@book{AST_1994__221__1_0, author = {Ogus, Arthur}, title = {F-crystals, {Griffiths} transversality, and the {Hodge} decomposition}, series = {Ast\'erisque}, publisher = {Soci\'et\'e math\'ematique de France}, number = {221}, year = {1994}, language = {en}, url = {http://archive.numdam.org/item/AST_1994__221__1_0/} }
Ogus, Arthur. F-crystals, Griffiths transversality, and the Hodge decomposition. Astérisque, no. 221 (1994), 196 p. http://numdam.org/item/AST_1994__221__1_0/
[1] Exponential sums and Newton polyhedra: Cohomology and estimates. Annals of Mathematics, 130:367-406, 1989.
and .[2] Faisceaux pervers. Astérisque, 100:5-171, 1982.
, , and .[3] Cohomologie Cristalline des Schémas de Caractéristique , volume 407 of Lecture Notes in Mathematics. Springer Verlag, 1974.
.[4]
and . Notes on Crystalline Cohomology. Annals of Mathematics Studies. Princeton University Press, 1978.[5] Letter to Illusie. December, 1988.
.[6] Théorie de Hodge II. Publications Mathématiques de l'I.H.E.S., 40:5-57, 1972.
.[7] Relèvements modulo et décomposition du complexe de de Rham. Inventiones Mathematicae, 89:247-270, 1987.
and .[8] Diagonal Complexes and -Gauge Structures. Travaux en cours. Hermann, 1986.
.[9] Crystalline cohomology and -adic Galois representations. In Jun-Ichi Igusa, editor, Algebraic Analysis, Geometry, and Number Theory, pages 25-80. The Johns Hopkins University Press, 1989.
.[10] Crystalline cohomology on open varieties-results and conjectures. In The Grothendieck Festschrift, volume II, pages 219-248. Birkhauser, 1990.
.[11] Construction de représentations -adiques. Ann. Sci. de l'E.N.S., 15:547-608, 1982.
and .[12] -adic periods and -adic étale cohomology. In Current Trends in Arithmetical Algebraic Geometry, volume 67 of Contemporary Mathematics. American Mathematical Society, 1985.
and .[13] Sur quelques points d'algebre homologique. Tôhoku Math. J., 9:119-221, 1957.
.[14] Simple algebras with purely insperable splitting fields of exponenet . Trans. A. M. S., 79:477-489, 1955.
.[15] Semi-stable reduction and crystalline cohomology with logarithmic poles. Preprint, 1989.
and .[16] Complexe Cotangent et Déformations I, volume 239 of Lecture Notes in Mathematics. Springer Verlag, 1971.
.[17] Réduction semi-stable et décomposition de complexe de de Rham à coefficients. Duke Journal of Mathematics, 60(1): 139-185, 1990.
.[18] Cohomology of -gauges. in preparation.
.[19] On -adic vanishing cycles (application of ideas of fontaine-messing). Advanced Studies in Pure Mathematics 10, 1987 Algebraic Geometry, Sendai, 10:207-251, 1985.
.[20] Logarithmic structures of Fontaine-Illusie. In Jun-Ichi Igusa, editor, Algebraic Analysis, Geometry, and Number Theory. Johns Hopkins University Press, 1989.
.[21] Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin. Publications Mathématiques de l'I.H.E.S., 39:355-412, 1971.
.[22] Slope filtration of -crystals. Astérisque, 63:113-164, 1979.
.[23] Frobenius and the Hodge filtration-estimates. Annals of Mathematics, 98:58-95, 1973.
.[24] -crystals and Griffiths transversality. In Proceedings of the International Symposium on Algebraic Geometry, Kyoto 1977, pages 15-44. Kinokuniya Book-Store, Co., 1977.
.[25] Griffiths transversality in crystalline cohomology. Annals of Mathematics, 108:395-419, 1978.
.[26] A crystalline Torelli theorem for supersingular surfaces. In Michael Artin and John Tate, editors, Arithmetic and Geometry, volume II, pages 361-394. Birkhauser, 1983.
.[27] -isocrystals and de Rham cohomology II-convergent isocrystals. Duke Mathematical Journal, 51 (4):765-850, 1984.
.[28] On the Fourier coefficients of modular forms. to appear in Annales Scientifiques de l'Ecole Normale Supérieure.
.[29] Un scindage de lafiltrationde Hodge pour certaines variétés algébriques sur les corps locaux. Annals of Mathematics, 119:551-548, 1984.
.