { 1, . . . n, -} ).

Notice that since we considered holomorphic trivialisations ofEj , the partial connec-
tion part of the model coincides with the usual ø#-operator.

We are now ready to write out the assumptions made in Theorem1.17 on the
parameters of the integrable connection, translated to those of the Higgs bundle:

Hypothesis 1.28 . Ð We suppose that( E, ( ) is a parabolically stable Higgs bundle
with diagonal polar part of the Higgs Þeld in some local holomorphic frame near each
puncture, satisfying the properties

(1) for Þxedj " { 1, . . . , n} the residues" j
k for k " { r j +1 , . . . , r } are non-vanishing

and distinct, " j
k vanish for k = 1 , . . . , r j and Þnally * j

k != 0 if and only if " j
k != 0 ;

(2) for Þxed l " { 1, . . . , n$} the complex numbers" #
k for k " { 1 + al , . . . al +1 } are

non-vanishing and distinct, and * #
k != 0 .

Diagonality of the polar parts has already been assumed when writing the local
models (1.28) and (1.31). The Þrst condition says that no parabolic weight and no
eigenvalue of the residue of( vanishes on the singular component at any singularity,
and that on the singular component near a puncture all eigenvalues are di!erent;
whereas the eigenvalues of the residue and parabolic weights vanish on the regular
component. One more way to say the same thing is: for allj " { 1, . . . n} , the residue
of ( deÞnes an automorphism ofE j

sing |pj , and the parabolic weights corresponding
to the holomorphic trivialisation ( 1.27) are non-vanishing exactly on this subspace.
The second one imposes that on the eigenspace corresponding to a Þxed eigenvalue of
the second-order term at inÞnity, all the eigenvalues of the residue be non-vanishing
and distinct, furthermore that no parabolic weight vanish at inÞnity. Note that these
conditions are generic among all possible choices of singularity parameters.
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1.7. The transformation of the Higgs bundle

Let ( E, ( ) be a parabolic Higgs bundle and! " öC ! öP a parameter. The natural
deformation of the Higgs Þeld is

( ! = ( %
!
2

dz(1.34)

with Þxed underlying holomorphic bundle E. It is clear that ( ! is then also holomorphic
with respect to ø# E with the same local models at the logarithmic punctures as( , but
its local model near inÞnity is di!erent. If moreover a Hermitian metric is Þxed, then
we also have

( !
! = ( ! %

ø!
2

døz.

Therefore, the integrable connection corresponding to the deformed Higgs bundle is
given by

D H
! = D %

!
2

dz %
ø!
2

døz,(1.35)

and the crucial observation is that via the unitary gauge transformation

(1.36) exp[(ø! øz %!z )/ 2]

on C this is equivalent to the deformation (1.4). The self-dual part of this deformation
is

# H
! = # %

!
2

dz %
ø!
2

døz,(1.37)

the same deformation as in (1.6). Therefore it will not make any confusion to re-
fer to # ! without mentioning the adopted point of view; consequently, we drop the
corresponding upper indices. The connection deÞned by (1.35) is still ßat, but the
underlying holomorphic structure is di!erent from the one of D (because of the term
in døz). Notice also that the gauge transformation (1.36) between these deformations
has an exponential singularity at inÞnity. Denote by CH

! the elliptic complex

(1.38) $ 0 ' E
D H

!%%$ $ 1 ' E
D H

!%%$ $ 2 ' E.

Definition 1.29 . Ð The smooth vector bundleöV underlying the transformed Higgs
bundle is the vector bundle whose Þber over! " öC ! öP is the Þrst L 2-cohomology
L 2H 1( CH

! ) of CH
! .

In Proposition 4.2 we prove that these vector spaces indeed deÞne a Þnite rank
smooth bundle. Furthermore, by Theorem 2.21, any class in L 2H 1( CH

! ) admits a
unique D H

! -harmonic representative.

Definition 1.30 . Ð The transformed holomorphic structure on öV is the one induced
by the orthogonal projection ø# E of the trivial partial connection with respect to the

variable ! on the trivial L 2-bundle over !CP
1

to D H
! -harmonic 1-forms. The trans-

formed Higgs Þeldis multiplication by %zd!/ 2 followed by projection onto harmonic
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1.7. THE TRANSFORMATION OF THE HIGGS BUNDLE 25

1-forms. Finally, the transformed Hermitian metric is the L 2-metric of the harmonic
representative.

By virtue of Theorems 2.21 and 1.25, the transformed smooth bundle öV can also
be computed in this case as the Þrst cohomology of the elliptic complexC$$

! given by:

$ 0 ' E
D !!

!%%$ $ 1 ' E
D !!

!%%$ $ 2 ' E,

where the maps are the corresponding deformations of (1.24) in the Higgs-bundle
point of view. Explicitly, D $$

! reads

(D H
! )$$= ø# E+ ( ! .

We use this description of the transformed bundle in Section4.2 to show the statement
of Theorem 1.6 on the transformed metric:

Theorem 1.31 . Ð If the original metric is harmonic then the same thing holds for
the transformed metric.

For this purpose, we prove in fact that the candidate Higgs Þeldö( corresponding
to öD and öh is meromorphic with respect to the transformed holomorphic structure.

Furthermore, in this interpretation, the remaining part of Theorems 1.6 and 1.17
can be written:

Theorem 1.32 . Ð Suppose( E, ( ) is a parabolic Higgs bundle with logarithmic singu-
larities in the points of P and a double pole at inÞnity, as described in Section1.5,
such that its singularity parameters satisfy Hypothesis1.28. Then the transformed
Higgs bundle( ø#

öE, ö( ) is of the same type (that is, it has a Þnite number of logarithmic
singularities in points of öC and a double pole at inÞnity, with a parabolic structure in
these points). Furthermore, its topological and singularity parameters are as follows:

(1) the rank of öEis the sum (1.10) of the ranks of the residues of( in P
(2) its degree is the same as that ofE
(3) the logarithmic singularities are located in the set öP, and for all l " { 1, . . . , n$}

the rank of the transformed Higgs Þeld in the point! l is equal to the multiplicity ml

of the eigenvalue! l of A
(4) the set of non-vanishing eigenvalues of the residue ofö( in the point ! l is

{%" #
1+ al

, . . . , %" #
al +1

} , where { " #
al +1 , . . . , " #

al +1
} are the eigenvalues of the residue of

the original Higgs Þeld( at inÞnity, restricted to the eigenspace ofA corresponding
to the eigenvalue! l

(5) the non-vanishing parabolic weights oföE in ! l is the set of parabolic weights
{ * #

1+ al
, . . . , * #

al +1
} of Eat inÞnity, restricted to the same subspace

(6) the eigenvalues of the second-order term ofö( at inÞnity are {%p1/ 2, . . . , %pn / 2} ,
and the multiplicity of %pj / 2 is equal to the rankr %r j of the residue of( in pj

(7) on the eigenspace corresponding to%pj / 2 of the second-order term at inÞnity,
the eigenvalues of the residue ofö( are
{%" j

r j +1 , . . . , %" j
r }
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(8) the parabolic weights on the same eigenspace at inÞnity are the parabolic weights
{ * j

r j +1 , . . . , * j
r } of Eat pj

The proof of this theorem is the object of Chapter4.
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CHAPTER 2

ANALYSIS OF THE DIRAC OPERATOR

In this chapter, we study the analytical theory needed for our construction along the
lines of Jardim [17] (Section 3) and others. First, in Section2.1we deÞne spinor spaces
and Dirac operators that permit us to study the problem. We also deÞne a suitable
functional spaceH 1 and state a Fredholm theorem valid for all deformations of the
initial connection. Then it is natural to deÞne the Þbers of the transformed bundle as
the cokernel of the deformed Dirac operator. The Fredholm theorem is then proved
in Section 2.2. In Section 2.3, we carry out an identiÞcation of this cokernel with the
Þrst L 2-cohomologyL 2H 1(D int

! ) of the complex Cint
! given in (1.7), similar in vein to

the Hodge isomorphism between the cokernel of the operator d+ d! on a compact
manifold and the L 2-cohomology of the operator d. However, since the manifold we
are working on is non-compact, in proving these results we need a careful study of
the singularities.

In all what follows, we Þx a parabolic integrable connection with adapted metric
(E, D, h ) and choose to study the analytic properties of the deformation from the
point of view of integrable connections, hence we set for simplicityD! = D int

! until
further notiÞcation.

2.1. Statement of the Fredholm theorem

Definition 2.1 . Ð The positive and negativespinor bundles are the vector bundles
over C ! P given by

S+ = ! 0T ! (C ! P) + ! 2T ! (C ! P) S" = ! 1T ! (C ! P)

Recall that we have deÞnedöP as the set{ ! 1, . . . , ! r } of all eigenvalues of the second
order term of D at inÞnity.

Definition 2.2 . Ð For ! " öC ! öP the twisted Dirac operator is the Þrst-order
di!erential operator

/#! = D! %D !
! : %(S+ ' E ) %$ %(S" ' E )
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28 CHAPTER 2. ANALYSIS OF THE DIRAC OPERATOR

where%is used to denote smooth sections with compact support inC ! P. Its formal
adjoint

/#!
! = D !

! %D! : %(S" ' E ) %$ %(S+ ' E ),

is called the adjoint twisted Dirac operator .

For any ! " öC let us introduce the following norm on sectionsf of S+ ' E :

2f 22
H 1

!
=

-

C
|f |2 + |. +

! f |2 + |# ! ' f |2,(2.1)

where . +
! and # ! are deÞned in (1.5) and (1.6). Here and in all what follows, we

integrate with respect to the Euclidean volume form |dz|2, and |x|2 denotesh(x, x ),
unless the contrary is explicitly stated. Our convention is furthermore to write (x, y)
for h(x, y), and for sectionsx and y, we write 3x, y4 instead of

.
C (x, y).

DeÞne the space of sections

(2.2) H 1
! (S+ ' E ) = { f " L 2

loc (S+ ' E ) : 2f 2H 1
!

< -} ,

where in L 2 we refer to the metric h on the Þbers. We will often write H 1
! instead of

H 1
! (S+ ' E ). As we will see by the end of this chapter, this is the appropriate space

to regard the Dirac operators. First we establish the simple

Lemma 2.3. Ð The norm 2.2H 1
!

depends (up to equivalence of norms) neither on! "
öC, nor on the particular connection D having behaviour as in (1.1) and (1.3).

Proof. Ð We begin by showing that the norm is independent of! . In order to simplify
notations, we let H 1 stand for H 1

0 from now on. It is obviously su"cient to prove
that for an arbitrary ! " öC, the H 1

! -norm is equivalent to the H 1-norm. From the
point-wise identity

|# ! ' f | = 2 |( ! ' f | = 2 |( !
! ' f |,

and the point-wise estimation

|. +
! f | * |. + f | + 2 |! ||f |,(2.3)

one sees that for any sectionf = ( f 0, f 2) " %(S+ ' E ) the estimates

2f 22
H 1

!
* (1 + 8 |! |2)2f 22

H 1

and
2f 22

H 1 * (1 + 8 |! |2)2f 22
H 1

!

hold; the Þrst statement of the Lemma follows at once.
Now we show independence of the particular connectionD with right singularity

behaviour. Introduce the model norm

2f 22
H 1

mod (!( pj ," )) =
-

!( pj ," )
|f |2 + |(D + )j f |2 + |# j f |2(2.4)
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2.1. STATEMENT OF THE FREDHOLM THEOREM 29

around points of P and the model norm

2f 22
H 1

mod (C ! !(0 ,R )) =
-

C ! !(0 ,R )
|f |2 + |(D + )# f |2 + |# # f |2(2.5)

near inÞnity. Then it is su"cient to prove the following:

Claim 2.4 . Ð If $ > 0 is chosen su"ciently small and R > 0 su"ciently large, then
for any smooth sectionf " H 1 we have

c2f j 22
H 1 (!( pj ," )) < 2f j 22

H 1
mod (!( pj ," )) < C 2f j 22

H 1 (!( pj ," ))(2.6)

and similarly

c2f j 22
H 1 (C ! !(0 ,R )) < 2f j 22

H 1
mod (C ! !(0 ,R )) < C 2f j 22

H 1 (C ! !(0 ,R ))(2.7)

with some constants0 < c < C independent off .

Proof. Ð Consider Þrst the case ofpj " P. Decomposef j = f j
reg + f j

sing corresponding
to the splitting ( 1.2). Write also

f j
reg =

r j*

k=1

, j
k ej

k(2.8)

f j
sing =

r*

k= r j +1

, j
k ej

k(2.9)

with respect to the orthonormal basis { ej
k } introduced in (1.17), where the , j

k are
functions. Formulas (1.18) and (1.19) and Hypothesis 1.28 imply that ( 2.4) is equiv-
alent to the weighted Sobolev space of sections satisfying

r j*

k=1

-

!( pj ," )
|, j

k |2 + |d, j
k |2(2.10)

+
r*

k= r j +1

-

!( pj ," )

/
/
/
/
/

, j
k

r

/
/
/
/
/

2

+ |d, j
k |2 < - ,

where d stands for the trivial connection on functions. Notice that we only add weights
on the singular component. By [26], Theorem 1 it follows that in "( pj , $) the di!erence
between(D + )j and D + is

(2.11) aj = O(r " 1+ %)

for some- > 0, and the same estimation holds for the di!erence between# j and # .
It is then immediate that for any c > 0, the estimation

-

!( pj ," )

/
/
/
/
/

, j
k

r

/
/
/
/
/

2

> c
-

!( pj ," )
|aj , j

k |2
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30 CHAPTER 2. ANALYSIS OF THE DIRAC OPERATOR

holds for k = r j + 1 , . . . , r and for $ > 0 su"ciently small. We therefore have ( 2.6) for
f sing . On the other hand, for a function g deÞned in"(0 , 1) and for - > 0 Þxed, from
the claim in the proof of Theorem 5.4 in [5] we have

-

!( pj ,1)
|r " 1+ %g|2 * c

+ -

!( pj ,1)
|dg|2 +

-

!( pj ,1) ! !( pj ,1/ 2)
|g|2

,

.

Rescaling this inequality to the disk "( pj , $) one easily checks that it implies

$" 2%
-

!( pj ," )
|r " 1+ %g|2

* c

+ -

!( pj ," )
|dg|2 + $" 2

-

!( pj ," ) ! !( pj ,"/ 2)
|g|2

,

.(2.12)

Choosing$ su"ciently small, applying this to , j
k for k = 1 , . . . , r j , and recalling that

on the regular component(D + )j is the trivial connection d and # j = 0 , we obtain
(2.6) for f reg as well. This establishes the equivalence of the norms2.22

H 1
mod

and 2.22
H 1

around a Þnite singularity.

Around inÞnity, by [ 5] Lemma 4.6 the di!erence between(D + )# and D + is
bounded above by a term

(2.13) a# = O(r " 1" %)

for some- > 0, and again the same holds for# # %# . The equivalence (2.7) follows
immediately from the estimation

|r " 1" %f | * c|f |

for any c > 0, wheneverr > R with R su"ciently large.

This then Þnishes the proof of Lemma2.3 as well.

From the previous discussion, we bring out as consequence:

Corollary 2.5 . Ð The Hilbert spaceH 1(E) is the set of sectionsf " L 2,1
loc (E ) such

that near a logarithmic singularity pj , in the decompositions (2.8) and (2.9) we have
, j

k " L 2,1 for k = 1 , . . . , r j and , j
k /r, d, j

k " L 2 for k = r j + 1 , . . . , r ; whereas at
inÞnity, the coordinates , #

k of f in the basis (1.21) are L 2,1; equipped with the norm
-

C ! ( j !( pj ," )
|f |2 + |. f |2

+
n*

j =1

0
1

2

r j*

k=1

-

!( pj ," )
|, j

k |2 + |d, j
k |2 +

r*

k= r j +1

-

!( pj ," )

/
/
/
/
/

, j
k

r

/
/
/
/
/

2

+ |d, j
k |2

3
4

5

The same result holds for sections of$ 2 ' E , coordinates being expressed in the basis
dz ) døz.
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Proof. Ð For sections of$ 0, this follows from Claim 2.4, (2.10) and

|# ' f | * K |f |.

We then obtain the case of$ 2 by duality.

We now come back to the analysis of the Dirac operator. From the deÞnitions of
H 1(S+ ' E ) and /#! we see that this latter admits a bounded extension

/#! : H 1(S+ ' E ) %$ L 2(S" ' E ).(2.14)

We are now able to announce the Þrst main result of this chapter:

Theorem 2.6 . Ð The operator (2.14) is Fredholm; if h is harmonic, its kernel van-
ishes.

Corollary 2.7 . Ð The bundle over öC ! öP whose Þber over! is the cokernel of (2.14)
is a smooth vector bundle.

Proof. Ð We recall the well-known fact that the index of a continuous family of Fred-
holm operators is constant. On the other hand, if the kernel of a Fredholm operator
vanishes, then its index is equal to the opposite of the dimension of its cokernel. It
then follows immediately from the Fredholm theorem that if the metric is harmonic,
then the dimension of the cokernel of the operator/#! is a Þnite constant independent
of ! . Moreover, by standard implicit function theorem arguments in Hilbert space
it follows that the cokernels of these Dirac operators inL 2(S" ' E ) vary smoothly
with ! .

Therefore, we may set the following.

Definition 2.8 . Ð The öE of (E, D, h ) of a singular with harmonic metric is the
smooth vector bundle overöC ! öP whose Þber over! is the Þnite-dimensional vector
space öE! = coKer( /#! ) ( L 2(S" ' E ).

In the remaining of this section, we prove vanishing of the kernel. The proof of the
Þrst statement of Theorem2.6 is left for the next section. For the rest of the discussion
in this section, we drop the index ! .

Lemma 2.9. Ð The subspacesIm( /#|H 1 (" 0 ) ) and Im( /#|H 1 (" 2 ) ) of L 2($ 1) are orthogo-
nal.

Proof. Ð Let f 0 " H 1($ 0) and f 2 = gdz ) døz " H 1($ 2). Suppose Þrst that f 0 is
smooth and supported on a compact subset ofC, and such that near any singularity
pj " P its singular part is supported away from pj . Then in a neighbourhood of any
pj in a holomorphic basisDf 0 = ( d + a)f for some bounded sectiona " ! 1(End( E)) ,
and so we have by partial integration

(2.15)
-

C ! P
(Df 0, D ! f 2) =

-

C ! P
(D 2f 0, f 2) = 0 ,
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since D is ßat. Therefore, in order to Þnish the proof it is su"cient to show the
following:

Claim 2.10 . Ð The set of compactly supported smooth sections ofS+ ' E on C with
singular part compactly supported away from any singularity is dense inH 1.

Proof. Ð It is su"cient to show the statement for $ 0, the case of$ 2 being analogous.
First we concentrate on inÞnity. Let f " H 1(E), and deÞne cut-o! functions ) R (r )
supported in [0, 2R] and equal to 1 on [0, R], such that ) $

R is supported in [R, 2R]
with

max|) $
R | * 2/R.

Then we need to check that
) R (r )f %$ f

in H 1(E) as R $ - . In view of Corollary 2.5, this boils down to the classical calcu-
lations

2(1 %) R (r )) f 2 *
-

R ) r
|f |2

and

2. + ((1 %) R (r )) f )2 *
-

R ) r ) 2R
|) $

R (r )|2|f |2 + K
-

R ) r
|. + f |2

* K $
-

R ) r ) 2R
|f |2 + K

-

R ) r
|. + f |2,

where K, K $ are constants independent ofR and f .
Next, let us consider a logarithmic singularity pj , and deÞne cut-o! functions ) "

supported in [0, $], equal to 1 on [0, $/2], and such that

max |) $
" | *

4
$

.

We need to show that
(1 %) " )f sing %$ f sing

in H 1(E) as $ $ 0. One sees that
-

C
|) " f sing |2 *

-

r<"
|f sing |2 $ 0,

sincef sing " L 2. In the same way,
-

C

|) " f sing |2

r 2 *
-

r<"

|f sing |2

r 2 $ 0,

sincef sing /r " L 2. Finally, we also see that
-

C
|. + () " f sing )|2 *

16
$2

-

"/ 2<r<"
|f sing |2 +

-

r<"
|. + f sing |2

*
-

"/ 2<r<"

16|f sing |2

r 2 +
-

r<"
|. + f sing |2
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and all of these expressions converge to zero as well.

Applying the claim to approximate f 0 and f 2 in H 1 by sections with compactly
supported singular component combined with (2.15), we immediately get the lemma.

Now we can come to vanishing of the kernel of (2.14): by Lemma 2.9, we have

Ker( /#! ) = Ker( D! |H 1 (" 0 ) ) + Ker(D !
! |H 1 (" 2 ) ),

it is therefore su"cient to prove vanishing of the kernels of D and of D ! . By duality, we
only need to treat the case ofD . Harmonicity of the metric implies the Weitzenbšck
formula:

(2.16) /#!
! /#! = ( . +

! )! (. +
! ) + (# ! ' )! # ! '

(see [4], Thm 5.4.), which then gives by partial integration and Claim 2.10the identity

2/#! f 22
L 2 = 2D +

! f 22
L 2 + 2# ! f 22

L 2(2.17)

for any f " H 1($ 0). Suppose now thatf is in the kernel of /#! . Then (2.17) implies
# ! f = 0 , and since# ! is an isomorphism near inÞnity because of the choice! /" öP, we
also have theref = 0 . Again by (2.17), f is covariant constant. This gives the result,
since a covariant constant section vanishing on an open set vanishes everywhere.

2.2. Proof of the Fredholm Theorem

A modiÞcation of the usual gluing argument of Fredholm-type theorems works in
this case as well. One lets, 1 be a cut-o! function supported in a compact region
R outside a neighbourhood of the singularities, and puts, 2 = 1 % , 1. Since /# is a
non-singular Þrst-order elliptic operator in R, elliptic theory of a compact manifold
implies that a parametrix P1 exists for /# in this region. Next, one considers the
problem in neighbourhoods of the singularities. First, one studies the model operators
/#j = D j + ( D j )! instead of the Dirac operator itself. There are two di!erent ways of
treating these:

(1) either one extends the functional spaces and the model Dirac operator onto a
natural completion of the neighbourhood, which can be either a conformal cylinder
or a complex line (depending on the form of the metric and the functional spaces),
and deÞnes a two-sided inverse of/#j on this completion

(2) or one Þnds directly a two-sided inverse of/#j on a small disk around the
singularity, with a boundary condition veriÞed by any section supported outside a
neighbourhood of the boundary.
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Let us see how these allow to deduce the Fredholm theorem: if we takeR su"ciently
large, then on the support of , 2 all of these inverses(/#j )" 1 are deÞned. One then
sets

P : L 2(S" ' E ) %$ H 1(S+ ' E )

P(u) = , 1P1(, 1u) +
*

j

, 2(/#j )" 1(, 2u),

and shows that this operator is a two-sided parametrix of /# on all C. This can be
done along classical lines, the only di!erence being that near the singularities we have
inverses of the local models of the operator and not inverses of the operator itself.
Therefore, we proceed as follows: Þrst, we study the local models of the Dirac operator
around the singularities, and establish the isomorphisms as in (1) or in ( 2). Then we
prove that the e!ect of passing to the model operators from the global ones at the
singularities only amounts to adding a compact operatorH 1(S+ ' E ) $ L 2(S" ' E ),
which then gives the theorem.

2.2.1. Logarithmic singularities. Ð Let "( p, $) be a small neighbourhood ofp "
P. Up to a change of coordinates, we may suppose$ = 1 . Identify "( p,1) ! { p} =
S1&]0, 1] via polar coordinates (r, ( ). Since the local model (1.20) is diagonal in the
basis { ej

k } , we see that the model Dirac operator on this disk

/#j
0 = D j %(D j )! : ($ 0 + $ 2) ' E |!( p,1) %$ $ 1 ' E |!( p,1)

splits into the direct sum of its restrictions to the rank-one components generated
by one of the { ej

k } . Again, we have two cases: Þrst,k " { 1, . . . r j } (regular case) and
secondlyk " { r j + 1 , . . . r } (singular case).

In the regular case, by deÞnition the model Dirac operator on a rank-one component
is just the operator

/# = d %d! : S+ = $ 0 + $ 2 %$ $ 1 = S" ,

which identiÞes to a projection of the real part of the usual Dirac operator on a
product of two disks in C2 given by

ø# % ø#! : $ 0,0 + $ 0,2 %$ $ 0,1.

Since this is known to have an inverse for the Atiyah-Patodi-Singer boundary condi-
tion, the case of the regular part at a Þnite singularity follows.

On the singular component near a Þnite singularity, consider again the coordinate
changet = %ln r " R + . The local model ofD with respect to t is given by

D j = d + i øµj
k d( + [ / µj

k %&j
k ]

dr
r

(see (1.20)). Notice that the rank of S+ and that of S" are both equal to2: we trivialise
them using the unit-norm sections (1, r dr ) d( ) and (dr, r d( ) respectively, so that
both S+ ' Esing and S" ' Esing become isomorphic toEsing + Esing as Hermitian
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bundles. As we have seen in Lemma2.3, the spaceH 1("( p,1), Esing ) is equal to the
model space of all sections, having

-

!( p,1)

+

|. , |2 +

/
/
/
/

,
r

/
/
/
/

2
,

r dr d( < - .

By conformal invariance of the norm of 1-forms and dt = dr/r , this is
-

S1 * R +

6
|. , |2 + |, |2

7
dtd( < - ,

with the norm of the 1-form . , measured with respect to the volume form dtd( . This
latter is just the deÞnition of the weighted Sobolev spaceL 2,1

0 (S1 & R + , Esing ) with
one derivative in L 2and weight 0. In a similar way, the usual L 2-space of sections of
Esing on the disk is identiÞed with the spaceL 2

" 1(S1 & R + , Esing ) of L 2-sections with
weight %1 on the half cylinder, for

-

!( p,1)
|, |2 r dr d( =

-

S1 * R +
|,e " t |2dtd(.

Hence in the trivialisation (dr, r d( ) of S" , the usual L 2-space of1-forms on the disk
is identiÞed with the weighted space

L 2
" 1(S1 & R + , Esing + Esing ).

Claim 2.11 . Ð Let (r, ( ) be polar coordinates aroundp = pj as above. Letk " { r j +
1, . . . , r } and

(f, g (r dr ) d( )) ' ej
k " C# (" ! { 0} , S+ ' Esing ).

Then the value of the model Dirac operator/#j on this section is
+

#r f +
/ µj

k %&j
k

r
f %

#$ + iµ j
k

r
g

,

dr

+

+
#$ + i øµj

k

r
f + #r g %

/ µj
k %&j

k

r
g

,

r d(.

In particular, in the unitary trivialisations (1, r dr ) d( ) and (dr, r d( ) of S+ and S" ,
the operator

r /#j = e" t /#j

is translation-invariant with respect to the cylindrical coordinate t.

Proof. Ð This is a direct computation: for f ' ej
k it follows immediately from ( 1.20).

For the image of g(r dr ) d( ) ' ej
k , consider Þrst the smooth form. dr ' ej

k supported
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in a compact region of" ! { 0} ; then by the same formula we have

3. dr ' ej
k , (D j )! g(r dr ) d( ) ' ej

k 4= 3D j (. dr ), g(r dr ) d( )4

= %3(#$ + i øµj
k ). dr ) d(, g(r dr ) d( )4

= %
1
r

3(#$ + i øµj
k )., g 4

=
1
r

3., (#$ + iµ j
k )g4

and thus the projection of (D j )! g(r dr ) d( ) ' ej
k on the dr -component is(#$+ iµ j

k )gdr '
ej

k . The other component is obtained taking a compactly supported smooth form
/r d( ' ej

k :

3/r d( ' ej
k , (D j )! g(r dr ) d( ) ' ej

k 4= 3D j (/r d( ), g(r dr ) d( )4

=

8+

#r +
/ µj

k %&j
k

r

,

/, g

9

=

8

/,

+

%#r +
/ µj

k %&j
k

r

,

g

9

,

and the formula of the claim follows. It implies that r /#j is translation-invariant be-
cause#r = %#t /r .

By deÞnition, the weight 0 is critical for r /#j if and only if there exists a non-trivial
solution of

e" t /#j (Ae" &t+ in$ , Be" &t+ in$ (r dr ) d( )) = 0

with some constantsA, B " C and a constant 0 " C such that / 0 = 0 . Turning back
to the coordinate r again, this is equivalent to having

r /#j (Ar &ein$ , Br &ein$ (r dr ) d( )) = 0 .(2.18)

By formula (2.3) of [19], if 0 is not a critical weight, then the translation-invariant
elliptic di!erential operator

e" t /#j : L 2,1
0 (S1 & R + , S+ ) %$ L 2

0(S1 & R + , S" )

is invertible, and thus so is

/#j : L 2,1
0 (S1 & R + , S+ ) %$ L 2

" 1(S1 & R + , S" )

since

et : L 2
0 %$ L 2

" 1

is an isomorphism. Therefore, in order to establish the desired isomorphism in the
singular case, we only need to check the weight0 is not critical for r /#j .
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Applying the claim to the equation ( 2.18), we see that0 is a critical weight if and
only if the system of linear equations

(0 + / µ %&)A %i (n + µ)B = 0

i (n + øµ)A + ( 0 + & % / µ)B = 0

has a non-trivial solution (A, B ) " C2 for some 0 " C with / 0 = 0 (here we have
omitted indices j and k of µ and & for simplicity). This system has a non-trivial
solution if and only if the determinant formed by the coe"cients is equal to 0:

02 %(/ µ %&)2 % |n + µ|2 = 0 .

Since / 0 must be 0, this can only be the case if0 = / µ % & = n + µ = 0 . By
assumption 0 * & < 1, and n is an integer, therefore the only case this can hold is
when & = µ = 0 , which is impossible, since we are looking at the singular component
of the bundle. Therefore, there are no non-trivial solutions to (2.18), and 0 is not a
critical weight.

2.2.2. Singularity at inÞnity. Ð In this section the importance of the condition ! /"
öP will come out; therefore we write out the index ! of our operators. A neighbourhood
of inÞnity in C ! P is given by the complementaryC ! "( R) of a large disk around0.
A natural choice of completion of this manifold is of courseC, with its standard metric
|dz|2. We choose to study the local model in the orthonormal basis{ e#

k } deÞned in
(1.21). This allows us to think of E as the trivial bundle Cr over C ! "( R), with
standard hermitian metric on the Þbers. By (1.30) this basis (up to a polynomial
scaling factor) is a natural one for the Higgs-bundle point of view, so the deformation
is that considered in (1.35), and the operator D! near inÞnity is given (up to terms
of order r " 1) by

D #
! = d +

A %! Id
2

dz +
(A %! Id)!

2
døz

(see (1.23)), and a natural extension of it to all of C can be given by the same formula.
This implies immediately that

# #
! =

A %! Id
2

dz +
A! % ø! Id

2
døz

and (D # )+ = . (the trivial connection) on all of C. For a section , " L 2($ 0)
supported in C ! "( R), the condition # ! , " L 2($ 0) then automatically holds, and
(D #

! )+ , " L 2 is equivalent to . , " L 2. Therefore, on sections of$ 0 supported on the
complementary of "( R), the H 1-norm is equivalent to the usual SobolevL 2,1-norm.
A similar argument shows that for sections of$ 2, the H 1-norm is also equivalent to
the usual L 2,1-norm. Therefore, on all of C, we must consider a natural extension of
these functional spaces, namelyL 2,1(C, $ 0 + $ 2). In an analogous manner, onS" we
consider the extensionL 2(C, $ 1) of L 2(C ! "( R), $ 1). Therefore, we need to prove
the
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Lemma 2.12. Ð On C, the Dirac operator

/##
! = D #

! %(D #
! )! : L 2,1($ 0 + $ 2) %$ L 2($ 1)(2.19)

is an isomorphism.

Proof. Ð Since A is supposed to be diagonal in this basis with eigenvalues! l (l =
1, . . . , n$), we may restrict ourselves to the study of the operatorD # = d + ( ! l %
! )/ 2dz + ( ø! l % ø! )/ 2døz. We need the following:

Claim 2.13 . Ð Denote by" the plain Laplace operator. ! . on forms. Then we have

/##
! (/##

! )! = %" %
|! l %! |2

4
.(2.20)

Proof. Ð This is an easy computation.

Now recall that by the classical theory of the Laplace operator," + " 2 with " > 0
is an isomorphism

(2.21) L 2,2(C, $ j ) %$ L 2(C, $ j ).

This statement can be for example obtained passing to the Fourier transform|öx|2 + " 2

of this operator.

Coming back to our situation, the condition ! /" öP means exactly that ! l %! != 0 for
any l = 1 , . . . , n$. This immediately implies that ( 2.19) is surjective: indeed, clearly
Im(( /##

! )! ) ( L 2,1($ 0 + $ 2), and /##
! (/##

! )! is surjective by the isomorphism (2.21).
For injectivity, note that a formula similar to ( 2.20) holds for the Laplace operator
(/##

! )! /##
! as well. This in turn implies that the L 2,2-kernel of /##

! vanishes. Elliptic
regularity then shows that the L 2,1-kernel vanishes as well.

2.2.3. Compact perturbation. Ð We wish to prove that near each one of the
singularities the e!ect of passing from the global operator to its local model, i.e.,
subtracting the perturbation term only amounts to a compact operator H 1(S+ ' E ) $
L 2(S" ' E ). This then Þnishes the proof of the Fredholm theorem, because the sum
of a Fredholm operator and a Þnite number of compact operators is Fredholm.

Consider Þrst the case of a singularity at a Þnite point. Recall from Lemma2.3
that near pj the spaceH 1(S+ ' E ) is equal to the sum

L 2,1
eucl (S

+ ' Ereg ) + L 2,1
0 (S+ ' Esing ),

whereL 2,1
eucl is the usual Sobolev space on the disk ofL 2-functions with one derivative

in L 2 with respect to Euclidean metric, whereasL 2,1
0 is the weighted Sobolev space

deÞned by
-

!( pj ," )

+ /
/
/
/

,
r

/
/
/
/

2

+ |. , |2
,

|dz|2 * - .
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Also, the order of growth of the 1-form perturbation term aj with respect to Euclidean
metric is by (2.11) at most O(r " 1+ %), with - > 0. We need to prove that we have
compact Sobolev multiplications for functions on the disk

(2.22) L 2,1
eucl

aj

%$ L 2
eucl

and

(2.23) L 2,1
0

aj

%$ L 2
eucl .

Consider Þrst (2.22): since the disk is a compact manifold, for any2 < p < - the
inclusion L 2,1

eucl 1$ L p
eucl is compact. On the other hand,O(r " 1+ %)dr + O(r " 1+ %)r d( is

in L 2+ "
eucl for some$ > 0. Choosep such that 1/ 2 = 1/ (2 + $) + 1 /p ; (2.22) then follows

immediately from the continuous multiplication L 2+ "
eucl & L p

eucl $ L 2
eucl . Now, we come

to (2.23): this is an immediate consequence of the previous, for the weighted norm
L 2,1

0 is stronger then L 2,1
eucl .

Next, let us treat the case of the singularity at inÞnity. In the coordinate w = 1 /z
we have a second-order singularity on the disk"(0 , 1/R ). Let w = )ei' ; by (2.13) the
perturbation is O() " 1" %), and the H 1-norm of a function , supported near inÞnity
is given by

-

C ! !(0 ,R )

6
|, |2 + |. , |2

7
|dz|2 =

-

!(0 ,1/R )

+ /
/
/
/

,
) 2

/
/
/
/

2

+ |. , |2
,

|dw|2.

In particular, in the coordinate w this norm is also stronger thenL 2,1
eucl , so we conclude

from (2.22).

2.3. L 2-cohomology and Hodge theory

In this section we keep on supposing that we have on one side an integrable con-
nection D with singularities in P , {-} , with prescribed behaviours at these points,
given in regular singularities by (2.11) and at inÞnity by ( 2.13). In Theorem 2.6 we
proved that the deformed operators/#! are Fredholm between the spacesH 1 and L 2;
in particular their indices agree. We also showed that if the metric is harmonic then
the kernel of the Dirac operator vanishes, hence the index of/#! is equal to the opposite
of the dimension of the cokernelCoker(/#! ), this operator being considered between
functional spaces as in (2.14). This dimension is therefore a constant independent of
! , and it follows from the implicit function theorem that the spaces öE! = Coker( /#! )
deÞne a Þnite-rank smooth vector bundleöE over öC ! öP, the rank being equal to the
opposite of the index of (2.14). Here we wish to interpret this cokernel as the Þrst
cohomology of the elliptic complex

L 2($ 0 ' E )
D !%%$ L 2($ 1 ' E )

D !%%$ L 2($ 2 ' E ),(2.24)

(see Theorem2.16), and also as the space of harmonic sections with respect to the
Laplace operator of the adjoint Dirac operator /#!

! (Theorem 2.21).
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Since the operators in (2.24) are unbounded, we need to deÞne their domains. In
this chapter C#

0 stands for smooth sections supported in a compact subset ofC ! P.

Definition 2.14 . Ð The maximal domain of D |" i is

Dommax (D |" i ) = { u " L 2($ i ) : Du " L 2($ i +1 )} ,

where Du " L 2 is understood in the sense of currents,i.e., the functional v "
C#

0 ($ i +1 ) #$ 3u, D ! v4 is continuous in the L 2-topology.

By local elliptic regularity, this amounts to the same thing as Du being an L 2-
section. When it does not cause any confusion, we will simply writeDommax ($ i ) for
Dommax (D |" i ). It is easy to see that if we considerD on its maximal domain, then
the kernel is a closed subspace ofL 2, and the image ofD on $ i " 1 is contained in the
kernel of D on $ i . The image of a general di!erential operator is however not always
a closed subspace of the kernel.

Definition 2.15 . Ð For i " { 0, 1, 2} , the i th L 2-cohomologyof D is Ker(D |" i + E )/
Im( D |" i $ 1 + E ), where both of these operators are considered with maximal domain,
and the operators not shown in (2.24) are trivial. It is denoted by L 2H 1(D).

Our aim is to obtain the following:

Theorem 2.16 . Ð The cokernel of /# deÞned onH 1(S+ ' E ) is equal to the Þrst
L 2-cohomology ofD .

Proof. Ð Recall that by deÞnition

Coker(/#|H 1 (S+ + E ) ) = (Im( /#|H 1 (S+ + E ) ))
,

= (Im( D |H 1 (" 0 + E ) ))
, 5 (Im( D ! |H 1 (" 2 + E ) ))

, ,(2.25)

where A, stands for the L 2-orthogonal of the subspaceA ( L 2. Therefore, it is
su"cient to prove the following lemmas:

Lemma 2.17. Ð The maximal domain of

D : L 2($ 0 ' E ) %$ L 2($ 1 ' E )

is H 1($ 0 ' E ). Similarly, the maximal domain of

D ! : L 2($ 2 ' E ) %$ L 2($ 1 ' E )

is H 1($ 2 ' E ). In particular, the maximal domain of

/# : L 2(S+ ' E ) %$ L 2(S" ' E )

is H 1(S+ ' E ). Moreover, if this latter space is equipped with the norm2.2H 1 deÞned
in ( 2.1), then /# is a bounded operator fromH 1(S+ ' E ) to L 2(S" ' E ).

Lemma 2.18. Ð We have

(Im( D ! |H 1 (" 2 + E ) ))
, = Ker( D |Dom max (" 1 + E ) ).

Lemma 2.19. Ð The image ofD : H 1($ 0 ' E ) $ L 2($ 1 ' E ) is closed.
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Indeed, Lemmas2.17and 2.18together with ( 2.25) imply that the cokernel is equal
to

(Im( D |Dom max (" 0 + E ) ))
, 5 Ker(D |Dom max (" 1 + E ) ),

which in turn is identiÞed to the Þrst reduced L 2-cohomology of (2.24), i.e., to

Ker(D |Dom max (" 1 + E ) )/ Im( D |Dom max (" 0 + E ) ),

where the bar over the image stands for theL 2-closure of that space. Lemma2.19
now concludes the proof of Theorem2.16.

Proof (Lemma 2.18). Ð We Þrst show the

Claim 2.20 . Ð The adjoint of the unbounded operator

D ! : L 2($ 2 ' E ) %$ L 2($ 1 ' E )(2.26)

with domain H 1($ 2 ' E ) is the unbounded operator

D : L 2($ 1 ' E ) %$ L 2($ 2 ' E )(2.27)

with domain Dommax ($ 1 ' E ).

Proof (Claim) . Ð It is clear that the formal adjoint of ( 2.26) is (2.27), we only need
to prove its domain is Dommax . By deÞnition, a section u " L 2($ 1) is in the do-
main of the adjoint operator Dom((D ! )! ) if and only if for all v " H 1($ 2 ' E ) we
have

|3u, D ! v4| * K 2v2

with a constant K only depending on u. Now, since v " H 1 and u " L 2, by
Claim 2.10 we can perform partial integration to the left-hand side of this for-
mula. Therefore, u is in the domain of the adjoint operator if and only if the func-
tional

v #%$ 3Du, v 4

is bounded in L 2($ 2 ' E ). But this condition is equivalent to Du " L 2($ 2 ' E ), and
the claim follows.

Lemma 2.18 now directly follows from the claim and the general fact that the
cokernel of an unbounded operator is equal to the kernel of its adjoint.

Proof (Lemma 2.17). Ð First we need to prove that for a sectionu of L 2($ 0 ' E ) we
have Du " L 2 if and only if both D + u " L 2 and # u " L 2. The Òif Ó direction being
obvious, we concentrate ourselves on the opposite statement, and suppose in what
follows that u is an L 2-function with Du " L 2.

We Þrst study the singularity at inÞnity. For |u| su"ciently large, we have the
point-wise estimate

|# u| * 2K |u|,

whereK is the maximal modulus of the eigenvalues of the matrixA. Therefore,u " L 2

at inÞnity implies # u " L 2 at inÞnity, and consequently D + u = Du % # u " L 2 at
inÞnity, and we are done.
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Next, consider the case of a singularity at a Þnite point. In the orthonormal basis
(1.17), the operators we study are equal, up to a perturbation term, to the local
models (see (1.18), (1.19), (1.20))

(D + )j , = ( d + i / µj
k d( ),

# j , = [( / µj
k %&j

k )
dr
r

+ 1 µj
k d( ],

D j , = [ d + i øµj
k d( + ( / µj

k %&j
k )

dr
r

],

To simplify notation, from now on we drop the indices j and k. Note that because
of Lemma 2.3, it is su"cient to prove that # j , and (D + )j , are in L 2. Notice also
that since the perturbation aj may mix the regular and singular components, a pri-
ori it is not su"cient to prove for example that , reg " L 2 and D, reg " L 2 im-
ply (D + )j , reg " L 2, becauseD, " L 2 does not imply directly D, reg " L 2 in the
presence of a mixing perturbation term. However, remark that denoting byaj

r,r the
part of the endomorphism aj that takes the regular component into the regular one,
and aj

r,s , aj
s,r , aj

s,s the other parts, we have
-

!( pj ," )
|(D j + aj ), |2 =

-

!( pj ," )
|(D j + aj

r,r ), reg + aj
s,r , sing |2

+
-

!( pj ," )
|(D j + aj

s,s ), sing + aj
r,s , reg |2(2.28)

6
-

!( pj ," )
|D j , reg |2 + |D j , sing |2

% |aj , reg |2 % |aj , sing |2,

and this estimate shows that we can treat the two components separately: the left-
hand side is Þnite by hypothesis, whereas the integrals of|aj , reg |2 and |aj , sing |2 by
KatoÕs inequality and (2.12); hence the same thing holds for the integrals of|D j , reg |2

and |D j , reg |2.
On the regular component, the above expressions simplify toD j = ( D + )j = .

(the trivial connection), and # j = 0 . What we need to show is that , reg , D, reg " L 2

implies . , reg " L 2, if D = . + aj with aj = O(r " 1+ %). Recall that by KatoÕs
inequality and (2.12) with $ > 0 chosen su"ciently small we have

-

!( pj ," )
|aj , reg |2 *

-

!( pj ," )
|D, reg |2 +

-

!( pj ," ) ! !( pj ,"/ 2)
|, reg |2.

It follows that -

!( pj ," )
|. , reg |2 *

-

!( pj ," )
|D, reg |2 +

-

!( pj ," )
|aj , reg |2

< 2
-

!( pj ," )
|D, reg |2 + 2

-

!( pj ," )
|, reg |2.
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Now by the hypothesis ,, D, " L 2, the right-hand side is Þnite. Therefore. , " L 2

as we wished to show.

Consider now the singular case: again, we need to show that if we have a section
, " L 2 such that D, " L 2, then D + , sing , # , sing " L 2. Here, usual elliptic regularity
does not give the claim, because we need to deduce that, sing /r " L 2. From now on,
we write , = , sing to lighten notation. Decompose, into its Fourier-series nearpj :

, (r, ( ) =
#*

n = "#

, n (r )ein$

Choosing $ su"ciently small, we can make the perturbation term aj be smaller on
"( pj , $) then 0/r for any 0 > 0. Write Þrst the d ( -term of D j , :

D j
$, = ( #$ + i øµ), d( = id(

#*

n = "#

(n + øµ), n (r )ein$ .

By this and the estimate on the perturbation, we infer that

2(D j
$ + aj ), 22

L 2 (!( pj ," )) 6 2 D j
$, 22

L 2 (!( pj ," )) % 20,/r 22
L 2 (!( pj ," ))

=
-

!( p," )

#*

n = "#

(|n + øµ|2 %02)
|, n (r )|2

r 2(2.29)

=
-

!( p," )

#*

n = "#

(|n + / µ|2 %02 + |1 µ|2)
|, n (r )|2

r 2 .

By Hypothesis 1.28 we have / µ /" Z, and so if 0 is su"ciently small, then the last
expression can be bounded from below by

1
2

-

!( p," )

#*

n = "#

(|n + / µ|2 + |1 µ|2)
|, n (r )|2

r 2(2.30)

=
1
2

-

!( p," )
|(D +

$ )j , |2 + |# j
$, |2.

As in the regular case, by (2.12) the left-hand side of (2.29) is Þnite, so we see that
(D +

$ )j , " L 2 and # j
$, " L 2. The dr -part # j

r , of # j , is in L 2 if and only if
-

!( p," )
|/ µ %&|2

|, (r )|2

r 2 < - .

Again by our main hypothesis / µ /" Z there exists a constantK > 0 such that
#*

n = "#

|/ µ %&|2
|, n (r )|2

r 2 * K
#*

n = "#

|n + / µ|2
|, n (r )|2

r 2 .

As we have already seen, this last expression is integrable, therefore# j , " L 2. Since
the perturbation is negligible compared to the behaviourO(r " 1) of (2.30), we then
also have# , " L 2. We conclude usingD + , = D, %# , .
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By duality, the case of a 2-form vdz ) døz is settled the same way. The general case
(that of S+ ' E ) then follows from Lemma 2.9. The fact that

/# : H 1(S+ ' E ) %$ L 2(S" ' E )

is bounded, is then immediate (and has already been pointed out, see (2.14)).

Proof (Lemma 2.19). Ð This is immediate from Theorem 1 and Claim 2.9.

We have established lemmata2.18, 2.19 and 2.17, hence we Þnished the proof of
Theorem 2.16.

Theorem 2.21 . Ð The Þrst L 2-cohomology of the complex (2.24) is canonically iso-
morphic to the kernel of the adjoint Dirac operator

(2.31) /#!
! : L 2(S" ' E ) %$ L 2(S+ ' E )

on its domain, or alternatively to the kernel of the Laplace operator

(2.32) " ! = /#! /#!
! = %D! D !

! %D !
! D! : L 2(S" ' E ) %$ L 2(S" ' E )

on its domain.

Proof. Ð By duality, we get from Lemma 2.18 that

(Im( D |H 1 (" 0 + E ) ))
, = ker( D ! |Dom max (" 1 + E ) ),

and this implies

coKer(/#|H 1(S+ ' E )) = ker( D ! |Dom max (" 1 + E ) ) 5 ker(D |Dom max (" 1 + E ) )

= ker( /#! |Dom max (" 1 + E ) ).

It remains to show that this latter is equal to ker(/#/#! |Dom max (" 1 + E ) ). It is clear that

ker(/#/#! |Dom max (" 1 + E ) ) 7 ker(/#! |Dom max (" 1 + E ) ).

Suppose nowu " L 2($ 1 ' E ) satisÞes/#/#! u = 0 . This means that

/#! u " Ker( /#) ( Dommax (/#) = H 1(S+ ' E )

by Lemma 2.17. Vanishing of the L 2-kernel of /# on H 1(S+ ' E ) (cf. Theorem 2.6)
gives /#! u = 0 , that is u " Ker( /#! ), whence

ker(/#/#! |Dom max (" 1 + E ) ) 8 ker(/#! |Dom max (" 1 + E ) ).

Finally, let us introduce the norm

2f 2H 2 (S+ + E ) =
-

C
|f |2 + |(. + )! . + f |2 + |(# ' )! # ' f |2

and the corresponding function space

H 2(S+ ' E ) = { f : 2f 2H 2 (S+ + E ) < -}

Then we have the following.

MƒMOIRES DE LA SMF 110



2.4. PROPERTIES OF THE GREENÕS OPERATOR 45

Theorem 2.22 . Ð The domain of the Laplace operator" ! = /#!
! /#! is H 2(S+ ' E ). It

deÞnes a Hilbert-space isomorphism

H 2(S+ ' E ) %$ L 2(S+ ' E ).

Proof. Ð The fact that " ! is a well-deÞned bounded operator onH 2(S+ ' E ) follows
from the Weitzenbšck formula (2.16). Its is the set of u " L 2(S+ ' E ) such that /#! u "
Dommax (/#!

! ). This latter is, by computations similar to Lemma 2.17, the Sobolev space
H 1(S" ' E ) is with 1 derivative in L 2, and weight %1 on the irregular component near
logarithmic singularities like in Corollary 2.5. We deduce that the maximal domain
of " ! is H 2(S+ ' E ), and that it splits as

H 2(S+ ' E )
/( !%$ H 1(S" ' E )

/( #
!%$ L 2(S+ ' E ).

Exactly as in Theorem 2.6, the Þrst map is Fredholm with vanishing kernel from the
Sobolev spaceH 2(S+ ' E ) into H 1(S" ' E ), both space being endowed with theL 2-
inner product. This with the identity Im( /#! ), = Ker( /#!

! ) implies that Ker(" ! ) = { 0}
and that Im(" ! ) = Im( /#!

! ) = Ker( /#! ), = L 2(S+ ' E ). Therefore, " ! is a bounded
bijective operator from H 2(S+ ' E ) to L 2(S+ ' E ). By the closed graph theorem, we
conclude that its inverse is also bounded.

2.4. Properties of the GreenÕs operator

Definition 2.23 . Ð Let us call the bounded linear inverse of/#!
! /#! provided by Theo-

rem 2.22 the GreenÕs operatorof the Dirac-Laplace operator, and denote it by

G! : L 2(S+ ' E ) %$ H 2(S+ ' E ).

In this section we list the properties of this operator that we will need in later
chapters.

Lemma 2.24. Ð G! is diagonal with respect to the decompositionS+ ' E = ($ 0 '
E ) + ($ 2 ' E ).

Proof. Ð SinceG! is the inverse of" ! , it is su"cient to prove the statement for this
latter operator. This comes from the identity

" ! = /#!
! /#! = ( D !

! %D! )(D! %D !
! ) = %D !

! D! %D! D !
! ,

which is satisÞed sinceD! is ßat.

Lemma 2.25. Ð There exist K, K $ > 0 such that for |! | su"ciently large and for any
positive spinor / " H 1(S+ ' E ), the following estimates hold:

2G! / 2L 2 (C ) * K |! |" 22/ 2L 2 (C )(2.33)

2G! / 2H 1 (C ) * K $|! |" 12/ 2L 2 (C )(2.34)
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Proof. Ð Since by deÞnition, for any/ the positive spinor G! / is the solution . of

" ! . = /,

the estimates (2.33) and (2.34) can be rewritten respectively as

2. 2L 2 (C ) * K |! |" 22" ! . 2L 2 (C )(2.35)

2. 2H 1 (C ) * K $|! |" 12" ! . 2L 2 (C ) .(2.36)

Call ! -energy of . over all C the quantity

(2.37) E(! ; . ) =
-

C
|. +

! . |2 + |# ! ' . |2|dz|2.

By partial integration, the Weitzenbšck formula ( 2.16) and CauchyÕs inequality we
have

E(! ; . ) =
-

C
3., " ! . 4|dz|2(2.38)

* 2 . 2L 2 2" ! . 2L 2 .

Now, as we will see from (4.46), on the complementary of a Þnite union of disks
"( qk (! ), $0|! |" 1) we have the point-wise lower bound

(2.39) |# ! ' . |2 6 c|! |2|. |2

for some c > 0. Furthermore, we can choose$0 su"ciently small so that the balls
"( q(! ), 2$0|! |" 1) are disjoint and do not meet P for |! | large. Setting

B! :=
:

q( ! )%# !

"( q(! ), $0|! |" 1)

we then deduce the estimation

(2.40)
-

C ! B !

|# ! ' . |2 |dz|2 6 c|! |2
-

C ! B !

|. |2 |dz|2.

Of course, extending this inequality over the disks"( q(! ), $0|! |" 1) is not possible,
since# ! has a zero inq(! ). However, the integral of |# ! ' . |2 + |. +

! . |2 does control
|! |2 times that of |. |2 on the whole plane; that is, we have:

Claim 2.26 . Ð There exists c > 0 such that for |! | su"ciently large and for any
spinor . we have

(2.41) E(! ; . ) 6 c|! |2
-

C
|. |2 |dz|2

Proof. Ð By KatoÕs inequalityE(! ; . ) can be bounded from below by
-

C
|# ! ' . |2 + |d|. ||2 |dz|2.
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By (2.40), it only remains to show that for any q(! ) " &! this integral bounds from
abovec|! |2

.
!( q( ! ) ," 0 |! |$ 1 ) |. |2|dz|2, for somec > 0 (not necessarily the same as before).

But since on the annulus

"( q(! ), 2$0|! |" 1) ! "( q(! ), $0|! |" 1)

we already have the estimation (2.39), this is just a consequence of (2.12) applied at
the point q(! ) instead of pj to the function g = |. |, with $ = $0|! |" 1 and - = 1 .

By the claim and (2.38), we have

c|! |22. 22
L 2 (C ) * 2 . 2L 2 (C ) 2" ! . 2L 2 (C ) ,

and after dividing both sides by 2. 2L 2 (C ) , we get (2.35).
Plugging (2.35) into ( 2.38), we obtain

(2.42) E(! ; . ) * K |! |" 22" ! . 22
L 2 (C ) .

On the other hand, by the deÞnitions

. +
! = . + %

!
2

dz +
ø!
2

døz

# ! =# %
!
2

dz %
ø!
2

døz

we obtain the point-wise bounds
1
2

|# ' . |2 %
3
2

|! |2|. |2 * | # ! ' . |2 * 2 |# ' . |2 + |! |2|. |2

1
2

/
/ . + .

/
/ 2

%
3
2

|! |2|. |2 *
/
/
/ . +

! ' .
/
/
/

2
* 2

/
/ . + .

/
/ 2

+ |! |2|. |2

and therefore

(2.43)
1
2

2. 22
H 1 (C ) %(3|! |2+1) 2. 22

L 2 (C ) * E (! ; . ) * 22. 22
H 1 (C ) +(2 |! |2+1) 2. 22

L 2 (C ) .

Putting together this with ( 2.42) and (2.35), we get

2. 22
H 1 (C ) * 2E(! ; . ) + (6 |! |2 + 2) 2. 22

L 2 (C )

* 2E(! ; . ) + 7 |! |22. 22
L 2 (C )

* (2K + 7K 2)|! |" 22" ! . 22
L 2 (C ) ,

whence (2.36).

We now investigate what happens to the GreenÕs operator when! is close to one
of the points of öP.

Lemma 2.27. Ð There exist K, K $ > 0 such that for |! %! l | su"ciently small and for
any positive spinor / " H 1(S+ ' E ), the following estimates hold:

2G! / 2L 2 (C ) * K |! %! l |" 22/ 2L 2 (C )(2.44)

2/#! G! / 2L 2 (C ) * K $$|! %! l |" 12/ 2L 2 (C )(2.45)
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Proof. Ð Analogous to Lemma 2.25. Notice that by partial integration and the
Weitzenbšck formula (2.16) one has

2/#! . 22
L 2 (C ) = E(! ; . )

for any positive spinor . . Using this and setting G! / = . the inequalities to prove
can be rewritten as

2. 2L 2 (C ) * K |! %! l |" 22" ! . 2L 2 (C )(2.46)

E(! ; . ) * K $$|! %! l |" 22" ! . 22
L 2 (C ) .(2.47)

The behaviour (4.62) of the Higgs Þeld shows that outside of a Þnite union of disks
"( qk (! ), $0|! %! l |" 1) there existsc > 0 for which we have the point-wise lower bound

(2.48) |# ! ' . |2 6 c|! %! l |2|. |2.

It follows that denoting by B! the union of all the above mentioned disks where this
estimate may fail, we have the inequality

(2.49)
-

C ! B !

|# ! ' . |2 |dz|2 6 c|! %! l |2
-

C ! B !

|. |2 |dz|2.

It is not possible to extend this inequality to the whole plane; however, we have again

Claim 2.28 . Ð There existsc > 0 such that for |! %! l | su"ciently small and for any
spinor . we have

(2.50) E(! ; . ) 6 c|! %! l |2
-

C
|. |2 |dz|2

Proof. Ð Similar to Claim 2.26, using KatoÕs inequality and (2.12) rescaled conve-
niently by the homothety w = ( ! %! l )z.

This together with ( 2.38) then shows

c|! %! l |22. 22
L 2 (C ) * 2 . 2L 2 (C ) 2" ! . 2L 2 (C ) ,

which gives us (2.46). Plugging this back into ( 2.38), we obtain (2.47).

2.5. Exponential decay results for harmonic spinors

In this section we give some analytic properties of" ! -harmonic spinors. They
will be needed in Section3.1, where we study the transformed ßat connection. More
precisely, they will allow us to multiply any L 2 harmonic section by exponential factor
so that the result remains in L 2. They will also be of use in the computation of the
parabolic weights of the transform in Section4.6.

First we set some further notation. Fix ! " öC ! öP, and let . be a harmonic negative
spinor with respect to /#! /#!

! and p " C ! P any point of the plane. Finally, for any
spinor / (not necessarily harmonic), call! -energy of/ in the disk "( p, $) the quantity

(2.51) E(p, $, !; / ) =
-

!( p," )
|. +

! / |2 + |# ! ' / |2.
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Lemma 2.29. Ð Suppose that there exists$0 > 0, R > 0 and c > 0 such that the disk
"( p, (R + 1) $0) is disjoint from P, and all of the eigenvalues of( ! in any point of
this disk are bounded below in absolute value byc > 0. Under these assumptions, we
have the inequality

(2.52) E(p, $0, ! ; . ) * e" 2cR" 0

;
22. 22

H 1 (C ) + (2 |! |2 + 1) 2. 22
L 2 (C )

<
.

Proof. Ð Denote by C(p, r) the boundary of "( p, r), and by (
(n an outward-pointing

unit normal vector to it. StokesÕ formula gives

E(p, r, ! ; . ) =
-

!( p,r )

;
(. +

! )! . +
! . + (# ! ' )! # ! ' ., .

<

+
-

C (p,r )

( ;
. +

!

<

"
"n

., .
)

r d(.

Since . is " ! -harmonic, the Weitzenbšck formula (2.16) implies that the Þrst term
on the right-hand side vanishes. Therefore, by the tic-tac-toe inequality, we have

E(p, r, ! ; . ) *
1
2

-

C (p,r )

1
c

/
/ . + .

/
/ 2

+ c|. |2r d(.

On the other hand, we have

dE(p, r, ! ; . )
dr

=
-

C (p,r )

/
/
/ . +

! .
/
/
/

2
+ |# ! ' . |2r d(.

By assumption, for r * (R + 1) $0 we have the estimate
-

C (p,r )
|# ! ' . |2r d( 6 c2

-

C (p,r )
|. |2r d(.

Putting together these estimates, we see that

dE(p, r, ! ; . )
dr

6 2cE(p, r, ! ; . ),

whence
d logE(p, r, ! ; . )

dr
6 2c.

Integrating this inequality from r = $0 to r = ( R + 1) $0, we obtain

logE(p, $0, ! ; . ) * 2c[$0 %(R + 1) $0] + log E(p, (R + 1) $0, ! ; . ).

Taking exponential of both sides, we get

E(p, $0, ! ; . ) * e" 2cR" 0 E (p, (R + 1) $0, ! ; . )

* e" 2cR" 0 E (! ; . ),

and we conclude using (2.43).
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Next, we use the above lemma to obtain exponential decay results in terms of!
for the energy of harmonic spinors when! is large, Þrst in a Þxed disk ofC away
from the singularities P, then near inÞnity in C. In the Þrst case, the statement is as
follows.

Lemma 2.30. Ð Let p " C ! P be arbitrary, and let $0 > 0 be such that the distance
betweenp and P is at least 3$0. Then for |! | su"ciently large we have the estimate

2. 22
H 1 (!( p," 0 )) * e" " 0 |! |/ 32. 22

H 1 (C )

for any " ! -harmonic spinor . .

Proof. Ð Since p is away from P, in the Higgs Þeld ( ! = ( % ! dz/ 2 the term ( is
bounded on"( p,2$0). Therefore, if |! | is su"ciently large, then the eigenvalues of ( !

on this disk are bounded below in absolute value by|! |/ 4. Apply Lemma 2.29 with
R = 1 and c = |! |/ 4 to get

E(p, $0, ! ; . ) * e" " 0 |! |/ 2
;

22. 22
H 1 (C ) + (2 |! |2 + 1) 2. 22

L 2 (C )

<

* 5e" " 0 |! |/ 2|! |22. 22
H 1 (C )

*
1
33

e" " 0 |! |/ 32. 22
H 1 (C )

for ! su"ciently large. On the other hand, we have

2. 22
H 1 (!( p," 0 )) =

-

!( p," 0 )
|. |2 +

/
/ . + .

/
/ 2

+ |# ' . |2

*
-

!( p," 0 )
2|! |2|. |2 +

/
/
/ . +

! .
/
/
/

2
+ |# ! ' . |2(2.53)

* 33 E(p, $0, ! ; . ),

where the last line is a consequence of|# ! ' . |2 6 | ! |2|. |2/ 16 in "( p, $0). Putting
together these two estimates, we get the lemma.

In the second case, we have the following statement.

Lemma 2.31. Ð For any ! /" öP there exists R0 = R0(! ) > 0, K = K (! ) > 0 and
c = c(! ) > 0 such that for any " ! -harmonic spinor . and all R > R 0 the following
estimate holds:

2. 22
H 1 (C ! !(0 ,2R )) * Ke" Rc 2. 22

H 1 (C ) .

Furthermore, if |! | is su"ciently large, we can choosec = |! |/ 3 and R0, K constants
independent of! .

Proof. Ð The proof is an amalgam of that of Lemmata 2.29 and 2.30. DeÞne the
! -energy at inÞnity of a spinor by the integral

(2.54) E(- , R, ! ; . ) =
-

C ! !(0 ,R )
|. +

! . |2 + |# ! ' . |2.
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ChooseR0 > 0 and c0 such that for |z| > R 0 the eigenvalues of( ! (z) are all bigger
in absolute value thenc0. Clearly, such a choice is possible because! /" öP. Moreover,
for |! | su"ciently large one can put c0 = |! |/ 4 and R0 a constant only depending on
the initial data ( . For r 6 R0, we have the estimate

%E(- , r, ! ; . ) 6 %
1
2

-

C (0 ,r )

1
c0

/
/
/ . +

! .
/
/
/

2
+ c0|. |2r d(.

On the other hand, we have

dE(- , r, ! ; . )
dr

= %
-

C (0 ,r )

/
/
/ . +

! .
/
/
/

2
+ |# ! ' . |2r d(.

By assumption, we have also
-

C (0 ,r )
|# ! ' . |2r d( 6 c2

0

-

C (0 ,r )
|. |2r d(.

Putting together these estimates, we see that forr 6 R0

dE(- , r, ! ; . )
dr

* % 2c0E(- , r, ! ; . ),

whence
d logE(- , r, ! ; . )

dr
* % 2c0.

Integrating this inequality from R to 2R and using (2.43), we obtain

E(- , 2R, ! ; . ) * E (! ; . )e" Rc 0

* (|! |2 + 3) e" Rc 0 2. 22
H 1 (C ) .

On the other hand,

E(- , 2R, ! ; . ) 6
-

C ! !(0 ,2R )
|# ! ' . |2

6 c2
0

-

C ! !(0 ,2R )
|. |2

implies
K 0E(- , 2R, ! ; . ) 6 2 . 22

H 1 (C ! !(0 ,2R ))

for someK 0 > 0. This gives the lemma for ! in a Þnite region. The case of|! | large
also follows noting that K depends at most polynomially on! .

Since a" ! -harmonic spinor is subharmonic in the usual sense, the above results
also imply point-wise exponential decay on harmonic spinors:

Lemma 2.32. Ð SupposeR > R 0. Then there existsK, c > 0 such that for any |z| >
2R + 1 and any " ! -harmonic spinor . we have

|. (z)| * Ke" Rc 2. 22
H 1 (C ) .
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Proof. Ð Because of the condition|z| > 2R + 1 , the disk "( z,1) centered at z of
radius 1 is contained in C ! "(0 , 2R). On the other hand, by subharmonicity of .
with respect to the usual Laplace operator, we have

|. (z)| * K 0

-

!( z,1)
|. (w)||dw|2

* K 1

+ -

!( z,1)
|. (w)|2|dw|2

, 1/ 2

* K 1

+ -

C ! !(0 ,2R )
|. (w)|2|dw|2

, 1/ 2

We conclude using Lemma2.31.
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CHAPTER 3

THE TRANSFORM OF THE
INTEGRABLE CONNECTION

In this chapter, we deÞne the transformed parabolic integrable connection induced
by the deformation D! . First, in Section 3.1, we deÞne the underlying ßat bundle; then
in Section 3.2 we show that its behaviour at inÞnity veriÞes appropriate asymptotic
conditions. This then allows us to apply the results of [5] in order to deÞne an extension
into a parabolic integrable connection over the singularity at inÞnity; the same thing
for other singularities follows from [26].

Before starting these points, we need however to introduce some notation. Recall
Þrst that öP was deÞned as the set{ ! 1, . . . , ! n ! } of eigenvalues of the second-order
term of D at inÞnity. Let öH $ öC ! öP denote the trivial Hilbert bundle with Þbers
L 2(C, S" ' E ). By Theorem 2.21, the transformed bundle öE can be given as the vector
bundle whose Þber over! " C ! öP is the kernel of the adjoint Dirac operator (/#! )! .
By the same theorem, such an element is also" ! -harmonic. Now remark that on the
bundle öH there exists a hermitian metric 3., .4 which is canonical once a hermitian
metric h(., .) is Þxed onE: for any two elements öf 1, öf 2 " öH! = L 2(C, S" ' E ), it is
deÞned by theL 2 inner product

3öf 1, öf 24=
-

C
h( öf 1, öf 2)|dz|2.

Moreover, the trivial connection öd on the bundle öH is unitary with respect to this
metric. Let ö2! denote orthogonal projection of öH! onto the subspace öE! , and i the
inclusion öE 1$ öH .

Definition 3.1 . Ð We call transformed Hermitian metric the Þber metric öh on öE
which is equal on the ÞberöE! to the restriction of the above deÞnedL 2 scalar product
3., .4 to the subspaceöE! ( L 2(C, S" ' E ).
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3.1. Construction of the transformed ßat connection

In this section we show that the transformed bundle admits an integrable connec-
tion, which is determined only by the deformation D! . First, we describe its intrinsic
construction, then we give it in terms of an explicit formula.

3.1.1. Intrinsic deÞnition. Ð DeÞning a ßat connection is equivalent to giving a
basis of parallel sections on a diskB0 around each point ! 0 " öC ! öP. Given this, in
order to see that it deÞnes indeed a ßat connection, one only needs to prove that the
transition matrices on B0 5 B1 between two such bases (corresponding to points! 0

and ! 1) are constant.

So suppose! 0 " öC ! öP, and let öf 1(z), . . . , öf ör (z) be a basis of the vector spaceöE! 0 .
On the basis of Lemma2.32, for $0 = $0(! 0) > 0 su"ciently small, the expressions

öf j (! ; z) = ö2! (e(! " ! 0 )z öf j (z)) " öE!(3.1)

make sense for! on the ball B0 = B (! 0, $0) of radius $0 centered at ! 0. Therefore,
(restricting $0 if necessary), they deÞne an extension of the basisöf 1, . . . , öf ör of the
vector space öE! 0 to a trivialisation of the bundle öE over B0.

Proposition 3.2 . Ð The family of sections (3.1) for all ! 0 " öC ! öP, for j "
{ 1, . . . , ör } , and for all ! " B0 deÞne a local system for a ßat connectionöD on
öE $ öC ! öP.

Definition 3.3 . Ð We will call öD the transformed ßat connectionon öC ! öP.

proof (Proposition) . Ð Let ÷! 0 != ! 0 be another point of öC ! öP, and ög1(z), . . . , ögör (z) be
a basis for the vector spaceöE ÷! 0

. According to (3.1), the local trivialisation of öE near
÷! 0 we need to consider is thenög1(! ), . . . , ögör (! ), with

ögl (! ; z) = ö2! (e(! " ÷! 0 )z ögl (z))(3.2)

for ! in a small disk ÷B0 around ÷! 0. In order to show that the local bases (3.1) and
(3.2) deÞne indeed a local system, we need to show that the transition matricesm(! )
between them are independent of the point! " B0 5 ÷B0. We will make use of the
following:

Lemma 3.4. Ð For any !, ! $ " B0, and any k0 " ker(D! 0 |S" ' E ) we have

ö2! !

;
e( ! ! " ! )z ö2! (e(! " ! 0 )zk0(z))

<
= ö2! ! (e( ! ! " ! 0 )zk0(z)) .

Proof (Lemma). Ð Set k! (z) = e(! " ! 0 )zk0(z); we need to prove that

ö2! ! [e( ! ! " ! )z ö2! (k! (z))] = ö2! ! (e( ! ! " ! )zk! (z)) ,

or equivalently that
ö2! ! [e( ! ! " ! )z (Id % ö2! )(k! )] = 0 ,
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which is still equivalent to

(3.3) e(! ! " ! )z (Id % ö2! )(k! )9 öE! ! .

Since ö2! is orthogonal projection to öE! , we have

(3.4) (Id % ö2! )(k! ) " öE ,
! .

Moreover, observe that for ! 0 and ! Þxed, the relation

(3.5) e(! " ! 0 )z .D ! 0 = D! 0 %(! %! 0)dz) = D! ,

holds, and so

(3.6) k! = e(! " ! 0 )zk0 " e(! " ! 0 )zker(D! 0 ) ( ker(D! ) = Im( D !
! ), = Im( D! ) + öE! .

From (3.4) and (3.6) it follows that (Id %ö2! )k! " Im( D! ). Now using (3.5) for (! $%! )
instead of (! %! 0), we deduce thate(! ! " ! )z (Id % ö2! )k! " Im( D! ! ), whence (3.3). This
Þnishes the proof of the lemma.

Let us now come back to the study of the transition matrix: let !, ! $ " B0 5 ÷B0,
and suppose we have

(3.7) öf j (! ) =
ör*

l =1

mjl ögl (! ),

where(mjl ) is the transition matrix between the two bases at the point ! . Lemma 3.4
means that for |! %! $| su"ciently small, we have

öf j (! $) = ö2! ! (e( ! ! " ! )z öf j (! ))(3.8)

ögl (! $) = ö2! ! (e( ! ! " ! )z ögl (! )) .(3.9)

Now plugging (3.7) into ( 3.8), then using (3.9) we obtain

öf j (! $) = ö2! !

+

e(! ! " ! )z
ör*

l =1

mjl ögl (! )

,

=
ör*

l =1

mjl ö2! ! (e( ! ! " ! )z ögl (! ))

=
ör*

l =1

mjl ögl (! $),

so the transition matrix at the point ! $ is the same as the one at! , whence we obtain
the Proposition.
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3.1.2. Explicit description. Ð We now give an explicit formula for the ßat con-
nection constructed above, following page 13 of [16]. First deÞne a unitary connection
on öE with respect to the transformed Hermitian metric by

(3.10) ö. = ö2! : öd : i.

The fact that this connection is indeedöh-unitary can be seen as follows: letf, g " %(öE)
be local sections around! 0, then from orthogonality of ö2! to öE with respect to the
norm 3., .4 we have in ! 0

öd(öh( öf , ög)) = öd3öf , ög4= 3öd öf , ög4+ 3öf , ödög4

= 3ö. öf , ög4+ 3öf , ö. ög4= öh( ö. öf , ög) + öh( öf , ö. ög),

where öd stands for exterior di!erentiation of functions along the coordinate ! as well
as for the trivial connection with respect to ! on the trivial Hilbert bundle öH . Finally,
we deÞne an endomorphism-valued(1, 0)-form (a candidate to be a transformed Higgs
Þeld) by mapping a " ! -harmonic section öf (! ; z) to

(3.11) ö( ! ( öf (! ; z)) = %
1
2

ö2! (z öf (! ; z))d!,

where d! stands for the standard generator of the holomorphic(1, 0)-forms on öC. This
Þeld will indeed be holomorphic provided that the original metric h is harmonic (see
Section 4.2).

Proposition 3.5 . Ð The connection ö. +2 ö( is equal to the transformed ßat connection
öD deÞned above.

Proof. Ð We need to show that for all ! 0 and all f (z) " öE! 0 , the local öD-parallel
section in ! " B0 given by

(3.12) öf (! ; z) = ö2! (e(! " ! 0 )z öf (z))

is parallel in B0 with respect to ö. + 2 ö( . First, let us check it in ! 0:

(( ö. + 2 ö( ) öf )( ! 0) = ö2! 0 [(öd öf )( ! 0) %z öf (! 0)d! ].

We observe that by (3.12) we have

(öd öf )( ! 0) = ( ödö2! )! 0
öf (! 0) + ö2! 0 (z öf (! 0)d! ),

hence
(( ö. + 2 ö( ) öf )( ! 0) = ö2! 0 [(ödö2! )! 0

öf (! 0)].

Now ö2! : ö2! = ö2! implies

ödö2! : ö2! + ö2! : ödö2! = ödö2! ,

therefore
ö2! 0 [(ödö2! )! 0

öf (! 0)] = ( ödö2! )! 0 : (Id % ö2! 0 ) öf (! 0) = 0 ,

since ö2! 0 is the projection to öE! 0 and öf (! 0) " öE! 0 .
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Next, Þx an arbitrary ! " B0. Then, as we have just shown, the local section deÞned
for |! $%! | su"ciently small by

öf $(! $) = ö2! ! (e( ! ! " ! )z öf (! ; z))

is parallel in ! (compare with (3.12), setting ! 0 = !, ! = ! $). But Lemma 3.4 tells us
that the local sections öf $ and öf coincide in a neighbourhood of! ; in particular öf is
parallel in ! .

The following is now immediate:

Proposition 3.6 . Ð The unitary part of the transformed ßat connection öD is

öD + = ö. + ö( % ö( ! = ö2! :
(

öd %
1
2

zd! ) +
1
2

øzdø! )
)

.

Definition 3.7 . Ð We will call the above unitary connection öD + the transformed
unitary connection. The covariant derivative associated to it will be denotedö. + .

Remark 3.8 . Ð The fact that the formula for the transformed unitary connection
involves extra multiplication terms by z and øz compared to the usual formulae of
other Nahm transforms is an artifact: as we will see in the next chapter, the transform
admits an interpretation from the point of view of Higgs bundles, in which the formula
for the transformed unitary connection agrees with the usual one.

3.2. Extension over the singularities

At this point, it should be pointed out that a priori we have no guarantee that
the constructed ßat connection is indeed of the form required by Section 2 of [5]
(and therefore extends nicely over the singularities); that is, in an orthonormal basis
with respect to its harmonic metric it is not necessarily the model (1.20) up to a
perturbation described in (2.11) and (2.13). However, there is a theorem of O. Biquard
and M. Jardim which allows us to show that this is the case. Namely, Theorem 0.1 of
[6] states the following:

Theorem 3.9 . Ð Let ÷A be an SU(2)-instanton on R 4, invariant with respect to the
additive subgroupZ (

(x 3
+ Z (

(x 4
, and suppose that its curvatureF ÷A has quadratic decay

at inÞnity (that is, |F ÷A | = O(r " 2), where r 2 = x2
1 + x2

2). Then there exists a gauge
near inÞnity in which ÷A is asymptotic to the following model:

÷A0 = d + i
;

" 1dx3+ " 2dx4 + ( µ1 cos( %µ2 sin( )
dx3

r

+ ( µ1 sin( + µ2 cos( )
dx4

r
+ * d(

<
,

where z = rei$ are coordinates for the (x1, x2)-plane. Moreover, the di!erence a be-
tween ÷A and this model satisÞes

|a| = O(r " 1" %),
/
/ . ÷A 0

a
/
/ = O(r " 2" %).
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58 CHAPTER 3. THE TRANSFORM OF THE INTEGRABLE CONNECTION

In order to be able to apply this result to our case, consider the Euclidean space
(R 4)! spanned by orthonormal vectors (

(x #
j

for j = 1 , 2, 3, 4, and identify the subspace

spanned by (
(x #

1
and (

(x #
2

with the line öC with complex coordinate ! underlying öD. By

Section 1 of [14], öD then induces an instanton ÷A on (R 4)! with singularities, invariant
with respect to the subspaceR (

(x #
3

+ R (
(x #

4
. In particular, ÷A is invariant with respect

to Z (
(x #

3
+ Z (

(x #
4
, so Theorem 3.9 can be applied to it, provided that its curvature

has quadratic decay. In order to have an explicit description of ÷A and its curvature,
remember that öD decomposes as

öD = ö. + + ö( + ö( ! ,

where ö. + is the transformed unitary connection, ö( the Þeld deÞned in (3.11) and ö( ! its
adjoint with respect to the harmonic metric of öD . Now as we will see in Section4.2, this
harmonic metric is in fact the transformed Hermitian metric öh given in DeÞnition 3.1.
The unitary part of öD decomposes further into its(1, 0)- and (0, 1)-part:

ö. + = ( ö. + )1,0 + ( ö. + )0,1.

Finally, we write ö3 for the endomorphism-part of ö( :

ö( = ö3d!.

The instanton over (R 4)! corresponding to öD is then given by the formula

÷A = ö. + + / ö3dx!
3 + 1 ö3dx!

4,

where we recall that
#
#!

=
1
2

(
#

#x!
1

%
#

#x!
2

)

is the natural complex coordinate of öC, and the connection ö. + on (R 4)! acts as ö. +

along öC and as the trivial connection alongR (
(x #

3
+ R (

(x #
4
. Furthermore, as it can be

seen from the results in Section 1 of [14], we then have the formula

F ÷A = %[ö3, ö3! ](dx!
1 ) dx!

2 + dx!
3 ) dx!

4)

+ ( ö. + )x #
1
/ ö3(dx!

1 ) dx!
3 %dx!

2 ) dx!
4)(3.13)

+ ( ö. + )x #
1
1 ö3(dx!

1 ) dx!
4 + dx!

2 ) dx!
3),

where we have written ( ö. + )x # to denote the action of the unitary connection in the
(

(x # -direction. Hence, before we can apply Theorem3.9we need to check the following:

Theorem 3.10 . Ð There exists a constantK > 0 such that the commutator[ö3, ö3! ] is
bounded byK |! |" 2 as ! $ - . The same estimation holds for ö. + ö3.

Proof. Ð We start with the case of the commutator. Let öf (! ; z) " öE! = Ker( /#! )! be
arbitrary; we wish to show the estimate

/
/
/ [ ö3, ö3! ] öf (! )

/
/
/

öh
* K |! |" 2| öf (! )|öh ,
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with K independent of öf and of ! . Recall the well-known formula from Hodge theory:

(3.14) ö2! = Id %/#! G! /#!
! .

Using this, we obtain

[ö3, ö3! ] öf (! ) = %
1
2

ö2! (zö2! (øz öf (! )) % øzö2! (z öf (! )))

=
1
2

ö2! (z/#! G! /#!
! (øz öf (! )) % øz/#! G! /#!

! (z öf (! ))) .(3.15)

SinceD! is a connection, the following commutation relations hold:

[D! , z] = dz) [D! , øz] = døz)

[D !
! , z] =

#
#øz

! [D !
! , øz] =

#
#z

! ,

where ! stands for contraction of a di!erential form by a vector Þeld. It follows
immediately

[/#! , z] = %[/#!
! , z] = dz ) %

#
#øz

! = dzá(3.16)

[/#! , øz] = %[/#!
! , øz] = døz ) %

#
#z

! = døzá(3.17)

where the Cli!ord multiplication áis deÞned by these formulae. Plugging these in the
expression (3.15), using /#!

!
öf (! ; z) = 0 and ö2! |Im /( #

!
= 0 together with the deÞnition of

öh, we get

/
/
/ [ ö3, ö3! ] öf (! )

/
/
/

öh
=

1
2

=
=
=ö2!

;
dz áG! døz á öf (! ) %døz áG! dz á öf (! )

<=
=
=

L 2 (C )

*
1
2

=
=
=G! døz á öf (! )

=
=
=

L 2 (C )
+

1
2

=
=
=G! dz á öf (! )

=
=
=

L 2 (C )
,(3.18)

since the norm of the orthogonal projection of a vector to a subspace is at most the
norm of the vector and the action of Cli!ord multiplication by d z and døz is point-wise
bounded. We conclude by the Þrst statement of Lemma2.25.
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Next, let us come to ö. + ö3. Similarly to the above, using (3.14) and the commutation
formulae (3.16)-(3.17) we obtain

;
ö. + ö3

<
öf (! ) =

;
öD + : ö3 % ö3 : öD +

<
öf (! )

=ö2!

;
öd %

z
2

d! +
øz
2

dø!
<

ö2!

;
%

z
2

<
öf (! )

% ö2!

;
%

z
2

<
ö2!

;
öd %

z
2

d! +
øz
2

dø!
<

öf (! )

=ö2!

> ;
öd %

z
2

d! +
øz
2

dø!
<

/#! G! /#!
!

; z
2

öf (! )
<

%
z
2

/#! G! /#!
!

;
öd %

z
2

d! +
øz
2

dø!
<

öf (! )
?

=ö2!

>(
1
2

d! ) dz %
1
2

dø! ) døz
)

áG!
dz
2

á öf (! )

%
dz
2

áG!

(
1
2

d! ) dz %
1
2

dø! ) døz
)

á öf (! )
?

+ ö2!

@
öd/#! G!

dz
2

á öf (! ) %
dz
2

áG! /#!
!
öd öf (! )

A

(here dz and døz act on the spinors by Cli!ord multiplication, whereas d ! and dø! by
wedge product). Noticing that |d! | = |dø! | = 2 , the Þrst term in the last expression
can be treated exactly as in (3.18). For the second term, one only needs to remark
that the commutation relations

>
öd, D!

?
=

@
öd, D %

!
2

dz +
ø!
2

døz
A

= %
d! ) dz)

2
+

dø! ) døz)
2

and
>
öd, D !

!

?
= %

d! )
2

#
#øz

! +
dø! )

2
#
#z

!

show that
>
öd, /#!

?
= %

>
öd, /#!

!

?
= %

1
2

d! ) dz á+
1
2

dø! ) døzá

holds. Therefore we can proceed again as in (3.18).

On the basis of Theorem3.9, the behaviour of the transformed ßat connection
at inÞnity satisÞes the hypothesis considered in [5]. Namely, in a suitable gauge its
di!erence from a model with second-order pole is in the weighted Sobolev space
L 1,2

" 2+ %($ 1 ' E ) considered in Section 2 of that article. Indeed, passing to a coordinate
w = z" 1, |w| = ) in which the double pole is in 0, the norm of the perturbation
is O() 1+ %), whereas that of its derivative is also O() 1+ %) (because the norm of1-
forms near inÞnity is |dz| = |dw|/ |w| = 1 ), and we conclude since) 1+ %/) 2 " L 2

%" 2.
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It follows from the results of its Sections 7 and 8 that the analytic ßat connection öD
deÞned outside inÞnity extends to an algebraic integrable connection with a parabolic
structure on the singular Þber at inÞnity. On the other hand, such an extension
over logarithmic singularities (that is, singularities in which the eigenvalues of öD or
equivalently those of ö3 have at most Þrst-order poles) is ensured by Theorem 2 of
[26]. Therefore, by Theorem 4.30 the ßat connection öD on öC ! öP can be extended

into a meromorphic integrable connection on !CP
1

with parabolic structures at the
singularities.

Definition 3.11 . Ð The transformed meromorphic integrable connection is the
meromorphic integrable connection with parabolic structure in the singularities in-
duced by the above extension procedures, subject to local changes of holomorphic
trivialisations near the singularities to take all weights between0 and 1. We will
continue to denote it by ( öE, öD). The underlying extension will be calledtransformed
extension of the transformed bundle.

Remark 3.12 . Ð We will see in Section4.6 that the parabolic structures are adapted
to the harmonic metric; namely, the weight0 * ö* k < 1 of a subspaceFk öE |p of a
singular Þber corresponds in local coordinatez vanishing at the puncture to a decay
bounded above by|z|2ö) k of the norm of a parallel section extending an element of
Fk öE |p, as measured by the harmonic metric. However, in Sections4.4.1 and 4.4.2
we will construct a di!erent extension over the punctures Ð more suited to analytical
study Ð, where the behaviour of the norm of parallel sections near the singular points
will no longer be bounded. We then pass back to the transformed extension in Corol-
lary 4.39, where we remark that it is the one that establishes a "good" correspondence.
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CHAPTER 4

INTERPRETATION FROM THE POINT OF VIEW
OF HIGGS BUNDLES

Let (E, D, h ) be a Hermitian bundle with integrable connection. Throughout this
chapter, we suppose that the original metrich is harmonic. This metric then deÞnes
a Higgs bundle( E, ( ) starting from the integrable connection, via the procedure de-
scribed in Section1.5. We Þrst prove that the transformed metric öh is then harmonic
for öD . Next, we give an interpretation of the transformed Higgs bundle of( E, ( ) in
terms of the hypercohomology of a sheaf map overCP 1. These results will then be
used to deÞne theinduced extensioni öEof the transformed bundle over the punctures
öP , {-} , and to compute the topology and the singularity parameters of this ex-
tension of the transformed Higgs bundle. This will enable us to eventually compute
the topology and the singularity parameters of the transformed Higgs bundle with
respect to its transformed extension given in DeÞnition3.11.

4.1. The link with the transformed integrable connection

Recall that we have deÞned the deformation of the Higgs bundle by the formula
(1.35), and we write D $$

! for the D $$-operator of this deformation. Explicitly, we have

D $$
! = ø# E+ ( ! ,

where ( ! = ( %!/ 2dz. Moreover, as we have noticed in Section1.7, nonabelian Hodge
theory identiÞes the deformation of the Higgs bundle structure (1.35) and that of the
integrable connection via the unitary gauge transformation

g(z, ! ) = e[ ø! øz" !z ]/ 2.

In other words, writing g! = g(., ! ) for the gauge transformation restricted to the Þber
öH! , we have

(4.1) g! .D! = D H
! = D %

!
2

dz ) %
ø!
2

døz ) .
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64 CHAPTER 4. HIGGS BUNDLE INTERPRETATION

Since the gauge transformationg! is unitary, in addition to ( 4.1) we have as well

(4.2) g! .D !
! = ( D H

! )! .

Definition 4.1 . Ð The operator /#H
! = D H

! %(D H
! )! will be referred to as theHiggs

Dirac operator. In the same way, we let/#$$
! stand for the Dirac operator D $$

! %(D $$
! )! .

The transformed smooth bundle underlying the Higgs bundleis the bundleöV over öC !
öP whose Þber over! is the Þrst L 2-cohomology spaceL 2H 1( CH

! ) of the operator D H
! .

Proposition 4.2 . Ð This way we deÞne a smooth vector bundleöV . Furthermore,
there exists a canonical bundle isomorphism between the smooth bundleöE underly-
ing the transformed integrable connection and the smooth bundleöV underlying the
transformed Higgs bundle.

Proof. Ð Theorem 2.16tells us that the transformed bundle underlying the integrable
connection is the bundle of ÞrstL 2-cohomologies ofD int

! . For any ! , the gauge trans-
formation g! of E induces a natural isomorphism between theL 2-cohomology spaces
of the complexes (1.7) and

(4.3) $ 0 ' E
g! .D int

!%%%%$ $ 1 ' E
g! .D int

!%%%%$ $ 2 ' E.

which is just CH
! . In Theorem 2.6 we have shown that the0-th and 2-nd cohomology

of C! vanishes for all ! " öC ! öP, whereas Corollary2.7 implies that the cohomology
spacesL 2H 1( C! ) deÞne a smooth vector bundle overöC ! öP. This then implies the
same thing for CH

! , whence the bundle isomorphism between the bundles overöC ! öP
in question.

Theorem 2.21 has the following interpretation:

Theorem 4.3 . Ð The Þrst L 2-cohomology öV! = L 2H 1( CH
! ) of the operator D H

! is
canonically isomorphic to the kernel of the adjoint Dirac operator

(4.4) (/#H
! )! : L 2(S" ' E ) %$ L 2(S+ ' E )

on its domain, or alternatively to the kernel of the Laplace operator

(4.5) " H
! = /#H

! (/#H
! )! : L 2(S" ' E ) %$ L 2(S" ' E )

on its domain.

Proof. Ð Apply the gauge transformation g to Theorem 2.21and notice that (4.1) and
(4.2) imply

(4.6) g! ./#!
! = ( /#H

! )!

and

(4.7) g! ." ! = " H
! ;

and in particular that

(4.8) g! (Ker( /#!
! )) = Ker(( /#H

! )! )
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4.1. INTEGRABLE CONNECTION AND HIGGS BUNDLE 65

and

(4.9) g! (Ker(" ! )) = Ker(" H
! ).

This result enables us to put similar deÞnitions as in the integrable deformation
case.

Definition 4.4 . Ð The hermitian bundle metric on öV given byL 2 scalar product of
the (/#H

! )! -harmonic representative will be called thetransformed Hermitian metric ,

and will be denoted byöh. Also, ö2H
! will stand for öh-orthogonal projection of L 2(S" ' E )

onto öV .

Remark 4.5 . Ð Starting from a Higgs bundle with any Hermitian metric (not nec-
essary harmonic), we can deÞne in the same way its transform on the transformed
bundle öV .

Next, we recollect the above considerations in terms of the transformed bundles.

Proposition 4.6 . Ð The family of gauge transformationsg induce a Hermitian bun-
dle isomorphism betweenöE and öV . Furthermore, the Þber öV! can be identiÞed with the
Þrst L 2-cohomology of the single complex associated to the following double complex,
denoted byD! :

$ 0,1 ' E
$! - !!$ 2 ' E

$ 0 ' E
$! - !!

ø( E

""

$ 1,0 ' E.

ø( E

""

Remark 4.7 . Ð Notice that commutativity of this diagram follows from the hypothesis
ø# E( = 0 , which is just the deÞnition of the harmonicity of h.

Proof. Ð By (4.9),the D! -harmonic representative of a class is mapped byg into a
D H

! -harmonic class. Since the transformed metric from both points of view is induced
by L 2-norm of the harmonic representatives, andg is unitary, this gives the Þrst
statement. For the second, remark that by Theorem1.25, the Laplace operator " H

!
is equal (up to a factor of 2) to the Laplace operator" $$

! = /#$$
! (/#$$

! )! , therefore their

kernels coincide. This then identiÞesöV with the Þrst L 2-cohomology of the complex

(4.10) $ 0 ' E
D !!

!%%$ $ 1 ' E
D !!

!%%$ $ 2 ' E.

Finally, recall that the formula
D $$

! = ø# E+ ( !

gives the decomposition ofD $$
! into its (0, 1)- and (1, 0)-part respectively. This means

that the complex (4.10) is the single complex associated to the double complexD! .
However, it is not necessarily true that the domain ofD $$

! is the sum of the domain of
ø# E and that of ( ! , it could in principle be larger. Still, the two L 2-cohomologies are
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the same. Indeed, supposef = f 1,0dz + f 0,1døz " L 2($ 1 ' E ) is in the kernel of D $$
! ,

that is

(4.11) ø# Ef 1,0dz + ( ! ) f 0,1døz = 0 .

We wish to represent theD $$
! -cohomology class off by a class ÷f 1,0dz + ÷f 0,1døz such

that ø# ÷f 1,0 " L 2 and ( !
÷f 0,1 " L 2. Away from logarithmic singularities, one can simply

choosef itself, for there locally f 0,1 " L 2 implies ( ! f 0,1 " L 2 and by (4.11) then
ø# Ef 1,0 " L 2 as well. Thus we only need to modify f in a neighbourhood of the
logarithmic punctures. By Claim 4.11 near any such puncture we can Þndg " L 2(E)
such that ( ! g " L 2($ 1,0 ' E ) and

f 0,1døz + ø# Eg = 0 .

Using ø# E( ! = 0 , the last two identities then also imply

ø# E(f 1,0dz + ( ! g) = 0 .

Put ÷f 1,0dz = f 1,0dz+ ( ! g; as both f 1,0 and ( ! g are supposed to be inL 2, so is ÷f 1,0dz.
This then shows that f is cohomologous in theL 2 complex of (4.10) to a class locally
represented by a section÷f 1,0dz, where ÷f 1,0 " L 2 and ø# E÷f 1,0 " L 2. In di!erent terms
÷f 1,0dz " Dommax ( ø# E), and this shows that the ÞrstL 2-cohomology of (4.10) is indeed
equal to that of D! .

Next, let us investigate what the transformed integrable connection öD and its
unitary part öD + become under this gauge transformation. Notice that since the gauge
transformation g is unitary, the orthogonal projection ö2 onto öE is transformed into the
orthogonal projection ö2H onto öV , with respect to the sameL 2-metric on the Þbers;
in di!erent terms g! .ö2! = ö2H

! . The image of the transformed integrable connectionöD
under the gauge transformationg in the point ! is given by

öD H = g. öD

= g.(ö2! : (öd %zd! ) ))(4.12)

= ö2H
!

(
öd %

1
2

(zd! ) +øzdø! ) )
)

,

(see (3.10), (3.11) and Proposition 3.5), and that of the candidate Higgs Þeld is the
endomorphism

ö( H = g.ö(

= g.(ö2! : (%z/ 2d! ) ))(4.13)

= %
1
2

ö2H
! (zd! ) ).

Therefore, if we decompose the transformed ßat connection in the point of view of
Higgs bundles into its unitary and self-adjoint part, we obtain

( öD H )+ = ö2H
! (öd) ( öD H )sa = ö( H + ( ö( H )!(4.14)
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(these formulae can also be deduced directly from Proposition3.6). This then gives
the desired interpretation of the transformed unitary connection öD + in this point of
view.

Definition 4.8 . Ð We let ø#
öE stand for the (0, 1)-part of ( öD H )+ . Moreover, we call

the holomorphic bundle öV with partial connection ø#
öE the transformed holomorphic

bundle and we denote it byöE.

4.2. Harmonicity of the transformed metric

In this section we prove the following result:

Theorem 4.9 . Ð If the original metric h is harmonic, then the same thing is true for
öh.

Proof. Ð First remark that by ( 4.14), the formula for ø#
öE is ö2H

! (öd
0,1

). Also, the (1, 0)-

part of ( öD H )sa is just ö( H . By deÞnition, harmonicity of the transformed metric öh
resumes then in the equation

(4.15) ø#
öEö( H = 0 .

By Proposition 4.6 we have öV! = L 2H 1(D $$
! ), with D $$

! = D $$% !/ 2dz. From this
formula it is clear that D $$

! depends holomorphically on! , so we are in the situation
described in part 3.1.3 of [12] of chain complexes

$ 0 ' E
D !!

!%%$ $ 1 ' E
D !!

!%%$ $ 2 ' E

varying holomorphically with ! . There it is shown that if the Þrst cohomology spaces
öV! of these complexes are all Þnite dimensional, of the same dimension, then the
bundle öV constructed out of them over the parameter space of! carries a natural
holomorphic structure. Explicitly, this is given by by saying that a section f " %(öV) in
a neighbourhood of! 0 is holomorphic if and only if it admits a lift ÷f " %(Ker(D $$

! |" 1 ))
which is itself holomorphic with respect to the holomorphic structure induced by the

(0, 1)-part öd
0,1

of the trivial connection öd on the Hilbert bundle öH . This holomorphic
structure is the same as the one deÞned by the operatorø#

öE, since both are induced by
öd

0,1
and ö2H . The section ö( H " End( öV )' $ 1,0

öC
is then holomorphic for this holomorphic

structure if and only if it maps each holomorphic sectionf into a holomorphic section.
In particular, this is the case if it admits a lift

Ker(D $$
! |" 1 ) $ !!Ker(D $$

! |" 1 ) ' $ 1,0
öC

öV!

""

ö$H
!! öV! ' $ 1,0

öC
,

""

such that
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(1) ' passes to the quotientKer(D $$
! |" 1 ) $ Ker(D $$

! |" 1 )/ Im( D $$
! |" 0 ) = öV! , the

quotient being ö( H , and

(2) ' is holomorphic with respect to the holomorphic structure induced by öd
0,1

.

Recall from Section 2.3 that Ker(D $$
! |" 1 ) is a closed Hilbert subspace oföH! ; call

2Ker( D !!
! ) orthogonal projection of öH! to it. We now claim that the map

' : Ker( D $$
! |" 1 ) %$ Ker(D $$

! |" 1 ) ' $ 1,0
öC

÷f ! #%$ %
1
2

2Ker( D !!
! ) (z ÷f ! (z))d!

veriÞes the hypotheses needed.
For (1), we need to show'(Im( D $$

! |" 0 )) 8 Im( D $$
! |" 0 ). Let g! be a local section of

the trivial Hilbert bundle L 2(E) $ öC. Then we have

'( D $$
! g) = %

1
2

2Ker( D !!
! ) (zD$$

! g! )d!

= %
1
2

2Ker( D !!
! ) (D

$$
! (zg! (z))) d!

= %
1
2

D $$
! (zg! (z))d!,

because the operatorD $$
! = ø# E + ( ! commutes with multiplication by z, and

Im( D $$
! |" 0 ) 8 Ker(D $$

! |" 1 ). This shows that Im( D $$
! |" 0 ) is invariant by ' ; the quotient

is clearly ö( H .
Next come to (2): we remark that the formula deÞning ' only depends on! via

the projection 2Ker( D !!
! ) . But since the operator D $$

! depends holomorphically in! , so
do the subspacesKer(D $$

! ), and since the metric is independent of! , the same thing

is true for the projections 2Ker( D !!
! ) . This shows that ' , and so ö( H is holomorphic

in ! .

4.3. IdentiÞcation with hypercohomology

In this section we will often use basic properties of hypercohomology; for an intro-
duction to this topic, we refer to Section 3.5 of [13] and Section IV.12 of [11].

Before we start, we need to deÞne the functional spaces

÷L 2
! (E ) = Dom max (D $$

! |" 0 + E )

= { u " L 2(E) : ( ! ) u, ø# Eu " L 2}

÷L 2
! ($ 0,1 ' E ) = Dom max (D $$

! |" 0 , 1 + E )

= { vdøz " L 2($ 0,1 ' E ) : ( ! ) vdøz " L 2}

÷L 2($ 1,0 ' E ) = Dom max (D $$
! |" 1 , 0 + E )

= { udz " L 2($ 1,0 ' E ) : ø# E(udz) " L 2} ,
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for the Euclidean metric |dz|2 on C and the hermitian metric h on the Þbers, adapted
to the parabolic structure with weights { * j

1, . . . , * j
r } . Notice that we may drop the

index ! of these spaces, since they all coincide: indeed, in a logarithmic singularity
the deformation ! dz is bounded, and at inÞnity the condition ! /" öP implies that
no eigenvalues of( ! vanish, and this gives equivalence of the corresponding norms
exactly as in Lemma 2.3. We identify these functional spaces to the sheaves of their
local sections. In what follows, we are going to deÞne sheavesEand F of sections of
$ 0 ' E and $ 1,0 ' E respectively onCP 1 with the property that the L 2-cohomology

L 2H ¥(D $$
! ) of (4.10) identiÞes to the hypercohomologyH¥( E $! -

%%$ F) of the sheaf map

E $! -
%%$ F. This latter is then explicitly given in terms of a sky-scraper sheaf over the

zero set&! of det(( ! ) by a simple use of the spectral sequence of the double complex.

4.3.1. DeÞnition and resolution of the sheaves. Ð Recall that the parabolic
structure on E with adapted Hermitian Þber metric means that the holomorphic
bundle Eon C ! P has a natural extension to allCP 1: the holomorphic sections at a
singular point are the holomorphic sections outside the singularity which are bounded
with respect to the metric. By an abuse of language, forU ( CP 1 an open set let E|U
be the set of holomorphic sections of the bundleEin U. In other words, we denote
by Ethe sheaf of local holomorphic sections ofE(extended over the punctures as
above).

Next, let us deÞne F: for an open setU ( CP 1 containing no singular point, let
F|U be the set of ø# E-holomorphic sections of$ 1,0 ' E . If U contains exactly one
singular point pj " P (and does not contain the inÞnity), then let F|U be the set of
ø# E-meromorphic sections+dz of $ 1,0 ' E such that + be ø# E-meromorphic in U with
only one simple pole atpj , and such that its residue in this point be contained in
the subspaceIm(Res((, pj )) . Finally, if U contains the inÞnity (but no other singular
points), then let F|U be the set of all ø# E-meromorphic sections+dz of $ 1,0 ' E with
a double pole at inÞnity, and no other poles inU. Notice that since in the coordinate
w = 1 /z of CP 1 the section dz has a double pole at inÞnity, this amounts to say that
+ is a ø# E-holomorphic section ofE in U. Writing + =

B
k f #

k +#
k in the holomorphic

basis (1.30) at inÞnity, it is still the same thing to say that f #
k be a holomorphic

function in U for all k (in particular bounded at inÞnity). It is easy to check that this
way we deÞned a sheaf.

We introduce some further notation: set ÷r =
C

1 + |z|2 on C; then for a " { 0, 1}
we denote by÷r ÷L 2($ a,0 ' E ) the space of sectionsu of $ a,0 ' E such that ÷r " 1u " ÷L 2.
This way we only loosen the condition on the behaviour ofu at inÞnity with respect
to ÷L 2, namely that r " 1u be in ÷L 2 in a neighbourhood of inÞnity. It is immediate that
there exist an inclusion of vector spaces

(4.16) ÷L 2($ a,0 ' E ) 1%$ ÷r ÷L 2($ a,0 ' E ).
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Lemma 4.10. Ð The sequence

E1%$ ÷r ÷L 2(E)
ø( E

%$ ÷L 2($ 0,1 ' E )(4.17)

is a resolution of E.

Proof. Ð It is known that away from the singularities, the sequence of usualL 2-sections
with respect to Euclidean metric gives a resolution of the sheaf of holomorphic sec-
tions. Therefore, we only need to show that (4.17) is a resolution at the singularities.

Consider Þrst pj " P. We Þrst prove that (4.17) is locally exact in ÷r ÷L 2(E). Let
E be trivialised in "( pj , $) by the local sections { +j

k } given in (1.27). As we have
seen in (1.28), in this trivialisation up to a perturbation term ( = diag( " j

k )dz/z , with
" j

k = ( µj
k %&j

k )/ 2, and the parabolic weights are given by* j
k = / (µj

k ) %[/ (µj
k )]. By

deÞnition, any holomorphic section+ of E j can be given as a sum
B

k , j
k +j

k , where , j
k

are holomorphic functions deÞned in"( pj , $), in particular bounded by a constant K .
This implies that + " L 2(E), so that + " ÷L 2(E) if and only if ( ) + " L 2. Recall that
L 2 is deÞned with respect to the parabolic structure{ * j

k } , and that the perturbation
term in ( behaves asO(r " 1+ %) with - > 0, where r = |z %pj |. This implies that

-

!( pj ," )
|(+ |2 * K $

- r j*

k=1

|r " 1+ %+j
k |2 + K $

- r*

k= r j +1

|r " 1+j
k |2

* K $$
- r j*

k=1

|r " 1+ %|2 + K $$
- r*

k= r j +1

|r " 1+ ) j
k |2.

By Hypothesis 1.28, * j
k > 0 for all j " { r j + 1 , . . . , r } . It then follows that this last

expression is Þnite, which proves that any holomorphic section ofE is in ÷L 2. On
the other hand, if a section + =

B
k , j

k +j
k of E is meromorphic in pj , then there is

at least one k " { 1, . . . , r } such that , j
k has a pole inpj . Supposek " { 1, . . . , r j } :

then |, j
k +j

k | ; 1/r , and + is clearly not in L 2. Suppose nowk " { r j + 1 , . . . , r } : then
again by Hypothesis1.28 we have" j

k != 0 , and therefore |( ) , j
k +j

k | ; r " 2+ %, and so
( ) + /" L 2. Hence, the sections of÷L 2("( pj , $), E ) in the kernel of ø# E are exactly the
local holomorphic sections ofE , in other words the local sections of E. This shows
local exactness in÷L 2(E).

The next thing we show is that in "( pj , $) the complex (4.17) is exact at ÷L 2($ 0,1 '
E ): let vdøz " ÷L 2("( pj , $), $ 0,1 ' E ) be an arbitrary section; for $ > 0 su"ciently
small we wish to Þndu " ÷L 2("( pj , $), E ) such that

(4.18) ø# Eu = vdøz

We can suppose without restricting generality that v = f+ j
k , with f a function deÞned

in "( pj , $). Since+j
k is a holomorphic section ofE , solving (4.18) boils down to solving

the usual Cauchy-Riemann equation on the disk

(4.19)
#g
#øz

= f
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with u = g+j
k " ÷L 2("( pj , $), E ). Exactness near a singularity at a Þnite point is given

by the following claim:

Claim 4.11 . Ð For f " L 2 the equation (4.19) has a solutiong such thatgr" 1+ %" L 2

for any - > 0. For f such that f r ) " L 2 with 0 < * < 1, (4.19) has a solution g such
that gr" 1+ ) " L 2.

Proof. Ð The Þrst statement is established combining the usual resolution of the
Cauchy-Riemann equation forf " L 2 by an L 2,1-function g and the estimation (2.12).

The second one is a direct consequence of Proposition I.3 of [3]. One might also
prove it by direct estimations on the solution given by the Cauchy kernel, as in
Proposition 2.5 of [2].

Now let us come back to exactness at a singularity in a Þnite point: for the regular
casek " { 1, . . . , r j } we havef " L 2 and |( ) g+j

k | * | g|r " 1+ %, so we can apply directly
the Þrst statement of the claim; for the singular casek " { r j + 1 , . . . , r } by deÞnition
|( ) f+ j

k døz| ; | f |r " 1+ ) is in L 2 with * > 0 by Hypothesis 1.28, therefore we can apply
the second statement of the claim. Remark that in this case even a stronger condition
then the assumption fr ) " L 2 of the claim holds. However, we will need the claim in
its full generality to show exactness at inÞnity.

We now come to exactness at inÞnity. Recall that! /" öP implies ( ! is an isomor-
phism L 2($ 0,b) $ L 2($ 1,b) for b " { 0, 1} . Therefore, the sections at inÞnity of the
sheaves÷L 2($ 0,b) and L 2($ 0,b) coincide. First, we consider exactness in÷r ÷L 2(E) =
÷rL 2(E): by the deÞnition of E, its local sections are the holomorphic linear com-
binations + =

B
k , #

k +#
k . First we check that these sections verify r " 1+ " L 2:

since |, #
k | * K and |+#

k | ; r " ) "
k with * #

k > 0 by Hypothesis 1.28, we see that
r " 1, #

k +#
k " L 2. On the other hand, if we have a section+ =

B
k , #

k +#
k in the kernel

of ø# E, then for all k the function , #
k is either holomorphic or meromorphic; but if

r " 1+ " L 2, then it implies that , #
k is holomorphic for all k. This proves exactness in

the Þrst term.
Next we come to the termL 2($ 0,1 ' E ): for a sectionvdøz " L 2(C ! "( R), $ 0,1 ' E )

we searchu " rL 2(C ! "( R), E ) such that ø# Eu = v. Supposev = f+ #
k and u = g+#

k
again. In the coordinate w = 1 /z = )e" $ on "(0 , 1/R ) we Þnd (for simplicity we took
R = 1 and wrote " = "(0 , 1/R ) ):

-

!
|f |2) 2) " 4|dw|2 =

-

C ! !
|f |2r " 2) |dz|2 < -

-

!
|g|2) 2) " 2|dw|2 =

-

C ! !
|g|2r " 2" 2) |dz|2 < - .

On the other hand, the Cauchy-Riemann equation
#g
#øz

= f

transforms into
#g
# øw

= %
f
øw2 .
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and we conclude applying Claim4.11 to %f/ øw2.

We can also show the counterpart of Lemma4.10 for F:

Lemma 4.12. Ð The complex

(4.20) F 1%$ ÷r ÷L 2($ 1,0 ' E )
ø( E

%$ L 2($ 1,1 ' E )

is a resolution of F.

Proof. Ð Away from the singularities this is also given by classical elliptic theory,
therefore we focus our attention on a neighbourhood of a singular point.

Let us Þrst treat the case of a singularity at a Þnite point pj " P. A local section
of F is then by deÞnition a section+ =

B
k , j

k +j
k dz such that , j

k is holomorphic for
k " { 1, . . . r j } and has a pole of order at most one inpj for k " { r j +1 , . . . r } . From the
form of the parabolic structure, it follows that |, j

k +j
k | ; O(1) for k " { 1, . . . r j } and

|, j
k +j

k | ; O(r " 1+ ) j
k ) for k " { r j + 1 , . . . r } . By Hypothesis 1.28 we have* j

k > 0, thus
+ " L 2($ 1,0 ' E ). On the other hand, if a section+ =

B
k , j

k +j
k dz of $ 1,0 ' E satisÞes

ø# E+ = 0 , but + /" L 2($ 1,0 ' E ) then either , j
k has a pole for somek " { 1, . . . r j } or

, j
k has an at least double pole for somek " { r j + 1 , . . . r } , and therefore + is not a

local section of F. This shows exactness in the Þrst term.
Consider now exactness at the second term in"( pj , $): here we need to solve

(4.19), for f " L 2 with the solution g in L 2 in the regular case; and forf such that
f r ) " L 2 with the solution g such that gr) " L 2 in the singular case. Both follow
from Claim 4.11.

There now remains to show exactness at inÞnity: this is done similarly to the case
of E.

4.3.2. Hypercohomology and L 2-cohomology. Ð We can use the results of the
last section in order to deduce the following:

Proposition 4.13 . Ð The Þrst L 2-cohomology öV! = L 2H 1(D $$
! ) of (4.10) is isomor-

phic to the hypercohomologyH1( E $! -
%%$ F).

Proof. Ð By Lemmas 4.10 and 4.12, ( ! deÞnes a morphism of resolutions

(4.21) ÷L 2($ 0,1 ' E )
$! - !!L 2($ 1,1 ' E )

÷r ÷L 2(E)
$! - !!

ø( E

""

÷r ÷L 2($ 1,0 ' E )

ø( E

""

E
$! - !!!"

""

F
!"

""
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Therefore, by general theory, the hypercohomology of the sheaf mapE $! -
%%$ F iden-

tiÞes to the cohomology of the single complex formed by the double complexDr
! :

÷L 2($ 0,1 ' E )
$! - !!L 2($ 1,1 ' E )

÷r ÷L 2(E)
$! - !!

ø( E

""

÷r ÷L 2($ 1,0 ' E ).

ø( E

""(4.22)

We show that the Þrst cohomology of the single complex of this double complex is
isomorphic to the Þrst cohomology of the single complex associated to the double
complex D! :

÷L 2($ 0,1 ' E )
$! - !!L 2($ 1,1 ' E )

÷L 2(E)
$! - !!

ø( E

""

÷L 2($ 1,0 ' E ).

ø( E

""(4.23)

We deÞne a map

4: H 1( D! ) %$ H 1( Dr
! )

as follows: represent a cohomology class ofH 1( D! ) by a couple

(5døz, 0dz) " ÷L 2($ 0,1 ' E ) + ÷L 2($ 1,0 ' E ),

and use the inclusion (4.16) to map it into the cohomology class represented by the
same couple(5, 0) in H 1( Dr

! ). This is well deÞned, since if(5døz + ø# E", 0 dz + ( ! " ) is
a couple in H 1( D! ) representing the same class as(5døz, 0dz), for " " ÷L 2(E), then in
particular " " ÷r ÷L 2(E), and so the two couples are cohomologous inH 1( Dr

! ) as well.
This also shows that4 is injective.

We only need to prove surjectivity: suppose we have a couple(5døz, 0dz) " ÷L 2($ 0,1'
E ) + ÷r ÷L 2($ 1,0 ' E ) representing a class inH 1( Dr

! ). It is clearly su"cient to prove that
this class can be represented by a couple vanishing in a neighbourhood of inÞnity. Since
( ! is an isomorphism at inÞnity, we can put (restricting to a smaller neighbourhood of
inÞnity if necessary) " = ( " 1

! (0dz). This is then a section in ÷r ÷L 2(E), and the couple
(5døz % ø# E", 0 dz %( ! " ) is cohomologous to(5døz, 0dz) in H 1( Dr

! ). By deÞnition, the
(1, 0)-term of this couple vanishes at inÞnity. The same thing is true for the(0, 1)-part,
because( ! (5døz % ø# E" ) = %ø# E(0dz %( ! " ) = 0 near inÞnity and ( ! is an isomorphism
there. This Þnishes the proof of the proposition, for theL 2-cohomology of (4.10) is
by Proposition 4.6 the cohomology of the single complex associated toD! .

4.3.3. The spectral curve. Ð In the explicit identiÞcation of the hypercohomology,
the following notions will be of much importance. Recall that (up to wedge product
by dz) ( ! is a meromorphic section ofEnd(E) over CP 1.
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Definition 4.14 . Ð For ! " öC ! öP, the set of zeros ofdet(( ! ) is called the spectral
set corresponding to ! . We denote it by &! .

Lemma 4.15. Ð For each ! " öC ! öP, the spectral set is an e!ective divisor ofCP 1,
in other words a Þnite set of points with multiplicities in N .

Proof. Ð The section det(( ! ) of End(V ) is holomorphic with respect to ø# E. We only
need to check it does not vanish identically for any! . Suppose there exists! such that

det(( ! (q)) = 0

for all q " C ! P. In di!erent terms, ( has a constant eigenvalue overC ! P; in
particular, the residue of this eigenvalue at inÞnity is 0. This contradicts " #

k != 0 for
all k " { 1, . . . , n} (see (2) of Hypothesis 1.28).

A basic property is the following.

Claim 4.16 . Ð The points of &! deÞne a multi-valued meromorphic function of! "
öC.

Proof. Ð By assumption, det(( ! (z)) depends holomorphically on! " öC and mero-
morphically on z. We conclude using the implicit function theorem, namely that the
solutions of a meromorphic equation depending holomorphically on a variable are
meromorphic in this variable.

Definition 4.17 . Ð The graph of the multi-valued meromorphic function

öC ! öP %$ CP 1

! #%$&!

is called the spectral curve of the Higgs bundle. It is denoted by&.

This object was Þrst studied by N. Hitchin in Section 5 of [15]. By Claim 4.16 the
spectral curve is an analytic subvariety

&
*
%$ ( öC ! öP) & CP 1,

of (complex) dimension one. (Here6 stands for inclusion.) Moreover, by construction
it is naturally a branched cover of öC via projection to the Þrst factor.

Here is an important property.

Proposition 4.18 . Ð The spectral curve& is reduced; in other words,det(( ! ) van-
ishes only up to the Þrst order except for a Þnite set of points of&.
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Proof. Ð Suppose& has inÞnitely many points (q, !) where det(( ! ) vanishes up to
order higher than one. Since& has a natural extension into a compact curve in

CP 1 & !CP
1

(see Section4.4), this means that for any ! some zeroq(! ) " &! of ( ! has
multiplicity higher than one; in di!erent terms, some irreducible component of & has
multiplicity higher than one. In particular, as ! $ - , at least two of the qk (! ) must
have the same Laurent expansions. This is impossible by (4.37) and the assumption
" j

k != " j
k ! for k != k$ made in (1) of Hypothesis 1.28.

4.3.4. Explicit computation of the hypercohomology. Ð Let us now compute
the hypercohomology of

(4.24) E $! -
%%$ F

Consider arbitrary algebraic resolutions of the sheavesEand F such that ( ! ) induce
a morphism of resolutions

(4.25) K 0,1 $! - !!K 1,1

K 0,0 $! - !!

%

""

K 1,0

%

""

E
$! - !!!"

""

F.
!"

""

For example, one might take resolutions by #ech cochains. By deÞnition, the Þrst
Þltration K p of the single complex associated to (4.25) is given by

K 0 = ( K 0,1 + K 0,0) + (K 1,1 + K 1,0)

K 1 = K 1,1 + K 1,0.

The Þrst page of the spectral sequence corresponding to this Þltration is given by

(4.26) ( H0)[1] (CP 1) ( H1)[1] (CP 1)

( H0)[0] (CP 1)

%

""

( H1)[0] (CP 1)

%

""

where Hj is the j -th cohomology sheaf of the map (4.24), and the vertical sequences
come from resolutions

H0 1%$ ( H0)[0] %%$ ( H0)[1]

H1 1%$ ( H1)[0] %%$ ( H1)[1]

by taking global sections. Let us now describe explicitly the cohomology sheaves. Re-
call from deÞnition 4.14 that q " &! are exactly the points where the map( ! (q) :
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E(q) $ E(q) is not surjective. After all this preparation, we have the following char-
acterisation:

Lemma 4.19. Ð The cohomology sheafH0 of order 0 of the sheaf map (4.24) is 0. If
det(( ! ) has a zero of order1 in all points of q " &! , then the Þrst cohomology sheafH1

is the sky-scraper sheafR! whose stalk over a pointq " &! is the Þnite-dimensional
subspacecoKer(( ! (q)) ( E (q), and all other stalks are0.

Remark 4.20 . Ð The cokernel of ( ! (q) is naturally identiÞed with the orthogonal of
the image with respect to the Þber metric, or, which is the same thing, with the kernel
of ( !

! (q). This allows us to think of coKer(( ! (q)) as a subspace ofE(q).

Proof. Ð Let us start with H0: suppose we have a section, " E|U on an open set
U ( CP 1 such that ( ! , = 0 . Since on the open subsetU ! &! the map ( ! : E (q) $
E(q) is an isomorphism, we deduce that, = 0 on this set. But a holomorphic section
vanishing on an open set vanishes everywhere, thus, = 0 on all of U. This gives the
Þrst statement of the lemma.

We now come to H1: let U ( CP 1 be an open subset. IfU 5 &! = " then ( ! is an
invertible holomorphic endomorphism of Eon U, therefore H1|U = 0 . Suppose nowU
contains exactly one point q " &! . Then, for any section , " E|U the vector (( ! , )(q)
lies by deÞnition in the image of( ! (q), which is just the orthogonal of coKer(( ! (q)) .
Therefore, this latter is contained in H1|U . On the other hand, the condition that ( !

has a zero of order1 in q means that any section/ " E|U such that / (q)9 coKer(( ! (q))
is in Im( ( ! ). This proves the second statement.

Remark 4.21 . Ð By Proposition 4.18, the condition of det(( ! ) having a Þrst-order
zero in all points of &! is generic in ! : it is veriÞed for all ! except for twice the
eigenvalues of( (q) for the Þnite number of pointsq of & of multiplicity higher than
one. For the discrete set of! where there exists aq " &! with a multiple zero, one
introduces the ßag

E(q) = F0E(q) 7 coKer(( ! (q)) = F1E(q) 7 á á á 0Fr q E (q) = { 0} ,

the subscript ofF being the order of zero of( !
! (q) along the given subspace, and proves

that the cohomology sheafH1|U over an open set containingq as the only element of
&! is in this case equal to the jet space

r q " 1D

m =1

Fm E(q).

The assumptions that for Þxedj " { 1, . . . , n} all the " j
k be di!erent for k " { r j +

1, . . . , r } and for Þxedl " { 1, . . . , n$} all the " #
k be di!erent for k " { 1 + al , . . . al +1 }

(see (1) and (2), Hypothesis 1.28), mean that in the punctures of !CP
1

the limit states
have Þrst-order zeros.
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Now since a resolution of the sky-scraper sheafR! is given by

R! 1%$ R! $ 0,

the Þrst page of the hypercohomology spectral sequence (4.26) becomes

0 0

0

%

""

E
q%# !

coKer(( ! (q)) .

%

""

All this implies the following:

Proposition 4.22 . Ð The hypercohomology spectral sequence corresponding to the
Þrst Þltration collapses in its Þrst page, and we have a natural isomorphism

H1( E $! -
%%$ F) <

D

q%# !

coKer(( ! (q)) .

Proof. Ð This is a consequence of the standard fact that a spectral sequence collapses
as soon as non-zero elements only appear in one of its rows. Furthermore, an explicit
isomorphism can be given as follows: Þx a radially invariant bump-function7 on the
unit disk " ( C, equal to 0 on the boundary of " and to 1 in 0, and such that
d7 is supported on the annulus1/ 3 < r < 2/ 3. For any complex number a != 0
set 7a(z) = 7(z/a ). Now choose$0 > 0 so that the distance in C between any two
distinct points of the Þnite set P , &! is at least 3$0. For any (vq)q%# ! " + coKer(( ! (q))
consider the sectionv" 0 =

B
q%# !

vq7" (z % q). Because d7" 0 is supported on the

annulus $0/ 3 < r < 2$0/ 3, the section ø# E(v" 0 dz) " $ 1,1 ' E is supported outside a
neighbourhood of&! . Since this latter is the zero set ofdet(( ! ), it then follows that
there exists a sectiont" 0 døz " $ 0,1 ' E such that ( ! ) (t " 0 døz) + ø# E(v" 0 dz) = 0 , and
t" 0 is supported on the support of ø# Ev" 0 , that is outside a neighbourhood of&! and
of inÞnity. The couple (v" 0 dz, t" 0 døz) therefore deÞnes a cocycle in the single complex
associated to D! , and using Proposition 4.13 we can deÞne a map

( ! :
D

q%# !

coKer(( ! (q)) %$ H 1( D! ) = H1( E $! -
%%$ F)

(vq)q%# ! #%$[(v" 0 dz, t" 0 døz)],(4.27)

where [(v" 0 dz, t" 0 døz)] stands for the cohomology class inH 1( D! ) of this couple.
We need to show that this map does not depend on$0 > 0 chosen, provided

that it is su"ciently small as explained above. Consider therefore the sectionv" 1 for
$1 < $. Since in the union of the disks of radius$1/ 3 around the elements of&! we
have v" 1 = v" 0 , and ( ! is invertible outside this set, there exists a sectionu " %(E)
such that ( ! u + v" 1 dz = v" 0 dz. Then, as in the proof of Proposition 4.13, the couple
(v" 0 dz, t" 0 døz) is equal to (v" 1 dz + ( ! u, t " 1 døz + ø# Eu), and the two couples deÞne the
same cohomology class inH 1( D). This then allows us to Þx $0 > 0 su"ciently small
once and for all.
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In a similar way, one can prove that ( ! is independent of the actual cut-o! function
7 as well.

Finally, the inverse of ( ! can be obtained as follows: let the cohomology class
8 " H 1( D! ) be represented by a1-form 81,0dz + 80,1døz, where 81,0 and 80,1 are
sections ofE . Then we have

(4.28) ( " 1
! 8 = ( evalq81,0)q%# ! ,

where evalq81,0 stands for evaluation of the section81,0 in the point q.

Remark 4.23 . Ð Notice that the formula (4.28) is independent of the 1-form rep-
resentative of 8; in particular, the (1, 0)-part of the harmonic representative of a
cohomology class( ! (vq)q%# ! vanishes in theq " &! where vq = 0 .

4.4. Extension of the Higgs bundle over the singularities

The interpretation of the holomorphic bundle underlying the transformed Higgs
bundle in terms of hypercohomology established in the previous section allows us to

extend it over the singular points öP , {-} in the parameter space !CP
1
. At each

puncture, we need to do two things: Þrst, deÞne the Þber of the over it. This then
extends the holomorphic structure induced by ø#

öE over the puncture in a natural way:
a holomorphic section through the singular point will be a continuous section in a
neighbourhood of it, that is holomorphic in the punctured neighbourhood. (Continuity
is deÞned at the same time as the exceptional Þber.) The second thing to do then
is to give an explicit basis of holomorphic sections with respect to this extended
holomorphic structure. It is important to note that the extensions i öEwe deÞne here
are not the transformed extensions given in DeÞnition3.11, but rather ones induced
by the original Higgs bundle, and for which computations are more comfortable. This
is why we will call i öEthe induced extension. We study the link between these two
extensions in Section4.7.

4.4.1. Extension to logarithmic singularities. Ð First, we consider the case of
points of the set öP. We shall now describe the extensioni öEover such a point. Notice
Þrst that as the deformation ( ! has a well-deÞned extension over these points, its
hypercohomology spaces are also well-deÞned there. In particular, in view of Propo-
sition 4.13, we may extend the öV by putting

öV! l = H1( E
$! l -
%%%$ F)

This is the deÞnition of the Þber over such a point.

In order to give explicit representatives of holomorphic sections, let us examine
what happens to the ÞberöV! when ! approaches one of the points oföP = { ! 1, . . . , ! n ! } ,
say ! l . First, let us Þnd the spectral points.
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Claim 4.24 . Ð As ! $ ! l , exactly ml = al +1 %al branches of the meromorphic func-
tions qk " &! converge to inÞnity, while all others remain in a bounded region ofC.
Moreover, labelling the spectral points converging to inÞnity byq1+ al (! ), . . . , qal +1 (! ),
they admit the asymptotic behaviour

(4.29) qk (! ) =
2" #

k

(! %! l )
+ O(|! %! l |" %),

where - > 0 can be chosen arbitrarily small. In particular, the branches converging to
- " CP 1 of the spectral curve are not ramiÞed over the point! l .

Proof. Ð As it can be seen from (1.31), exactly ml of the eigenvalues of the leading
order term near inÞnity of the Higgs Þeld( ! converges to0. Recall from DeÞnition 4.14
that &! is the vanishing set ofdet(( ! ). This implies that (counted with multiplicities)
exactly ml of the points q(! ) " &! converge to inÞnity; label these by1 + al , . . . , al +1 .
All the other spectral points remain therefore bounded. By assumption (see (1.31))
in a holomorphic trivialisation of the bundle E in a neighbourhood of - " CP 1,
ignoring the factor dz the Þeld ( ! is of the form

1
2

(A %! Id) +
C
z

+ O(z" 2),

where O(z" 2) stands for holomorphic terms independent of! . Suppose Þrst that the
Þeld is exactly equal to the polar part in this formula, in other words the O(z" 2) term
is equal to 0. Then the solutions ÷q1(! ), . . . , ÷qr (! ) are clearly given by

÷qk (! ) =
2" #

k

(! %! l )
.

In general, sincedet(( ! ) is holomorphic in z, we can apply RouchŽÕs theorem to
compare the position of the zeros ofdet(( ! ) with those of the polar part studied
above. This yields that the solutions qk (! ) " C of det(( ! )(q(! )) = 0 near inÞnity are
close to÷qk (! ); more precisely for any- > 0, there existsK > 0 such that for all |! %! l |
su"ciently small we have

|qk (! ) % ÷qk (! )| < K |! %! l |" %.

Remark here that as! $ ! l the behaviour of |! %! l |" % is small compared to|÷qk (! )| =
c|! % ! l |" 1. In other words, we have the expansion (4.29) so that qk (! ) converges
indeed to inÞnity asymptotically proportionally to (! %! l )" 1 for al < k * al +1 , while
all other holomorphic families of zeros ofdet(( ! ) remain bounded.

The condition that the " 1+ al , . . . , " al +1 are all distinct (see (2), Hypothesis 1.28)
now implies that there is no splitting of the solutions at inÞnity, that is to say locally
near ! = ! l any qk (! ) with al < k * al +1 itself forms a meromorphic function without
branching. Indeed, the occurrence of a branching at inÞnity implies that the Puiseux
series of the corresponding solutions agree, which is not the case here because of the
asymptotic behaviours (4.29) with di!erent leading coe"cients.
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Now, recall that for Þxed ! " öC ! öP, in the explicit description of öV! given in the
proof of Proposition 4.22, we considered the zerosqk (! ) for k = 1 , . . . , r of det(( ! )(q),
and for eachqk (! ) an elementvk (! ) of the subspacecoKer(( ! )qk ( ! ) ( Eqk ( ! ) . Then we
extended eachvk (! ) holomorphically into a neighbourhood of qk (! ), and multiplied
the section we obtained by a bump-function equal to1 in a small disk around qk (! )
and to 0 on the boundary of a slightly larger disk. This section of F constituted the

(1, 0)-part of the element in H1( E $!%$ F) < öV! , and we chose the(0, 1)-part in such
a way that the couple be in Ker(D $$

! ). In what follows, we wish to do the same thing,
but for all ! in a neighbourhood of! l at the same time.

Let us consider one meromorphic family of zerosqk (! ) with al < k * al +1 . We
have just seen that qk (! ) converges to- as ! $ ! l ; therefore, we need to take a
holomorphic section of Eat inÞnity, extending an element of the cokernel of( ! l . One
can check from formula (1.31) that this cokernel is equal to the vector subspace of
the Þber F# = E# ' dz generated by { +#

m (- )dz} al +1
m =1+ al

, where { +#
m } r

m =1 is the
holomorphic trivialisation of Eat inÞnity considered in (1.30). Furthermore, since the
metric h is mutually bounded with the diagonal model

diag(|z|" 2) "
k ),

the orthogonal of the image of( ! in E(qk (! )) converges to+#
k (- ) as! $ ! l . Let 9k (z)

be a holomorphic extension of+#
k (- ) to a neighbourhood of inÞnity such that for any

! " öC su"ciently close to ! l , the vector 9k (qk (! ))dz be in the cokernel of( ! (qk (! )) .
Such an extension exists because( ! varies holomorphically with ! and by Claim 4.24
qk (! ) is a genuine (single-valued) meromorphic function of! . A holomorphic section
ö+k of öEaround ! l is then given by the section constructed as follows: for! su"ciently
close to ! l such that 9k is deÞned inqk (! ), set

(4.30) vk (z, ! ) = 7" 0 ( ! " ! l ) $ 1 (z %qk (! ))9k (z),

where we recall from the proof of Proposition4.22that 7" 0 ( ! " ! l ) $ 1 is a bump-function
on a disk centered at0 and of diameter $0|! % ! l |" 1 with $0 su"ciently small only
depending on the parameters of the initial connection, Þxed once and for all. (The
importance of this choice will become clear in Theorem4.35.) Also, let tk (z, ! )døz "
%(C, E ' $ 0,1) be the unique solution of the equation

(4.31) ø# Evk (z, ! )dz = %( ! tk (z, ! )døz.

Then consider the cohomology classö+l
k (! ) in H1( E $! -

%%$ F) < öV! of the couple
(vk (z, ! )dz, tk (z, ! )døz) deÞned as above. Since the choice of9k is independent of !
and moreover ( ! and qk (! ) depend holomorphically on ! , it follows that ö+l

k is ø#
öE-

holomorphic in ! outside of ! l .

Definition 4.25 . Ð Let the extension i öE of öE to ! l be deÞned by the holomorphic
trivialisation given by the sections ö+l

k for all choice of k " { 1 + al , . . . , al +1 } and for
some holomorphic extension9k of +#

k (- ) such that for any ! " öC su"ciently close
to ! l , we have9k (qk (! ))dz " coKer(( ! (qk (! ))) .
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4.4.2. Extension to inÞnity. Ð In order to deÞne the Þber over inÞnity, we Þrst
rephrase what we have done until now to obtain the holomorphic bundleöE= ( öV , ø#

öE)
underlying the transformed Higgs bundle: we considered the sheavesEand F over
CP 1, we pulled them back to CP 1 & öC by the projection map 21 on the Þrst factor,
and formed the sheaf map

2!
1 E $¥%$ 2!

1 F
equal to ( ! on the ÞberCP 1 & { ! } . We then deÞned the vector bundle

öV¥ = H1(2!
1 E $¥%$ 2!

1 F),

over öC ! öP and we let ø#
öE be the partial connection induced byöd

0,1
. In what follows,

we keep on writing Eand F for their pull-back to the product, whenever this does not
cause confusion. Notice that( ¥ is holomorphic in both coordinates. We wish to extend
the hypercohomology of this sheaf map over inÞnity; we will be done if we can extend
the map ( ¥ over inÞnity in a holomorphic manner. Indeed, the hypercohomology of a
holomorphic family of sheaf morphisms is a holomorphic vector bundle over the base

space of the deformations, in our case!CP
1
. Notice that by deÞnition ( ! = ( %!/ 2dz) ,

so it becomes singular as we let! converge to inÞnity. However, we can slightly change
the sheaf F in such a way that there exist a natural extension of( ¥. Again, we follow
[16] (Section 4).

Consider the projections2j to the j -th coordinate in the product manifold CP 1 &
!CP

1
, and set ÷F = 2!

2 O!CP
1 (1) ' F. Recall that O!CP

1 (1) admits two global holomor-

phic sectionss0 and s# , characterised by the fact that if öU0 and öU# are the standard

neighbourhoods of0 " !CP
1

and - " !CP
1

with coordinates ! and : = ! " 1 vanishing
in 0 and - respectively, then we have

s0(! ) = ! s # (! ) = 1 in öU0(4.32)

s0(: ) = 1 s# (: ) = : in öU# .(4.33)

Notice that here ! is the standard coordinate ofC we used to deÞne( ! . Therefore for

8 " !CP
1

we put

÷( + : E%$ ÷F(4.34)

÷( + = s# (8) ' ( %
1
2

s0(8) ' dz) ,(4.35)

We remark that by ( 4.32), on öU0 = C we have ÷( ! = ( %!/ 2dz) = ( ! , so ÷( ¥ is indeed
an extension of the deformation( ¥ to inÞnity. Therefore, in what follows we keep on
writing ( for ÷( whenever this does not cause any confusion. In the same manner, we
see that

( # = %
1
2

s0(! )! = # ' dz) : E%$ F ' O!CP
1 (1)! = # .

From the deÞnition of the sheavesEand F one can see that the cohomology sheaves
of this map are H0(dz) ) = 0 and H1(dz) ) = R# , the sky-scraper sheaf supported in
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points of P and having stalk equal tos0(! )! = # ' coKer(Res((, p)) in p " P. Therefore,
as in Proposition 4.22, we obtain that the Þrst hypercohomology space of this map
equalss0(! )! = # ' (+ p%P coKer(Res((, p))) , and all its other hypercohomology spaces
vanish. The extension of the vector bundle öV to inÞnity is then given by setting
öV+ = H1( E $#%$ ÷F) for all 8 " !CP

1
! öP. In particular, any local section at : = 0 of öE

is a family of sections of the sheaf÷F, and therefore can be written

(4.36) s0(: ) ' / (z, : ),

where / (z, : ) are sections ofF depending on the parameter: .

Definition 4.26 . Ð The extensioni öEof the holomorphic structure of öEto inÞnity is
the extension whose holomorphic sections at inÞnity can be written as in (4.36), with
/ (z, : ) holomorphic in : .

We come to the explicit description of a holomorphic section ofi öEat ! = - with
respect to this extension. We make a similar construction as in the case of logarithmic
singularities: Þrst, we make a basic remark.

Claim 4.27 . Ð As ! $ - , all zeros of det(( ! ) converge to one of the points ofP.
Moreover, supposingq(! ) $ pj , we have the asymptotic behaviour

(4.37) q(! ) = pj + 2
" j

k

!
+ O(! " 2+ %),

where " j
k is a non-vanishing eigenvalue of the residue of( at pj and - > 0 can be

chosen arbitrarily small. In particular, the spectral curve is not branched over the
point ! = - .

Proof. Ð Let us consider the deformation of the Higgs Þeld in terms of the coordinate
: = ! " 1 in öU# . As we see from (4.33) and (4.35), it is given by

( , = :( %
1
2

dz ) .

Notice that as : $ 0, the Þrst term on the right-hand side in a Þxed pointz " CP 1! P
becomes insigniÞcant, and( , (z) converges to%1/ 2dz) . Therefore, for |: | su"ciently
small, all zeros ofdet(( ! ) are in a neighbourhood ofP. In order to determine the
asymptotic of this convergence, remember that in a holomorphic trivialisation of E
in some neighbourhood ofpj the Higgs Þeld is equal to the model (1.28) up to terms
in O(z %pj ). As in the case! $ ! l , the solutions are close to those of the diagonal
model det(diag(( , (÷q))) = 0 (see Claim4.24). This equation is

) r
k=1

+
:" j

k

÷q %pj
%

1
2

,

= 0 .
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The solutions ÷qj
k (: ) are clearly given by

÷qj
k (: ) = pj + 2 :" j

k = pj + 2
" j

k

!
.

Here the upper index of the solution stands for the pointpj " P it converges to, and
the lower index k " { r j + 1 , . . . , r } is determined by the extension of the cokernel of
( , at the point. An application of RouchŽÕs theorem gives again the claim.

Finally, & is not ramiÞed at ! = - because this would imply that at least two of
the qk (! ) admit the same Puiseux expansion, which is impossible because of (4.37)
and (1) of Hypothesis 1.28.

Furthermore, by Claim 4.16 the points of &! deÞne a multi-valued meromorphic
function in the variable ! near inÞnity. Let qj

k (! ) " &! be such a holomorphically
varying zero of det(( ! ), and suppose it converges topj " P as ! $ - . We can let the
index k to vary from r j + 1 to r . Consider the diagram

&#$
*

##

CP 1 & !CP
1

- 1

$$

- 2

%%
CP 1 !CP

1

where 6 is inclusion and the two other arrows are canonical projections. In order
to deÞne a local holomorphic section of the transformed bundle, we need to choose
elements ofcoKer(( ! (qj

k (! ))) for all ! , such that they depend holomorphically with ! .
It is clear that this is equivalent to choose a local holomorphic section/ of 6! 2!

1 F over
the branch (qj

k (! ), ! ) near the point (pj , - ) such that for all ! , we have/ (qj
k (! ), ! ) "

coKer(( ! (qj
k )) . Since any local section ofF near pj multiplied by (z %pj ) is a local

section of the sheafE' dz, the section (qj
k (! ) %pj )/ of 6! 2!

1 F near (pj , - ) is in fact
a local holomorphic section of6! 2!

1 ( E' dz) on the branch (qj
k (! ), ! ) of the spectral

curve & ( CP 1 & !CP
1
. Furthermore, because of Claim4.27, (qj

k (! ), ! ) #$ qj
k (! ) is a

simple cover nearpj without branching. In particular, for all q su"ciently close to pj

there exists a unique! (q) such that q = qj
k (! (q)) . Therefore, (qj

k (! ) %pj )/ (qj
k (! ), ! ) is

the lift from CP 1 of a section9j
k (z)dz of E' ! 1 in a neighbourhood ofpj , such that

for all q we have

(4.38) 9j
k (q)dz " coKer(( ! (q) (q)) .

In particular, 9j
k (pj )dz " coKer(( # (pj )) = Esing ' dz, as it can easily be checked

using formula (4.35). Conversely, we may consider any section9j
k (z) satisfying (4.38),

lift 9j
k (z)dz to a section of6! 2!

1 ( E' dz), and divide the result by q %pj to obtain / .
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Fix now for all k = { r j + 1 , . . . , r } a section9j
k satisfying (4.38). All that we have said

above motivates the deÞnition:

(4.39) vj
k (z, ! ) = 7" 0 ! $ 1 (z %qj

k (! ))
9j
k (z)

z %pj
' s0(! ),

where we recall again from the proof of Proposition4.22that 7" 0 ! $ 1 is a bump-function
over the disk of radius$0/ |! |. Remark that evaluation of vj

k (z, ! )dz in z = qk (! ) is by
deÞnition in the cokernel of ( ! . Also, as in the case of logarithmic singularities, for
all ! close to inÞnity, let t j

k (z, ! ) be the unique section ofE satisfying the equation
(4.31) for all z, in other words such that D $$

! (vj
k (z, ! )dz, tj

k (z, ! )døz) = 0 . A holomorphic

trivialisation of i öEat inÞnity is then given by the D $$
! -harmonic representativesö+#

k (! )

of the couples(vj
k (z, ! )dz, tj

k (z, ! )døz) for all k = { r j + 1 , . . . , r } and all j = { 1, . . . , n} .

4.5. Singularities of the transformed Higgs Þeld

In this part, we describe the eigenvalues of the singular parts of the transformed
Higgs Þeld ö( H at the singularities. This establishes points (4), (6) and (7) of Theo-
rem 1.32.

4.5.1. The case of a logarithmic singularity. Ð Recall from (4.13) that the trans-
formed Higgs Þeld is deÞned as multiplication by the coordinate%z/ 2 of a harmonic
spinor, followed by projection onto harmonic forms.

Lemma 4.28. Ð The set of eigenvalues of the transformed Higgs Þeldö( H on the Þber
öE H

! (with multiplicities) is equal to %&! / 2 (with multiplicities), where &! is the set
of zeros ofdet(( ! ).

Proof. Ð Let a cohomology class in the spaceöE H
! = H 1( D! ) (see4.23) be represented

by 1-forms (v(! )dz, t(! )døz) " ($ 1,0 + $ 1,0) ' E . Since this spinor is not necessarily
harmonic, Þrst of all we need a technical result:

Claim 4.29 . Ð Let (v(! )dz, t(! )døz) " ($ 1,0 + $ 1,0) ' E be annihilated byD $$
! . Then

we have
ö2H

! (zö2H
! (v(! )dz, t(! )døz)) = ö2H

! (z(v(! )dz, t(! )døz)) .

In words, the action of the Higgs Þeld can be computed on any representative section
in Ker(D $$

! ).

Proof. Ð This is straightforward: we need to show

ö2H
! (z(Id % ö2H

! )(v(! )dz, t(! )døz)) = 0 ,

which is equivalent to

z/#$$
! G! (/#$$

! )! (v(! )dz, t(! )døz)9 öE H
! .
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Now the only thing to remark is that if (v(! )dz, t(! )døz) " Ker(D $$
! ), then this implies

that
(/#$$

! )! (v(! )dz, t(! )døz) = ( D $$
! )! (v(! )dz, t(! )døz) " $ 0 ' E,

and by diagonality of G! with respect to the decomposition S+ ' E = ($ 0 ' E ) +
($ 2 ' E ) (see Lemma2.24), also

G! (/#$$
! )! (v(! )dz, t(! )døz) " $ 0 ' E.

Therefore we have

/#$$
! G! (/#$$

! )! (v(! )dz, t(! )døz) = D $$
! G! (D $$

! )! (v(! )dz, t(! )døz),

and we conclude using the commutation relation

[z, D$$
! ] = 0

combined with Im( D $$
! )9 öE H

! .

The proof of the lemma is now immediate: via the map (4.28),

( " 1
! (z(v(! )dz, t(! )døz)) = ( q áevalqv(! )) q%# !

multiplication by z goes over to multiplication by q in the point q " &! , and via (4.27)
this is then re-transformed into multiplication by the constant q on the component of
v(! ) localised nearq.

Theorem 4.30 . Ð The eigenvalues of the transformed Higgs Þeldö( H have Þrst-order
poles in the points of öP. Furthermore, the non-vanishing eigenvalues of its residue in
the puncture ! l are equal to {%" #

1+ al
, . . . , %" #

al +1
} , where { " #

1+ al
, . . . , " #

al +1
} are the

eigenvalues of the residue of the original Higgs Þeld( at inÞnity, restricted to the
eigenspace ofA corresponding to the eigenvalue! l .

Proof. Ð As we have seen in (4.29), the point qk (! ) " &! converges to inÞnity at the
Þrst order with 2" #

k (! %! l )" 1 as ! $ ! l , wherek " { 1+ al , . . . , al +1 } is an index such
that the eigenvalue " #

k of the residue term of ( at inÞnity appears in the eigenspace
of the second order termA corresponding to the eigenvalue! l . By Lemma 4.28, the
transformed Higgs Þeld has a logarithmic singularity at ! l , and the corresponding
residue is%" #

k .

4.5.2. The case of inÞnity. Ð We wish to show the following.

Theorem 4.31 . Ð The transformed Higgs Þeld has a second order singularity at in-
Þnity. The set of eigenvalues of its leading order term is{%p1/ 2, . . . , %pn / 2} , where
{ p1, . . . , pn } = P is the set of punctures of the original Higgs bundle. The multiplicity
of the eigenvalue%pj / 2 is equal tor %r j = rk(Res( (, pj )) . The set of eigenvalues of the
residue of the transformed Higgs Þeld restricted to the eigenspace of the second-order
term corresponding to the eigenvalue%pj / 2 is {%" j

k } k%{ r j +1 ,...,r } .
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Proof. Ð In Claim 4.27 we have proved that as : $ 0, all zeros of det(( , ) must
converge to one of the points ofP. Furthermore, the expansion of a spectral point
qk converging to pj is (4.37). By Lemma 4.28, on the corresponding componentsö( H

is just multiplication by %&! d!/ 2. Hence, we see that the eigenvalues of the leading-
order term of the transformed Higgs Þeld are equal to{%pj / 2} j =1 ,...,n , while those of
its Þrst-order term are {%" j

k } j =1 ,...,n ;k= r j +1 ,...,r .

4.6. Parabolic weights

Here we compute the parabolic weights of the transformed Higgs bundle with
respect to the induced extension.

4.6.1. The case of inÞnity

Theorem 4.32 . Ð The parabolic weight of the extensioni öEof the transformed Higgs
bundle at inÞnity described in Subsection4.4.2, restricted to the eigenspace ofö( corre-
sponding to the eigenvalue%pj / 2 of its second order term and the eigenvalue%" j

k of
its residue is equal to%1 + * j

k , where * j
k is the parabolic weight on the" j

k -eigenspace
of the residue of the original Higgs bundle atpj .

Proof. Ð We prove the statement in two steps. In the Þrst one, we show that it is true
supposing the original Higgs bundle only has one logarithmic point of a precise form.
In the second one, we show how the case with only one logarithmic point and the
exponential decay results of Section2.5 imply the general case.

Step 1.Ð Let us Þrst suppose that the set of logarithmic singularities is reduced to a
single point p1, that we may take to be 0 without restricting generality. Furthermore,
we suppose thatE is a holomorphically trivial bundle over C and that in a global
holomorphic trivialisation { +k } the Higgs Þeld is equal to

( = diag
(

" k

z

)

k=1 ,...,r
dz

and the metric is just

(4.40) h(+k , +k ) = |z|2) k .

This deÞnes a parabolic Higgs bundle with weights* k at 0 and %* k at inÞnity, the
Þeld having deformation

(4.41) ( ! = diag
(

" k

z
%

!
2

)

k=1 ,...,r
dz

and the D $$-operator

(4.42) D $$
! = ø# + diag

(
" k

dz
z

%
!
2

dz
)

k=1 ,...,r
.
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Recall from Subsection4.4.2 that a representative (v! dz, t! døz) of any spinor / ! is
supported in the Þnite collection of disks, q( ! )%# ! "( q(! ), $0|! |" 1). By Claim 4.27, the
points q(! ) are given by

(4.43) qk (! ) =
2" k

!
.

DeÞne a family of homotheties indexed by! " öC ! öP

h! : C %$ C

w #%$z =
w
!

;(4.44)

in such a way that

h" 1
! (0) = 0

h" 1
! (qk (! )) = 2 " k for k = r 1, . . . , r.(4.45)

Therefore, this corresponds to a family of coordinate changesz = w in the plane, such
that the position of the zeros of the Higgs Þeld( ! after applying h" 1

! is constant (the
2" k for k = r 1, . . . , r ), as well as that of the poles (0 and - ). Moreover, dz = ! " 1dw
implies

h!
! ( ! = diag

@
" k

dw
w

%
1
2

dw
A

k=1 ,...,r
,(4.46)

and so

h!
! D $$

! = ø# + diag
@
" k

dw
w

%
1
2

dw
A

k=1 ,...,r
,(4.47)

where ø# stands this time for the Dolbeault operator with respect to the w-coordinate.
The crucial observation is that this operator is independent of! . On the other hand,
remark that the Euclidean metric on the base space and the Þber metric (4.40) behave
under these coordinate changes as

(h! )! |dw|2 = |! |2|dz|2(4.48)

|+k (z)|2 = |! |" 2) k |w|2) k .(4.49)

In other words, if we denote byh(w) the model hermitian metric on h!
! E equal in the

basish!
! +k to

h(w) = diag( |w|2) k ),

then the homotheties h! induce a family of tautological isomorphisms of Hermitian
Þber bundles

(h!
! E, h(w) ) %$ (E, h)(4.50)

(h!
! +k )(w) #%$ |! |) k +k (z).
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We deduce from (4.48) that in the basis h!
! +k the pull-back h!

! " ! of the Laplacian of
the Dirac operator /#$$

! has the form

(4.51) |! |2
F

" + diag

/
/
/
/

" k

w
%

1
2

/
/
/
/

2

k=1 ,...,r

G

,

where" stands for the usual Laplace operator on functions with respect to the metric
|dw|2. The operator " (w) between brackets in this formula is a bounded operator from
the weighted Sobolev spaceH 2(S+ ' E, |dw|2) to L 2(S+ ' E, |dw|2). The weight at
0 is determined by the condition that for a section u " H 2 we have u/ |w|2 " L 2,
and this gives therefore exactly the of" (w) (see Theorem2.22). We infer that the
pull-back h!

! G! of the GreenÕs operator of" ! is

(4.52) |! |" 2G(w) ,

where G(w) is the inverse of " (w) . It also follows from Theorem 2.22 that G(w) is
a bounded linear operator from L 2(S+ ' E, |dw|2) to H 2(S+ ' E, |dw|2). Because
" (w) is diagonal in the basis+k , the same is true for G(w) . Remark that the pull-
backs h!

! ö2! of the orthogonal projections onto " ! -harmonic spinors are all equal to
the orthogonal projection ö2(w) onto " (w) -harmonic spinors: indeed, the conformal
factor |! |2 in (4.51) changes neither the space of harmonic spinors nor the orthogonal
projection operator onto them. In particular, since " (w) , G(w) and h are diagonal in
the basis+k , the same thing is true for all ö2! .

Now notice that by the deÞnition of the ø#
öE-holomorphic extension to inÞnity of

the transformed bundle given in (4.39) and via the identiÞcation (4.50), the sections
|! |) k h!

! (vk (z, ! )dz) (modulo the value of the sections0 of O!CP
1 (1)) coincide: indeed,

|! |) k 7" 0 /! (z %qk (! ))+k (z)
dz
z

= 7" 0 (w %2" k ) (h!
! +k )(w)

dw
w

.

It then follows from formula ( 4.47) together with the deÞnition ( 4.36) that the co-
e"cient of s0 in |! |) k h!

! tk (z, ! )døz is also independent of! . From the fact that the
projections ö2! are also constant, we deduce that the coe"cient ofs0 in the pull-back

(4.53) (h!
! ö+k )(w, ! ) = |! |) k ö+#

k (z, ! )

of the spinors |! |) k ö+#
k (z, ! ) representing |! |) k (vk (z, ! )dz, tk (z, ! )døz) does not de-

pend on ! . Therefore, denoting by f k (z, ! ) the coe"cient of s0 in ö+#
k (z, ! ) and by

(h!
! f k )(w, ! ) the coe"cient of s0 in (h!

! ö+#
k )(w, ! ), we see by invariance of theL 2-norm

of 1-forms by conformal coordinate change that
-

C
|f k (z, ! )|2h, |dz |2 |dz|2 = |! |" 2) k

-

C
|(h!

! f k )(w, ! )|2h( w ) ,|dw |2 |dw|2,

for all ! , with the integral on the right-hand side a constant independent of! . On the
other hand, recall from (4.32) that on the a"ne chart öU0 of CP 1 we haves0(! ) = ! .
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Observe also that the transformed Hermitian metric öh is deÞned in the chart öU0, and
that for any harmonic spinor f we have

öh(!f, !f ) = |! |2öh(f, f ) = |: |" 2öh(f, f )

with : = ! " 1 the local coordinate centered at0 of the singularity at inÞnity. This
means that the e!ect on the parabolic weights of multiplying by s0 is adding %1. On
the other hand, the %" k -eigenspace of the residue of the transformed Higgs bundle
at inÞnity is spanned by ö+#

k . From all that has been said above, we deduce

(4.54) öh(ö+#
k , ö+#

k ) = M |: |" 2+2 ) k ,

where M is independent of ! ; in di!erent terms, that the parabolic weight of the
transformed Higgs bundle at inÞnity on the %" k -eigenspace of the residue is equal to
%1 + * k .

Step 2.Ð Starting from now, we drop the assumption that the set of logarithmic
singularities is reduced to a point. In this part, we patch together solutions to local
problems provided by Step 1, and use the results of Section2.5 to estimate the defect
of these patched sections to be solutions of the global problem. We Þnd that the
interaction between solutions to local problems near di!erent punctures is small as
|! | gets large.

Let ( ø# E, ( ) be a Higgs bundle with some logarithmic singularitiesP = { p1, . . . , pn } .
In a holomorphic trivialisation { +j

k } r
k=1 near each one of these points, up to terms in

O(1)dz, the Higgs Þeld has the form

(4.55) ( j =
Aj

z %pj
dz,

where the Aj are some diagonal matrices as in (1.1). The deformation of these local
models is

( j
! =

@
Aj

z %pj
%

!
2

A
dz,

and similarly the deformation of the local D $$-operators (D $$)j is

(D $$
! )j = ø# E+ ( !

= ø# E+
@

Aj

z %pj
%

!
2

A
dz,

Finally, that of the Dirac operator /#j = ( D $$)j %((D $$)j )! is

/#j
! = ( D $$

! )j %((D $$
! )j )! ,

adjoint being taken relative to the harmonic metric corresponding to (D $$)j . Now for
all j we can consider the extension of( j to a trivial bundle E j over the whole plane
by keeping the same formula (4.55) for it, endowed with the model metric

hj = diag( |z %pj |2) j
k )r

k=1 .
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It is clear that this extension only has one regular singularity (in pj ) and an irregular
one at inÞnity, so all the results of Step 1 hold for them. In particular, for represen-
tatives

(vj
k (z, ! )dz, tj

k (z, ! )døz)

as described in Subsection4.4.2 we have a harmonic representative

ö+#
k (z, ! ) " Ker( /#j

! )! ( H 1(C, S" ' E j )

with -

C
|ö+#

k (z, ! )|2h j ,|dz |2 |dz|2 = |! |2" 2) j
k .

This growth is measured with respect to the diagonal model metrichj ; however, since
the spinor ö+#

k is exponentially concentrated nearpj and herehj is mutually bounded
with the harmonic metric h of ( E, ( ), this implies

(4.56) c|! |2" 2) j
k *

-

C
|ö+#

k (z, ! )|2h, |dz |2 |dz|2 * C|! |2" 2) j
k

for some0 < c < C . Let 7j be a cut-o! function supported in a disk "( pj , 3$0), equal
to 1 on "( pj , 2$0), such that |. 7j | * K . Then for $0 > 0 Þxed su"ciently small, the
global section ofS" ' E deÞned by

ö+(z, ! ) = 7j (z)ö+#
k (z, ! )

has a meaning, for the holomorphic trivialisation { +j
k } is deÞned in"( pj , 3$0) provided

$0 is su"ciently small. Now notice that if q(! ) $ pj as ! $ - and more precisely

q(! ) = pj +
2" j

k

!
+ O(|! |" 2),

in other words on the component of the transformed bundle with eigenvalue of the
second-order part ofö( at inÞnity equal to %pj / 2 and eigenvalue of the residue ofö( at
inÞnity equal to %" j

k , the holomorphic extension9j
k of the cokernel has as parabolic

weight the * j
k corresponding to the eigenspace of the eigenvalue" j

k of the residue
of ( . Recall that the harmonic metric on the transformed side is just L 2-metric of
the " ! -harmonic representative with respect to the harmonic metrich of the original
Higgs bundle. The statement of the theorem will therefore follow once we prove that
the harmonic representative ofö+(z, ! ) satisÞes the inequality

(4.57) c|! |2" 2) j
k *

-

C
|ö2! ö+(z, ! )|2h, |dz |2 |dz|2 * C|! |2" 2) j

k .

for some0 < c < C . Our Þrst aim is to prove the following.

Lemma 4.33. Ð There exists - > 0 and K > 0 such that for |! | su"ciently large the
inequality

=
=/#!

! ö+(! )
=
=2

L 2 (C )
* K |! |2" 2%2ö+(! )22

L 2 (C )

holds.
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Proof. Ð Covering the annulus centered atpj of radii 2$0 and 2R0 by a Þnite number
of disks of radius $0, we deduce from Lemmas2.30 and 2.31 that the /#j

! -harmonic
spinor ö+#

k (z, ! ) is concentrated in H 1-norm, up to a factor decreasing exponentially
with |! |, in the disk "( pj , 2$0). In particular, it is concentrated up to an exponen-
tially decreasing factor in the same disk inL 2-norm as well. Denoting by áCli!ord
multiplication ( 3.16)-(3.17), we have the estimation

-

C

/
/ /#!

! (7j (z)ö+#
k (z, ! ))

/
/ 2

|dz|2 *
-

C

/
/ 7j (z)/#!

! ö+#
k (z, ! )

/
/ 2

|dz|2

+
-

C

/
/ (. 7j )(z) áö+#

k (z, ! )
/
/ 2

|dz|2

*
-

!( pj ,3" 0 )

/
/ /#!

! ö+#
k (z, ! )

/
/ 2

|dz|2

+ K
-

!( pj ,3" 0 ) ! !( pj ,2" 0 )
|ö+#

k (z, ! )|2 |dz|2.

Again, by Lemma 2.30 the second integral on the right-hand side is bounded by an
exponentially decreasing multiple of2ö+#

k (z, ! )22
L 2 (C ) as |! | $ - . Therefore, we only

need to treat
=
=/#!

! ö+#
k (z, ! )

=
=2

L 2 (!( pj ,3" 0 ))
.

Remark that by hypothesis,

(/#j
! )! ö+#

k (z, ! ) = 0 ,

so we have

/#!
! ö+#

k (z, ! ) =
>
/#!

! %(/#j
! )!

?
ö+#

k (z, ! ).

This is then bounded by

ö+#
k (z, ! )O(|z %pj |" 1+ %),

whereO(|z %pj |" 1+ %) stands for a term bounded from above by a constant (indepen-
dent of ! ) times |z % pj |" 1+ %, because/#!

! and (/#j
! )! are Dirac operators having the

same local model at the puncture and their di!erence is clearly independent of! . In
order to study this quantity, we make use of the coordinatew = ! (z%pj ) analogously
to that introduced in ( 4.44). Under this coordinate change, the disk"( pj , 3$0) goes
into the (varying) disk "(0 , 3$0|! |). Hence, we need to prove

-

!(0 ,3" 0 |! |)
|w|" 2+2 %|! |2" 2%

/
/ (h!

! ö+#
k )(w, ! )

/
/ 2

|dz |2 ,h
|! |" 2|dw|2

* K |! |2" 2%
-

C

/
/ (h!

! ö+#
k )(w, ! )

/
/ 2

|dz |2 ,h
|! |" 2|dw|2
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Recall from (4.53) that in the coordinate w the spinors |! |" ) j
k h!

! ö+#
k are independent

of ! . Therefore this boils down to
-

!(0 ,3" 0 |! |)
|w|" 2+2 %

/
/ (h!

! ö+#
k )(w)

/
/ 2

|dz |2 |dw|2

* K
-

C

/
/ (h!

! ö+#
k )(w)

/
/ 2

|dz |2 |dw|2(4.58)

for a suitable constant K > 0. Because

(h!
! ö+#

k )(w) " H 1(C),

in particular we have
(h!

! ö+#
k )(w) " L 2(C),

and also
1
w

(h!
! ö+#

k )(w) " L 2
loc .

near the origin. This implies |w|" 1+ %(h!
! ö+#

k )(w) " L 2(C). Therefore,

K = 2

=
=
=|w|" 1+ %(h!

! ö+#
k )(w)

=
=
=

2

L 2 (C )
=
=
=(h!

! ö+#
k )(w)

=
=
=

2

L 2 (C )

has the desired property.

The lemma has the following consequence.

Lemma 4.34. Ð As |! | $ - , we have the estimate
H
H
H2ö+(! )22

L 2 %
=
=ö2H

! ö+(! )
=
=2

L 2

H
H
H* K |! |" 2%2ö+(! )22

L 2

with K > 0 independent of! .

Proof. Ð It is su"cient to bound
=
=ö+(! ) % ö2H

! ö+(! )
=
=2

L 2

as in the lemma. The /#!
! -harmonic representative ö2H

! ö+(! ) of ö+(! ) is given by the
formula

(Id %/#! G! /#!
! )ö+(! ),

so the di!erence with ö+(! ) itself is

/#! G! /#!
! ö+(! ).

Since for any positive spinor. the estimation

2/#! . 22
L 2 (C ) * K 2. 22

H 1 (C ) + K |! |2 2. 22
L 2 (C )

holds, we deduce that
=
=/#! G! /#!

! ö+(! )
=
=2

L 2 (C )
* K

=
=G! /#!

! ö+(! )
=
=2

H 1 (C )
+ K |! |2

=
=G! /#!

! ö+(! )
=
=2

L 2 (C )
.
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Lemma 2.25 implies that both terms on the right-hand side are bounded from above
by

K |! |" 2
=
=/#!

! ö+(! )
=
=2

L 2 (C )
.

We conclude by Lemma4.33.

We can now Þnish the proof of Theorem4.32: as|! | goes to inÞnity, by Lemma4.34,
we have =

=
=ö2H

! ö+(! )
=
=
=

2

L 2

2ö+(! )22
L 2

%$ 1.

In words, the norm of the harmonic representative of the spinorö+(z, ! ) is asymptot-
ically equal to the norm of ö+(z, ! ) itself. On the other hand, as it has already been
remarked in the proof of Lemma4.33, we have

2ö+(z, ! )22
L 2 (C ,h )

2ö+#
k (z, ! )22

L 2 (C ,h )

%$ 1

exponentially as ! $ - . Finally, by ( 4.56) the L 2-norm of the spinors ö+#
k (z, ! ) as

measured by the harmonic metrich satisfy

(4.59) c|! |2" 2) j
k * 2 ö+#

k (z, ! )22
L 2 * C|! |2" 2) j

k

for some0 < c < C , where * j
k is a parabolic weight of the original Higgs bundle at

the point pj . All this then implies ( 4.57), so it follows that the parabolic weight of
the transformed Higgs bundle on the given component is equal to* j

k % 1, as it was
stated in the theorem.

4.6.2. The case of logarithmic singularities. Ð Next we compute the parabolic
weights at a puncture ! l corresponding to the extension of the holomorphic structure
of öEgiven in Subsection4.4.1.

Explicitly, here is the result we wish to show.

Theorem 4.35 . Ð The parabolic weight of the extensioni öEof the transformed Higgs
bundle at the puncture! l , restricted to the %" #

k -eigenspace of the residue of the trans-
formed Higgs Þeld (herek " { 1 + al , . . . , al +1 } ) is equal to %1 + * #

k , where * #
k is the

parabolic weight of the original Higgs Þeld at inÞnity, restricted to the! l -eigenspace
of the second-order term and the" #

k -eigenspace of the Þrst-order term of the polar
part of the Higgs Þeld.

Proof. Ð We follow the proof of Theorem 4.32. Again, we divide the proof into two
steps according to the number of distinct eigenvalues! l of the second order term of
D at inÞnity. Recall that some of the spectral points qk " &! converge to inÞnity as
! $ ! l , whereas others remain bounded.
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Step 1.Ð First we suppose that n$ = 1 , that is to say A is a simple diagonal matrix,
and that in a global holomorphic basis{ +#

k } the Higgs Þeld has is of the form

( =
! 1

2
dz + diag( " #

k )
dz
z

with one regular singularity in 0 and an irregular one at inÞnity, and Þnally the
harmonic metric is

(4.60) h# = diag( |z|" 2) "
k )r

k=1 .

This induces a parabolic structure on Ewith weights %2* #
k at 0 and 2* #

k at inÞnity.
The deformed Þeld is

( ! =
! 1 %!

2
dz + diag( " #

k )
dz
z

,

and the spectral points are
2" k

! %! 1
.

Making the coordinate change

h! : C %$ C

w #%$z =
w

! %! 1
(4.61)

the Þeld writes

(4.62) ( ! = %
1
2

dw + diag( " #
k )

dw
w

.

The Euclidean metric |dz|2 on the base and the Þber metrich# are transformed into

|! %! 1|" 2|dw|2(4.63)

diag(|! %! 1|2) "
k |w|" 2) "

k )r
k=1(4.64)

and the position of the spectral points become simply

2" k ,

independent of ! . As in the case of the singularity at inÞnity, writing h(w) for the
diagonal model metric

diag(|w|" 2) "
k )r

k=1

the coordinate changes induce tautological isomorphisms of Hermitian Þber bundles

(h!
! E, h(w) ) %$ (E, h# )(4.65)

(h!
! +k )(w) #%$ |! %! 1|" ) k +k (z).

Via this isomorphism the representativesvk (z, ! ) given in (4.30) behave as follows:

|! %! 1|" ) k vk (z, ! ) = vk (w),

which is independent of! , or equivalently

|! %! 1|" ) k vk (z, ! )( ! %! 1)dz = vk (w)dw,
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independent of ! . By the equation (4.31), this implies

|! %! 1|" ) k tk (z, ! )( ø! % ø! 1)døz = tk (w)d øw,

independently of ! . Exactly as in the case of the singularity at inÞnity, the Laplacian
and the GreenÕs operator of/#!

! in the coordinate w only depend on ! through a
conformal factor |! % ! 1|" 2 and |! % ! 1|2 respectively, so the pull-backh!

! ö2! of the
projection onto /#!

! -harmonic spinors is independent of! . We deduce using invariance
of the L 2-norm of 1-forms by conformal coordinate change that for the/#!

! -harmonic
spinor ö+k (z, ! ) representing the cohomology class of(vk (z, ! )dz, tk (z, ! )døz) we have

-

C
|ö+k (z, ! )|2h" ,|dz |2 |dz|2 = |! %! 1|2) k " 2

-

C
|ö+k (w)|2h( w ) ,|dw |2 |dw|2,

where ö+k (w) is the harmonic spinor representing(vk (w)dw, tk (w)d øw). We see also
that the integral on the right-hand side is independent of ! , hence we have the desired
behaviour giving parabolic weight %1 + * k on this component.

Step 2.Ð We drop the assumption that the second-order termA of the original Higgs
Þeld is a simple matrix. Let 7 be a Þxed cut-o! function supported on the complemen-
tary C ! "(0 , 1/$ 0) of a large disk, equal to1 on C ! "(0 , 2/$ 0). In C ! "(0 , 1/$ 0),
the Higgs Þeld is up to a perturbation

( # =
1
2

Adz + C
dz
z

with A and C diagonal matrices as in (1.31), therefore decomposes into a direct
sum of problems studied in Step 1. In particular, for each such model problem with
eigenvalue of the second-order term! l we have harmonic spinorsö+l

k (z, ! ) where k "
{ 1 + al , . . . , al +1 } , such that

-

C

H
Hö+l

k (z, ! )
H
H
|dz |2 ,h " |dz|2 = |! %! l |" 2+2 ) "

k .

Again, since the harmonic metric h of the Higgs bundle ( E, ( ) is mutually bounded
with h# in a neighbourhood of inÞnity and ö+l

k is supported there, this implies

(4.66) c|! %! l |" 2+2 ) "
k *

-

C

H
Hö+l

k (z, ! )
H
H
|dz |2 ,h |dz|2 * C|! %! l |" 2+2 ) "

k

for some0 < c < C . The section

ö+(z, ! ) = 7(z)ö+l
k (z, ! )

is well-deÞned because the local holomorphic trivialisation+#
k of E is deÞned in

C ! "(0 , 1/$ 0) for $0 > 0 su"ciently small. The statement of the theorem will again
follow if we prove

(4.67) c|! %! l |" 2+2 ) "
k *

-

C

H
Hö2! H ö+(z, ! )

H
H
|dz |2 ,h |dz|2 * C|! %! l |" 2+2 ) "

k

where ö2H
! ö+(z, ! ) is the harmonic representative of ö+(z, ! ). As a Þrst step in this

direction, we prove:
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Lemma 4.36. Ð There exists - > 0 and K > 0 such that for |! | su"ciently large the
inequality

=
=/#!

! ö+(z, ! )
=
=2

L 2 (C )
* K |! %! l |2+2 %2ö+(z, ! )22

L 2 (C )

holds.

Proof. Ð We follow the proof of Lemma 4.33. We set (D $$
! )# = ø# E + ( # and let

/##
! (respectively (/##

! )! ) stand for its Dirac operator (respectively its adjoint). By
Lemma 2.30, ö+l

k is supported in L 2-norm up to an exponentially decreasing factor
in ! in C ! "(0 , 1/$ 0). Therefore, the lemma reduces to the same estimation forö+l

k .
Moreover, by assumption we have

(/##
! )! ö+l

k (z, ! ) = 0 ,

so
/#!

! ö+l
k (z, ! ) = [ /#!

! %(/##
! )! ]ö+l

k (z, ! ).

The di!erence on the right-hand side of this formula is bounded above byK |z|" 1" %

for some K > 0 independent of ! , because the two Dirac operators depend on! in
the same way, hence their di!erence does not depend on it at all. Introducing the
coordinate w = z(! %! l ), this becomesK |w|" 1" %|! %! l |1+ %. Therefore, it is su"cient
to prove

-

C ! !(0 ,|! " ! l | /" 0 )
|w|" 2" 2%|! %! l |2+2 %

/
/ ö+l

k (z, ! )
/
/ 2

|dz |2 ,h |! %! l |" 2|dw|2

* K |! %! l |2+2 %
-

C

/
/ ö+l

k (z, ! )
/
/ 2

|dz |2 ,h |! %! l |" 2|dw|2,

for a suitable K > 0, or more simply
-

C ! !(0 ,|! " ! l | /" 0 )
|w|" 2" 2%

/
/ ö+l

k (z, ! )
/
/ 2

|dz |2 ,h |dw|2

* K
-

C

/
/ ö+l

k (z, ! )
/
/ 2

|dz |2 ,h |dw|2.(4.68)

This goes similarly to (4.58): because in the coordinatew = h" 1
! z the spinor |! %

! l |2" 2) "
k ö+l

k (z, ! ) is independent of! (see Step 1) andh and h# are mutually bounded,
it boils down to

-

C ! !(0 ,|! " ! l | /" 0 )
|w|" 2" 2%

/
/ (h!

! ö+l
k )(w)

/
/ 2

|dz |2 ,h " |dw|2

* K
-

C

/
/ (h!

! ö+l
k )(w)

/
/ 2

|dz |2 ,h " |dw|2.

Now remark that h!
! ö+l

k " H 1(C, |dw|2, h# ) implies in particular that h!
! ö+l

k "
L 2(C, |dw|2, h# ). Furthermore, near the origin |w|" 1" %h!

! ö+l
k " L 2

loc (|dw|2, h# )
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provided that - < * #
k . Hence|w|" 1" %h!

! ö+l
k " L 2(C, |dw|2, h# ), and

K = 2

=
=
=|w|" 1" %h!

! ö+l
k

=
=
=

2

L 2 (C ,|dw |2 ,h " )
=
=
=h!

! ö+l
k

=
=
=

2

L 2 (C ,|dw |2 ,h " )

has the desired property (4.68).

This has the following consequence.

Lemma 4.37. Ð As ! $ ! l , we have the estimate
H
H
H2ö+(z, ! )22

L 2 %
=
=ö2H

! ö+(z, ! )
=
=2

L 2

H
H
H* K |! %! l |2%2ö+(z, ! )22

L 2

for some K > 0 independent of! .

Proof. Ð Again as in Lemma 4.34, it is su"cient to bound
=
=ö+(z, ! ) % ö2H

! ö+(z, ! )
=
=2

L 2

as in the lemma, where

ö2H
! ö+(z, ! ) = ( Id %/#! G! /#!

! )ö+(z, ! )

is the /#!
! -harmonic representative ofö+(! ). Thus by Lemma 2.27we have for the norm

of the di!erence
=
=/#! G! /#!

! ö+(z, ! )
=
=2

L 2 * K |! %! l |" 2
=
=/#!

! ö+(z, ! )
=
=2

L 2

and we conclude using Lemma4.36.

We are now ready to Þnish the proof of Theorem4.35: by Lemma 4.37, as ! $ ! l

the norm of the harmonic representative of the spinorö+(z, ! ) veriÞes
=
=
=ö2H

! ö+(! )
=
=
=

2

L 2

2ö+(! )22
L 2

%$ 1.

On the other hand, since the support of7 in the coordinate w is C ! "(0 , |! %! l |/$ 0),
and these sets exhaustC as ! $ ! l , we have that

2ö+(! )22
L 2

=
=ö+l

k (! )
=
=2

L 2

%$ 1.

By (4.66) the L 2-norm of ö+l
k (z, ! ) as measured by the harmonic metrich satisÞes

c|! %! l |" 2+2 ) "
k *

-

C

H
Hö+l

k (z, ! )
H
H2

|dz |2 ,h |dz|2 * C|! %! l |" 2+2 ) "
k .

Putting together all this, we obtain ( 4.67), so that on the component of öE near ! l on
which the transformed Higgs Þeld has eigenvalue%" #

k , the parabolic weight of the
induced extension is%1 + * #

k .
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4.7. The topology of the transformed bundle

In this section, we compute the topology of the underlying holomorphic bundlei öE
of the transformed Higgs bundle (see (4.8)) relative to its extension over the punctures
given in Section 4.4. We then deduce the topology of the transformed Higgs bundle
relative to its transformed extension given by DeÞnition3.11. We recall that we have
denoted

(4.69) ör =
*

p%P

rk(Res((, p))) .

The result we wish to show is the following:

Theorem 4.38 . Ð The rank of i öE is equal to ör , whereas its degree is equal toör +
deg(E) + r , where r and deg(E) are the rank and degree ofE, respectively.

Notice that it gives in particular ( 1) of Theorem 1.32.

Proof. Ð Recall that we have denoted by Ethe sheaf of holomorphic sections of the
bundle Eunderlying the original Higgs bundle; F was deÞned as a sheaf of mero-
morphic sections of E' $ 1,0 having singularities at P , {-} with singular parts
in prescribed spaces (see Subsection4.3.1); and Þnally ÷F = 2!

1 F ' 2!
2 O!CP

1 (1). By
hypothesis, ( (and so ( + for any 8) is holomorphic with respect to the holomorphic
structure ø# E. Thus we may consider the holomorphic chain complex

E !!

Id
##

0

##
E

$# !!

##

÷F

Id
##

0 !! ÷F

in 8 " !CP
1
. The hypercohomology long exact sequence associated to it yields the

exact sequence of cohomology spaces

0 %$ H 0(CP 1, E)
$#%$ H 0(CP 1, ÷F) %$ H1( E $#%$ ÷F)

%$ H 1(CP 1, E)
$#%$ H 1(CP 1, F) %$ 0,(4.70)

since we have seen thatH0( E $#%$ ÷F) = H2( E $#%$ ÷F) = 0 . All of the spaces in this

exact sequence come with a natural holomorphic structure over!CP
1
:

Ð the cohomology spaces ofEbecause this latter is trivial over !CP
1

Ð those of ÷F because this latter is the tensor product of a trivial vector bundle

over !CP
1

and O!CP
1 (1)
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Ð Þnally, H1( E $¥%$ ÷F) = öV¥ has its holomorphic structure ø#
öE induced by öd

0,1
,

extended to the singularities in Section4.4 by the induced extensioni öE.

Moreover, all of the maps in the exact sequence (4.70) vary holomorphically in 8 "
!CP

1
with respect to these structures and extensions: this follows from the deÞnition

of ÷F and that of the induced extension. Therefore, it induces an exact sequence of the

sheaves over!CP
1

of holomorphic sections of the corresponding cohomology spaces:

0 %$ O(H 0( E))
$#%$ O(H 0( ÷F)) %$ O(i öE)

%$ O(H 1( E)) %$ O(H 1( F)) %$ 0,

where Ostands to denote the sheaf of regular sections on!CP
1

with respect to
the above mentioned holomorphic structures. By additivity of the Chern character,
we deduce the equality

ch(i öE) = ch( O( !CP
1
, H 0( ÷F))) %ch( O( !CP

1
, H 1( ÷F)))(4.71)

%ch( O( !CP
1
, H 0( E))) + ch( O( !CP

1
, H 1( E)))(4.72)

in H ! ( !CP
1
). Put 2 = 22, the projection onto the second factor inCP 1 & !CP

1
. One

has direct image sheaves2! Eand 2!
÷F on !CP

1
deÞned by

2! E|U = O(U, H 0(CP 1, E))

2!
÷F|U = O(U, H 0(CP 1, ÷F))) = O(U, H 0(CP 1, F)) ' O!CP

1 (1)(U),

for any open setU " CP 1, and one can form the ÒvirtualÓ sheaves

2! E|U = O(U, H 0(CP 1, E)) % O(U, H 1(CP 1, E))

2!
÷F|U = O(U, H 0(CP 1, ÷F)) % O(U, H 1(CP 1, ÷F)) .

Again by additivity of the Chern character, the right-hand-side of ( 4.71) is equal to
ch(2!

÷F), which is in turn equal to

2! (ch( ÷F) , T d(T- )) ,

by the Grothendieck-Riemann-Roch theorem, where

T- = T(CP 1 & !CP
1
) %2! T !CP

1
= 2!

1TCP 1

is the relative tangent bundle of 2, and T d stands for its Todd class. Moreover,2! is
just evaluation on the fundamental cycle ofCP 1. Similarly, we see that (4.72) is just

%ch(2! E) = %2! (ch( E) , T d(T- )) ,

and thus we obtain

(4.73) ch(i öE) = [( ch( ÷F) %ch( E)) , T d(2!
1TCP 1)]/ [CP 1].
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Now we have

ch( E) = r + c1( E)

ch( ÷F) =

I

J r + c1( E) + h
*

p%P

rk(Res((, p))

K

L (1 + öh)

T d(TCP 1) = T d( OCP 1 (2)) = 1 + h,

where r is the rank of the bundle E, c1( E) is its Þrst Chern class, andh and öh are

the hyper-plane classes ofCP 1 and !CP
1

respectively. Putting all this together, we
obtain

ch( ÷F) %ch( E) = örh + [ r + c1( E) + ör ]öh,

and plugging this into (4.73),

(4.74) ch(i öE) = ör + [ r + deg( E) + ör ]öh,

as we wished.

We are now ready to pass back to the transformed extension of the Higgs bundle in-
troduced in DeÞnition 3.11, hence establishing points (2), (5) and (8) of Theorem 1.32.

Corollary 4.39 . Ð The parabolic weights of the transformed Higgs bundle endowed
with its transformed extension are * #

k at the logarithmic punctures (on the same
subspace as in Theorem4.35) and * j

k at inÞnity (on the subspace in Theorem4.32).
The degree of the transformed Higgs bundleöEwith respect to its transformed extension
is equal to the degree ofE.

Proof. Ð Recall from Theorems4.35and 4.32 that the parabolic weights of the trans-
formed Higgs bundle relative to the induced extensions considered in Subsections4.4.1
and 4.4.2are equal to%1 + * #

k at the logarithmic punctures and to %1 + * j
k at inÞn-

ity. On the other hand, by DeÞnition 3.11, the parabolic weights of the transformed
Higgs bundle with respect to its transformed extension are required to have parabolic
weights between0 and 1. This means that a local holomorphic trivialisation of the
singular component of the transformed extensionöEnear the puncture ! l is

(! %! l )ö+l
k (! ),

where ö+l
k (! ) is the local holomorphic section of the extensioni öE at ! l deÞned in

Subsection 4.4.1 and k " { 1 + al , . . . , al +1 } . On the regular component of öE|! l the
harmonic representatives have bounded norm, which gives0 parabolic weight. There-
fore on this component one does not need to change the trivialisation. Similarly, a
local holomorphic frame of öEnear inÞnity can be expressed by

! " 1ö+#
k (! ),

where ö+#
k is the local holomorphic section of the extensioni öEat inÞnity deÞned in

Subsection4.4.2 localised nearpj for some j " { 1, . . . , n} , and k " { r j + 1 , . . . , r } .
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Clearly, this way we increased all non-vanishing parabolic weights by1. On the other
hand, by Remark 1.12 even if the algebraic geometric degree of the bundle depends
on the choice of extensions, the parabolic degree with respect to a Þxed metric is
independent of them, because it is always0. Recall from DeÞnition 1.11 that

degpar (i öE) = deg( i öE) +
*

j %{1,...,n, #}

r*

k= r j +1

(%1 + * j
k ).

This quantity is therefore equal to

(4.75) degpar ( öE) = deg( öE) +
*

j %{1,...,n, #}

r*

k= r j +1

* j
k .

Putting these expressions together, we deduce that

deg(öE) = deg( i öE) % ör %r,

where we recall again that we have deÞned

ör =
n*

j =1

rk(Res((, pj )) .

Using formula (4.74) we get

(4.76) deg(öE) = deg( E).
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CHAPTER 5

THE INVERSE TRANSFORM

In this chapter we construct the inverse of the transform introduced in the previous
chapters. In line with the properties of the ordinary Fourier transform and its algebraic
counterparts, the inverse is deÞned by a formula which only di!ers from the transform
in a sign.

Recall from Section3.1 that the transformed ßat connection on öE¥ = L 2H 1(D¥) is
deÞned by theL 2-orthogonal projection of öd %zd! ) . For any parabolic vector bundle
with integrable connection (F, D F , hF ) on öC satisfying the conditions of Section1.1
(i.e., having a Þnite number of simple poles in Þnite points and a second-order pole at
inÞnity, such that the eigenvalues and parabolic weights meet the conditions imposed
in Theorem 1.17), one can deÞne the inverse transformed bundle with integrable
connection ( ÿF , ÿD F , ÿhF ) on C by a procedure similar to the one deÞning( öE, öD, öh)
starting from (E, D, h ): namely, consider the deformation

(5.1) D F
z = D F + zd! )

of the connection parametrised byz in C minus a Þnite set, and let ÿFz be the Þrst
L 2-cohomology of

F
D F

z%%$ $ 1
öC

' F
D F

z%%$ $ 2
öC

' F.

These vector spaces are of the same dimension and form a smooth vector bundle
over C minus a Þnite number of points. The critical points are easily seen to be
the opposites of the eigenvalues of the second-order term ofD F at inÞnity. The proof
goes similarly to the case of the direct transform. We also deÞne the Hilbert bundleÿH
over C, the L 2-metric ÿh and the orthogonal projection ÿ2z : ÿHz $ ÿFz in an analogous
manner as in Section3.1. Next, let the inverse transformed integrable connection
ÿD F be deÞned by the parallel sectionsÿ2z(e(z0 " z) ! , z0 (! )) for any harmonic section
, z0 (! ) " ÿFz0 . Equivalently, denoting by ÿd the trivial connection with respect to w in
the trivial Hilbert bundle ÿH , the inverse transformed ßat connection can be given by
the formula

(5.2) ÿD F = ÿ2z(ÿd + zd! ),
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104 CHAPTER 5. THE INVERSE TRANSFORM

as it can be seen by the argument given in Section3.1, changing signs. Finally, we
deÞne the inverse transformed metricÿhF on the Þber ÿFz0 again as theL 2-norm on öC
of a D F

z0
-harmonic representative. We can now state the

Theorem 5.1 . Ð The inverse transform of N : (E, D, h ) #$ ( öE, öD, öh) is N" 1 :
(F, D F , hF ) #$ ( ÿF , ÿD F , ÿhF ). In di!erent terms, for any bundle with integrable
connection and harmonic metric (E, D, h ) satisfying the conditions of Section1.1
and the ones imposed in Theorem1.17, there exists a canonical Hermitian bundle
isomorphism ; between ÿöE and E such that ; ! D = ÿöD.

Remark 5.2 . Ð As one can check using the transform on the level of singularity pa-
rameters described in Theorem1.17, the assumptions (1) and (2) of that theorem are
symmetric, in the sense that if they are fulÞlled by(E, D ) than the same is true for
( öE, öD). Therefore, the transformÿ can be applied to this latter, so the a"rmation of
the theorem has a meaning.

Proof. Ð The proof is done in four steps: Þrst, we prove that the Þbers over0 " C
of E and ÿöE are canonically isomorphic. Next we show the same thing for the other
Þbers. Then we prove that the integrable connections are the same, and Þnally we
establish equality of the harmonic metrics and parabolic structures.

Step 1.Ð Consider the product manifold C & öC, and let 21 and 22 be the projection
to the Þrst and second factor, respectively. Denote byE the pull-back vector bundle
2!

1E on the product, and deÞne the connectionD = 2!
1D %! dz %zd! . Notice that on

the Þber C & { ! 0} this just gives the deformation D! 0 . Now form the double complex

Dp,q = $ p
C ' $ q

öC
(E),

where $ p
C (respectively $ q

öC
) denote smoothp-forms (smooth q-forms) on C ( öC); and

with di!erentials d 1 = D! , d2 = öd %zd! ) . Remark that these di!erentials commute
(in the graded sense), and their sum is justD. The desired isomorphism will result
from the study of the spectral sequences corresponding to the two di!erent Þltrations
of this double complex.

Namely, consider the Þrst Þltration of D: the Þrst page of the corresponding spectral
sequenceE¥,¥

1 is

0 $2
öC

' öE 0

0 $1
öC

' öE

d$
2

""

0

0 öE

d$
2

""

0

(5.3)
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where d.
2 stands for the operator induced by d2. More precisely, this operator is

obtained as follows. Consider for example a local section oföE : if B (! 0) is an open
ball in öC, it is given by cohomology classes[, ! ] in L 2H 1(D! ) changing smoothly
with ! " B (! 0). Here , ! = , ! (z) is a global L 2-section of E over C, in the kernel of
/#!

! . In particular, D! , ! = 0 , and since the two di!erentials commute, we then have

D! : d2, ! = 0 . In other words, d2, ! is a d1-closed section ofD1,1 on C & B (! 0); hence
we may consider its cohomology class with respect to d1, and letting ! vary these give a
section of$ 1 ' öE over B (! 0), which is by deÞnition d.

2[, ! ]. Now remark that under the
isomorphism of the ÞrstL 2-cohomology of the elliptic complex (2.24) and the space of
/#! -harmonic sections given in Theorem2.21, this induced connection goes over toöD
deÞned in Section3.1; in other words, under these identiÞcations d.2 = öD. Moreover,
the connection öD also satisÞes the conditions of Section1.1. Therefore, by Chapter 2
and Section2.3 the L 2-cohomology of öD = öD0 is non-trivial only in degree 1, and so
when passing to the second pageE¥,¥

2 of the spectral sequence, we obtain by deÞnition

E1,1
2 = ÿöE0 and all other terms equal to0. In particular, the spectral sequence collapses

at the second page, and the total cohomology of the double complex is canonically
isomorphic to ÿöE0 in degree2 and vanishes in all other degrees.

Consider now the second Þltration of D: in order to form the Þrst page ÷E¥,¥
1 of

the corresponding spectral sequence, we Þrst take cohomology on each column of the
double complex with respect to d2 = öd %zd! , and so it is equal to

0 0 0

0 0 0

L 2(C, E)ez! d$
1 !!L 2(C, $ 1

C ' E )ez! d$
1 !!L 2(C, $ 2

C ' E )ez! .

(5.4)

In words: for example, the (0, 0)-term consists ofL 2-sections ofE on C & öC which
are a product of an arbitrary section of E on C and the function ez! . Now notice
that the only possibility for a non-zero section of this form to be in L 2 on { z} & öC
is for z = 0 . Put another way, the cohomology along the slices{ z} & öC vanishes for
all z != 0 . Hence we may replace the double complexDwithout changing the spectral
sequence associated with this Þltration (and so the total cohomology), by the double
complex (germ D) whose component of bidegree(p, q) is the space ofL 2-forms with
values in E of bidegree(p, q) deÞned onV0 & öC for any neighbourhoodV0 of 0 " C,
and where we identify such forms if they coincide on an arbitrary neighbourhood of
{ 0} & öC. Of course, the di!erentials of this new double complex are induced by those
of D in a trivial way.

The idea now is to consider the spectral sequence(germ E) corresponding to the
Þrst Þltration of (germ D): by the general theory of spectral sequences, this will
then abut to the total cohomology of (germ D), which is, as we saw in the previous
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paragraph, equal to that of D, that is to ÿöE0. First trivialise E in V0: this just
means that we identify the total space of the bundle with V0 & E0. Since the vector
bundle E on C & öC is just the pull-back of E on C, this also gives an identiÞcation of

E $ V0 & öC with the trivial bundle (V0 & öC) & E0. Without loss of generality we
may assume0 /" P, so for V0 su"ciently small the connection D can also be taken by
a gauge transformation÷g to the trivial one. Thus in this trivialisation and gauge we
have d1 = d %! dz where d stands for the trivial connection in the z direction. The
Þrst page (germ E)¥,¥

1 is then equal to the cohomology spaces with respect to this
di!erential:

$ 2
öC

' L 2( öC, E0)ez! 0 0

$ 1
öC

' L 2( öC, E0)ez!

d$
2

""

0 0

L 2( öC, E0)ez!

d$
2

""

0 0,

(5.5)

where, as before,L 2( öC, E0)ez! stands to denote functions with values inE0 of the
form ' (! )ez! but this time on V0 & öC, and the L 2 condition now only implies that
' must be rapidly decreasing as|! | $ - . The next remark is that since we only
have terms in degreep = 0 , the di!erential induced by d 2 is just itself: indeed, it is by
deÞnition d2 modulo the image of d1, but this latter vanishes for p = 0 . Thus, in order
to obtain the second page(germ E)¥,¥

2 of the spectral sequence, we take cohomology
with respect to d2 = öd % zd! ) . Notice that via the gauge transformation e" z! the
whole picture can be rephrased as the de Rham cohomology of rapidly decreasing
sections+ on öC with values in E0, which is similar to compactly supported de Rham
cohomology. Therefore in(germ E)¥,¥

2 all elements except for the one corresponding
to bidegree(0, 2) vanish, and this latter is canonically isomorphic to E0 via mapping
an element ' 0 " E0 into the germ

[' 07(! )ez! d! ) dø! ],

where 7 is a Þxed exponentially decreasing bump-function onöC with integral (with
respect to the volume form|d! |2) equal to 1, and [.] stands to denote the de Rham co-
homology class of exponentially decreasing forms onöC with values in E0. Conversely,
for an arbitrary class [' 0(! )ez! d! ) dø! ] where ' 0(! )ez! is a germ of exponentially de-
creasing functions on öC with values in E0 and in the kernel of d1 = ( d % ! dz), we
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may deÞne

[' 0(! )ez! d! ) dø! ] #%$evalz=0

-

öC
' 0(! )ez! |d! |2

=
-

öC
' 0(! )|d! |2 " E0(5.6)

and verify readily that it is independent of the section representing a cohomology class.
The fact that E0 and ÿöE0 are canonically isomorphic now follows from the fact that

they are both canonically isomorphic to (di!erent gradings of) the total cohomology
of the double complex D.

Step 2.Ð The Þrst thing to do is to describe explicitly the isomorphism obtained

above. Let
>
ÿö-0

?
be an element in ÿöE0: it is a class in the cohomology spaceE1,1

2 in the

spectral sequence corresponding to the Þrst Þltration ofD. Hence it is represented by

a (1, 1)-form ÿö-0(z; ! ) over C & öC such that

(1) (D %! dz) )ÿö-0(z; ! ) = 0

(2) (öd %zd! ) ). ÿö-0(z; ! ) = 0 ; in other words, there exists a(0, 2)-form ' 0(z; ! ) over
C & öC satisfying

D! ' 0(z; ! ) = ( öd %zd! ) )ÿö-0.

Concatenating the map >
ÿö-0

?
#%$' 0(z; ! )

with an analog of (5.6), namely

(5.7) [' 0(z; ! )] #%$evalz=0

-

öC
' 0(z; ! )

we get the canonical isomorphism

; 0 :
>
ÿö-0

?
#%$-0 = evalz=0

-

öC
' 0(z; ! )

between ÿöE0 and E0 provided by the previous step.
Fix now an arbitrary z0 " C, and consider the double complexDz0 having the

same(p, q)-components asD, but with di!erentials d 1 = D! , d2 = öd % (z % z0)d! ) .
In order to obtain the components of the Þrst page(Ez0 )¥,¥

1 of the spectral sequence
corresponding to the Þrst Þltration of Dz0 , we need to take cohomology with respect
to d1, hence these will be the same as those ofD in (5.3), and the di!erentials will
be induced by d2. Now since z0 is a constant, observe that for any local section
, ! (z) " Ker/#!

! in ! of harmonic sections overC the relation

d.
2, ! = [( öd %(z %z0)d! ) ), ! ] = [( öd %zd! ) ), ! ] + z0d! ) , ! = öDz0 (, ! ),

holds, where öDz0 is the deformation of öD introduced in (5.1). To get the second page
of the spectral sequence, we take cohomology with respect to d.

2 = öDz0 , and therefore
if z0 does not belong to the set of opposites of eigenvalues of the leading term oföD
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then this is a Þnite-dimensional space, equal by deÞnition toÿöEz0 . Notice that by the
results of Subsection4.5, the set of z0 where this does not hold is exactlyP, the set
of singularities (at Þnite points) of E . Similarly, the second Þltration of Dz0 gives rise
to a spectral sequence whose Þrst page is (analogously to (5.4))

0 0 0

0 0 0

L 2(C, E)e(z" z0 ) ! d$
1 !!L 2(C, $ 1

C ' E )e(z" z0 ) ! d$
1 !!L 2(C, $ 2

C ' E )e(z" z0 ) ! .

Hence the only Þber{ z} & öC over which these spaces are non-trivial is forz = z0,
so we may consider the double complex(germ Dz0 ) whose components are germs
of forms in a neighbourhoodVz0 & öC of the Þber { z0} & öC, two such germs being
identiÞed if they coincide in any such neighbourhood, and with di!erentials coming
from those of Dz0 . As before, the spectral sequences corresponding to the second
Þltration of these double complexes agree starting from the Þrst page, so in particular
their total cohomologies are the same. Now, we pass back again to the Þrst Þltration
and compute the spectral sequence of(germ Dz0 ) with respect to it: in a convenient
trivialisation of E in V0 and gauge, the Þrst page is equal to

$ 2
öC

' L 2( öC, Ez0 )ez! 0 0

$ 1
öC

' L 2( öC, Ez0 )ez!

d$
2

""

0 0

L 2( öC, Ez0 )ez!

d$
2

""

0 0,

(5.8)

with di!erentials given by d 2 = öd%(z%z0)d! ) . As in step 1, the second page therefore
contains only one non-vanishing component: the one corresponding to bidegree(0, 2),
and it is canonically isomorphic to the vector spaceEz0 ; this proves that the vector

spacesEz0 and ÿöEz0 are canonically isomorphic to each other. Again, an element>
ÿö-z0

?
of ÿöEz0 is represented by a(1, 1)-form ÿö-z0 (z; ! ) over C & öC satisfying (öd %(z %

z0)d! ). ÿö-z0 (z; ! ) = 0 , i.e., there exists a(0, 2)-form ' z0 (z; ! ) over C & öC with

D! (' z0 (z; ! )) = ( öd %(z %z0)d! ) )ÿö-z0 (z; ! ),

and an explicit way of describing the obtained isomorphism is given by

(5.9) ; z0 :
>
ÿö-z0

?
#%$-z0 = evalz= z0

-

öC
' z0 (z; ! )
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Step 3.Ð By the previous points, we have that the bundle ÿöE is isomorphic to E via
the isomorphisms; ¥. Now we prove that the integrable connection ÿöD on ÿöE is carried
into D on E by this bundle isomorphism: for this, it is clearly su"cient to prove that
any local parallel section for ÿöD is carried into a parallel section forD . For simplicity,
we shall consider a local section nearw = 0 , but we will see that the proof does not
use this.

For this purpose, we need to work on the productC & öC & C, parametrised by
(z, !, w ); we keep on writing the variable w in lower index. We shall considerE as
being a bundle over this space by pull-back, without writing it out explicitly. Let>
ÿö-w

?
be a ÿöD-parallel local section of ÿöE. As in Step 2, such a section is represented by

giving a global (1, 1)-form ÿö-w (z; ! ) of E on C & öC for each w in a neighbourhoodV0

of 0 " C, verifying

(1) D! 0

ÿö-w (z; ! ) = 0 for all Þxed w0 " V0 and ! 0 " öC

(2) (d2 %(z %w0)d! ) ). ÿö-w (z; ! ) = 0 for all Þxed w0 " V0

(3) the section in w of the cohomology classes of the above elements isÿöD-parallel.

By Hodge theory, we may suppose thatÿö-w0 (z; ! 0) is the D! 0 -harmonic representative

of
>
ÿö-w0 |C *{ ! 0 }

?
and also that ÿö-w0 (z; ! ) is the öDw0 -harmonic representative of

>
ÿö-w0

?
.

This way we rephrase the above conditions as

(1) for all Þxed w0 " V0 and ! 0 " öC its restriction to the Þber C & { ! 0} & { w0} is

in öE! 0 , that is /#!
! 0

ÿö-w0 (z; ! 0) = 0

(2) for all Þxed w0 " V0 the global section in ! of the above elements oföE! is in
ÿöEw0 , in di!erent terms ö/#

!
w0

ÿö-w0 (z; ! ) = 0

(3) and for all w0 " V0, ÿ2w : (ÿd + ! dw) )ÿö-w (z; ! )|w= w0 = 0 .

As before, (2) means that for all w " V0 there exists ' w (z; ! ) " %(C & öC, $ 2,0 ' E )
such that

(5.10) D! ' w (z; ! ) = ( öd %(z %w)d! ) )ÿö-w (z; ! );

and by Hodge theory, such a section can be deÞned by the formula

(5.11) ' w (z; ! ) = G! D !
! (öd %(z %w)d! ) )ÿö-w (z; ! ),

where G! is the GreenÕs operator of/#!
! /#! . (Here we used that G! is diagonal with

respect to the decomposition$ 0
C + $ 2

C , a standard consequence of the fact that/#!
! /#!

is diagonal with respect to the same decomposition, which comes immediately from
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harmonicity of the metric.) Now by ( 5.9) and (5.10) we have

D- (w)|w= w0 = D
(

evalz= w

-

öC
' w (z; ! )

)

|w= w0

=
-

öC
D' w0 (z; ! )|z= w0 + ÿd' w (w0; ! )|w= w0

=
-

öC
! dz ) ' w0 (w0; ! )

+ ( öd %(w0 %w0)d! ) )ÿö-w0 (w0; ! ) + ÿd' w (w0; ! )|w= w0

(remember that ÿd stands for the trivial connection with respect to w in the trivial
Hilbert bundle ÿH , whereasöd is the trivial connection with respect to ! in the trivial
Hilbert bundle öH ). The integral of the middle term in this last formula vanishes by
StokesÕs theorem. Furthermore, on the diagonalz = w of C & C we have dz = dw, so
we are left with -

öC
(ÿd + ! dw) )' w0 (w0; ! ).

Applying to this quantity ( 5.11) and the commutation relations

[ÿd + ! dw) , öd %(z %w)d! ) ] = 0 [ ÿd + ! dw) , D! ] = 0(5.12)

we obtain

(5.13)
-

öC
G! D !

! (öd %(z %w)d! ) )( ÿd + ! dw) )ÿö-w0 (w0; ! ).

Consider now condition (3) above: denoting by ö/#w and ö/#
!
w the positive and negative

Dirac operators of the deformation öD + wd! , moreover by öGw the GreenÕs operator
of ö/#

!
w

ö/#w , it can be rewritten as

(Id %ö/#w öGw
ö/#

!
w )( ÿd + ! dw) )ÿö-w (z; ! ) = 0 .

In order to Þnish the proof, it is su"cient to prove the commutation relation

(5.14) [ÿd + ! dw) , ö/#w ] = 0 .

Indeed, this then implies

[ÿd + ! dw) , ö/#
!
w ] = 0 [ ÿd + ! dw) , öGw ] = 0 ,

and interchanging ÿd + ! dw) turn by turn with ö/#
!
w0

, öGw0 and ö/#w0 using each time
condition (2), we get

(ÿd + ! dw) )ÿö-w0 (w0; ! ) = ( ÿd + ! dw) )( Id %ö/#w0
öGw0

ö/#
!
w0

)ÿö-w0 (w0; ! )

= ( Id %ö/#w0
öGw0

ö/#
!
w0

)( ÿd + ! dw) )ÿö-w0 (w0; ! )

= 0 ,
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and so (5.13) is equal to 0; but on the other hand it is just the expression for
D- (w)|w= w0 , and this shows that - (w) is parallel in w0. There remains to show (5.14):
recall that ö/#w = öDw % öD !

w , with

öDw = ö2! (öd %(z %w)d! ).

Now the Þrst relation in (5.12) and ö2! = ( Id % /#! G! /#!
! ) combined with the second

relation in ( 5.12) show that
[ÿd + ! dw) , öDw ] = 0 ,

and we conclude.

Step 4.Ð Here we wish to show that the double transformed metricÿöh is equal to
h. In Step 3 we have already shown that the ßat connectionsD and ÿöD agree. On

the other hand, using the results of Section4.2 twice, we see that ÿöh is a harmonic
metric for ÿöD = D. Therefore by uniqueness (up to a constant) of the harmonic metric

corresponding to an integrable connection, we get thatÿöh = h.
An equivalent way of deducing the same assertion would be as follows: using again

the already proved equality ÿöD = D and uniqueness of the harmonic metric, we will

be done if we can prove that the unitary part ÿöD + (with respect to ÿöh) of the double

transformed ßat connection ÿöD is equal to D + , the unitary part of D with respect
to h. This can be done in a completely analogous way to Steps 1-3. The changes we
have to make are the following: consider the double complexDH

z0
having the same

components asDz0 , but with di!erentials d 1 = D H
! and d2 = öd %z/ 2d! ) % øz/ 2dø! ) .

One establishes that these operators commute, thereforeDH
z0

really forms a double
complex. We then see from (4.14) that the deformation

öD H
w = öD H +

1
2

wd! ) +
1
2

øwdø! )

induced from the di!erential

öd %
1
2

(z %w)d! ) %
1
2

(øz % øw)dø! )

is the natural deformation of the Higgs-bundle structure induced by the deformation
öDw . In concrete terms, they are related by the gauge transformationg" 1. Therefore
the double transformed bundle ÿöE H is isomorphic to g" 1gE = E, and the unitary
connection

ÿöD + = ÿ2w :
(

ÿd +
!
2

dw ) +
ø!
2

d øw)
)

is identiÞed to D + just as ÿöD with D , using the commutation relations
@
ÿd +

!
2

dw ) +
ø!
2

d øw) , öd %
1
2

(z %w)d! ) %
1
2

(øz % øz)dø! )
A

= 0 ,

@
ÿd +

!
2

dw ) +
ø!
2

d øw) , D H
!

A
= 0
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instead of (5.12), which together imply the analog
@
ÿd +

!
2

dw ) +
ø!
2

d øw) , ö/#
H
w

A
= 0

of (5.14) for the deformed Dirac operator

ö/#
H
w = D H

w %(D H
w )! .

This then allows us to conclude equality of the unitary connections.

Since the Hermitian bundles ( ÿöE, ÿöh) and (E, h) coincide, so do the ßags of their
parabolic structures in the singular points; as well as the parabolic weights, because
they are supposed to be between0 and 1, and there is a unique way of choosing
holomorphic sections with such behaviours.
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