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ABSTRACT

According to a theorem of Martio, Rickman and Väisälä, all nonconstant Cn/(n−2)-smooth quasiregular maps
in Rn, n ≥ 3, are local homeomorphisms. Bonk and Heinonen proved that the order of smoothness is sharp in R3. We
prove that the order of smoothness is sharp in R4. For each n ≥ 5 we construct a C1+ε(n)-smooth quasiregular map in Rn

with nonempty branch set.

1. Introduction

Recall that a continuous mapping f : D → Rn in the Sobolev space
W1,n

loc (D, Rn) is called K-quasiregular, K ≥ 1, if

| f ′(x)|n ≤ KJf (x), a.e. x ∈ D.(1.1)

Here n ≥ 2, D ⊂ Rn is a domain, | f ′(x)| is the operator norm of the differen-
tial of f , and Jf (x) = det f ′(x) denotes the Jacobian determinant. In the plane,
1-quasiregular maps are precisely analytic functions of a single complex variable.

Quasiregular mappings were first introduced and studied by Yu. G. Reshet-
nyak [18] under the name “mappings of bounded distortion”. A deep theorem
of Reshetnyak states that nonconstant quasiregular maps are discrete and open.
Quasiregular maps were subsequently developed by Martio, Rickman, Väisälä, and
their collaborators [15], [16]. See [19], [20] or [13] for a comprehensive account
of the theory.

The branch set Bf of a continuous, discrete, and open mapping f : D → Rn

is the closed set of points in D where f does not define a local homeomorphism.
By a theorem of Černavskĭı [4], [5], the topological dimensions of the branch set
and its image are equal and at most n − 2. On the other hand, if Bf is not
empty, then Λn−2( f (Bf )) > 0 by a theorem of Martio, Rickman and Väisälä [16];
moreover, Λn−2(Bf ) > 0 when n = 2 (this is trivial) and when n = 3 (a result of
Martio and Rickman [15]). Here Λr is the r-dimensional Hausdorff measure.

Branch sets of quasiregular mappings may exhibit complicated topological
structure and may contain, for example, many wild Cantor sets of classical geo-
metric topology [11], [21], [12], [10].
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Quasiregular mappings of R2 can be smooth without being locally homeo-
morphic. For example, f (z) = z2 has branch set Bf = {0}. When n ≥ 3, sufficiently
smooth nonconstant quasiregular mappings are local homeomorphisms. In fact

1.2. Theorem (Martio–Rickman–Väisälä). — Every nonconstant Cn/(n−2)-smooth quasi-

regular mapping must be locally homeomorphic when n ≥ 3.

A mapping g : D → Rn is Ck-smooth, k = 0, 1, 2, ..., if all partial derivatives
of the coordinate functions of g up to order k are continuous. If k ∈ (0,∞) is
not an integer, g is said to be Ck-smooth if g is C[k] and all partial derivatives of
the coordinate functions of g of order [k] are (k −[k])-Hölder continuous on each
compact subset of D.

Theorem 1.2 is essentially contained in [16]; an earlier version is due to
Church [6]. The proof of Theorem 1.2 in [20, p. 12] uses the Morse-Sard theorem
together with the discreteness and openness of quasiregular maps and a theorem
of Martio–Rickman–Väisälä in [16]. In his 1978 ICM address [30], Väisälä asked
whether the branch set of every C1-smooth quasiregular map in Rn, n ≥ 3, must
be empty.

Recently, Bonk and Heinonen [3] showed that the exponent n/(n−2) is sharp
when n = 3, and proved refined versions of Theorem 1.2 as well as a theorem of
Sarvas [22].

1.3. Theorem (Bonk–Heinonen [3]). — For every ε > 0 and every integer d ≥ 2,

there exists a C3−ε-smooth quasiregular mapping F : R3 → R3 of degree d whose branch set

BF is homeomorphic to R and has Hausdorff dimension 3 − δ(ε) with δ(ε) → 0 as ε → 0.

The map F has the Hölder property

C−1|x − y|3−ε′ ≤ |F(x) − F( y)| ≤ C|x − y|3−ε, ∀x, y ∈ BF, |x − y| ≤ 1,

for some 0 < ε′ ≤ ε and C > 1.

1.4. Theorem (Bonk–Heinonen [3]). — Given n ≥ 3 and K ≥ 1, there exist constants

λ = λ(n, K) > 0 and δ = δ(n, K) > 0 so that (i) the branch set of every K-quasiregular

mapping f : D → Rn has Hausdorff dimension at most n−λ, and (ii) every Cn/(n−2)−δ-smooth

K-quasiregular mapping f : D → Rn is locally homeomorphic.

We prove that Theorem 1.2 is sharp in R4.

1.5. Theorem. — For every ε > 0 and every integer d ≥ 2, there exists a C2−ε-smooth

quasiregular mapping F : R4 → R4 of degree d whose branch set BF is homeomorphic to R2

and has Hausdorff dimension 4 − 2ε. Moreover, the map F has the Hölder property

C−1|x − y|2−ε ≤ |F(x) − F( y)| ≤ C|x − y|2−ε, ∀x, y ∈ BF, |x − y| ≤ 1,

for some C > 1.
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The first step in Bonk and Heinonen’s proof of Theorem 1.3 is the construc-
tion of a quasiconformal mapping g in R3 with uniformly expanding behavior on
a line L. Then g is approximated off L by a C∞-smooth quasiconformal mapping
G by a smoothing procedure of Kiikka [14]. The map G−1 has the correct order
of smoothness on R3; postcomposition with a winding map produces the desired
quasiregular map F.

As explained in [3], it is not clear how to construct a quasiconformal map-
ping g in Rn, n ≥ 4, which is uniformly expanding on a codimension two linear
subspace. Moreover, the smoothing procedure of Kiikka works in dimensions two
and three only. Such approximation of general quasiconformal maps can fail to
exist in dimensions higher than five [24], and is an open problem in dimension
four [8].

The branch set for our map F in Theorem 1.5 is the product Γ × Γ of
an infinite snowflake curve with itself. There is a canonical map f from R2

to Γ × Γ, which can be written as the composition f = fm−1 ◦ · · · ◦ f0 of
s-quasisymmetric maps with small s. These are quasisymmetric maps which are
locally uniformly well-approximated by similarities. Following an extension pro-
cess developed by Tukia and Väisälä [27], [31] for s-quasisymmetric maps with
small s, we extend the maps fj to quasiconformal maps gj on R4. Smoothing
off the products of snowflake curves via convolution with a variable kernel (see,
e.g., [9]) produces smooth quasiconformal maps Gj . The composition of a wind-
ing map with the inverse of Gm−1 ◦ Gm−2 ◦ · · · ◦ G0 yields the desired quasiregular
map F.

In general, convolution does not preserve injectivity or quasiconformality. To
obtain injectivity, quasiconformality, and the correct order of smoothness up to
and including Γ × Γ, convolution must be applied in conjunction with the special
constructions of Tukia and Väisälä.

Our method does not apply to Rn, n ≥ 5, unless there exists an appropriate
embedding

Γ × · · · × Γ
︸ ︷︷ ︸

n−2

↪→ Rn

for some suitable snowflake curve Γ.
Recent results of Bishop [2] and David–Toro [7] provide snowflake-type em-

beddings Rn−2 ↪→ Σ ⊂ Rn−1 via global quasiconformal mappings of Rn−1; by the
Tukia–Väisälä extension theorem [26] these quasiconformal maps of Rn−1 can be
extended to quasiconformal maps of Rn. The resulting codimension two snowflake-
type surfaces Σ ⊂ Rn can be realized as the branch sets of C1+ε(n)-smooth branched
quasiregular maps in Rn, n ≥ 5. Thus we answer Väisälä’s question in the negative
in all dimensions.
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1.6. Theorem. — Given integers n ≥ 5 and d ≥ 2, there exists ε = ε(n) > 0
(independent of d) and a C1+ε-smooth quasiregular map F : Rn → Rn of degree d whose

branch set BF is homeomorphic to Rn−2. Moreover

C−1|x − y|1+ε ≤ |F(x) − F( y)| ≤ C|x − y|1+ε, ∀x, y ∈ BF, |x − y| ≤ 1,

for some C(n) > 1.

In Sect. 2 we recall some preliminary material. In Sect. 3 we introduce
a one-parameter family of snowflake surfaces in R4 which are mutually related
by canonical quasisymmetric homeomorphisms. In Sect. 4 we extend these home-
omorphisms to quasiconformal maps of R4, and in Sect. 5 we construct smooth
approximations to the resulting maps via convolutions. Finally, Sect. 6 contains the
proof of Theorem 1.5 and Sect. 7 contains the proof of Theorem 1.6.

1.7. Acknowledgements

The authors would like to thank Mario Bonk, Juha Heinonen, and Seppo
Rickman for suggesting the problem of branch sets of smooth quasiregular maps
on various occasions, and to acknowledge the referee for a careful reading of
the paper and extensive comments which clarified both the exposition and the
mathematics.

2. Preliminaries

2.1. Notation

We write |x − y| for the distance between points x, y in any metric space,
and we write B(x, r) for the open ball centered at x of radius r. We denote by
Rn the n-dimensional Euclidean space and by e1, ..., en the standard basis of Rn.
For x and y in Rn we write [x, y] for the closed line segment with endpoints x
and y. For 0 ≤ s ≤ n we write Λs for the s-dimensional Hausdorff measure. We
reserve the notation “dim” for the Hausdorff dimension.

For a set A ⊂ Rn and f : A → R we write ‖ f ‖A := sup{| f (x)| : x ∈ A}.
A simplex in Rn is the closed convex hull of a set of n + 1 points in gen-

breakeral position. We write ∆0 for the set of vertices of a simplex ∆.
For x ∈ R we write [x] for the greatest integer less than or equal to x.
We denote by C, c, ... various positive constants whose values may change

from line to line.
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2.2. s-Quasisymmetric maps

An embedding f : X → Y of metric spaces is called s-quasisymmetric, s > 0, if
f is quasisymmetric and satisfies

| f (a) − f (x)| ≤ (t + s)| f (b) − f (x)|
whenever a, b, x ∈ X with |a − x| ≤ t|b − x| and t ≤ 1/s. Recall that an embedding
f : X → Y is quasisymmetric (for short, QS ) if there is a homeomorphism η :
[0,∞) → [0,∞) so that

| f (a) − f (x)| ≤ η(t)| f (b) − f (x)|
whenever a, b, x ∈ X with |a − x| ≤ t|b − x|. We also say that f is η-QS.

Quasisymmetric maps on the real line were introduced by Beurling and
Ahlfors [1] as the boundary functions for quasiconformal homeomorphisms of the
upper half plane. A systematic study of quasisymmetric maps in metric spaces was
begun by Tukia and Väisälä in [25]. s-Quasisymmetric maps were introduced by
Tukia and Väisälä in [27] for the study of the extension problem for quasisym-
metric maps.

In Euclidean spaces, s-quasisymmetric maps may be characterized as quasi-
symmetric maps which are locally uniformly close to similarities. A map
h : Rp → Rn is affine if it is of the form h(x) = λB(x) + b, where λ > 0, b ∈ Rn,
and B is an n × p matrix. If h is affine and B is orthogonal, we say that h is
a similarity; in this case we write L(h) = λ.

In [27] and [31], Tukia and Väisälä proved the following theorems.

2.3. Theorem (Väisälä [31], Theorem 3.1). — Let 1 ≤ p ≤ n be integers, let A
be a compact set in Rp, and let f : A → Rn be an s-QS map. Then there is a similarity

h : Rp → Rn so that

‖h − f ‖A ≤ �(s, p)L(h) diam A,

where s �→ �(s, p) is an increasing function with �(s, p) → 0 as s → 0.

2.4. Theorem (Väisälä [31], Theorem 3.9). — Let 1 ≤ p ≤ n be integers, let

0 < � ≤ 1
25 , and let f : X → Rn be a map from a connected set X ⊂ Rp such that for

every bounded A ⊂ X, there is a similarity h : Rp → Rn with

‖h − f ‖A ≤ �L(h) diam A.

Then f is s-QS, where s = s(�) → 0 as � → 0.

2.5. Theorem (Tukia–Väisälä [27], Theorem 2.6). — Let f : Rn → Rn be an

embedding, n ≥ 2. If f is s-QS, then f is K-quasiconformal, where K = K(s, n) → 1 as

s → 0. Conversely, if f is K-quasiconformal, then f is s-QS where s = s(K, n) → 0 as

K → 1. Moreover, f (Rn) = Rn.
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2.6. The quasisymmetric extension property

A set A ⊂ Rn has the quasisymmetric extension property (QSEP ) if there is s0 > 0
so that if 0 < s ≤ s0, then every s-QS f : A → Rn has an s1-QS extension
g : Rn → Rn, where s1 = s1(s, n, A) → 0 as s → 0. See [31, p. 239].

2.7. Theorem (Tukia–Väisälä [27], Theorem 5.4). — Let 1 ≤ p < n be integers.

Then Rp has the quasisymmetric extension property in Rn. The parameter s0 may be chosen

depending only on n.

Following Väisälä [31], we say that a set A ⊂ Rp is thick in Rp if there are
constants r0 > 0 and β > 0 so that if 0 < r ≤ r0 and y ∈ A, then there is a simplex
∆ in Rp with ∆0 ⊂ A ∩ B( y, r) and Λp(∆) ≥ βr p.

The Cantor ternary set is thick in R1, while the von Koch snowflake curve
is thick in R2 (see Proposition 3.5(a)). Thickness is not bi-Lipschitz invariant.

2.8. Theorem (Väisälä [31], Theorem 6.2). — Suppose that A is closed and thick

in Rp, 1 ≤ p ≤ n are integers, and that either A or Rp \ A is bounded. Then A has the

quasisymmetric extension property in Rn. Moreover, s0 = s0(A, n) depends only on n, diam(∂A)

and the thickness parameters r0 and β.

2.9. Whitney triangulations

Let A be a closed, nonempty, proper subset of Rn, and let K be a Whitney
decomposition of Rn \ A into closed dyadic n-cubes (see, e.g., [23, p. 16]). Follow-
ing [31, p. 253], we define a triangulation W of K as follows. Let W 0 = K 0

consist of all vertices of K . Suppose that a simplicial subdivision W p of the
p-skeleton K p of K is given. Let Q be a (p + 1)-cube of K , and let vQ be the
center of Q . Since ∂Q is the underlying space of a subcomplex LQ of W p, the
cone construction vQ LQ gives a simplicial subdivision of Q , and defines W p+1.

The complex W is called a Whitney triangulation of Rn \ A.

2.10. Remark. — We assume, as we may, that

1
9

≤ diam Q
dist(Q , A)

≤ 1
4

for all Q ∈ K . Under this assumption, and by the construction, the simplices of
W belong to a finite number of similarity classes. Therefore there exists a constant
C1 > 1 so that each n-simplex σ in W contains a ball of radius C−1

1 diam σ .
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2.11. Regularized distance functions

Let A be a closed, nonempty, and proper subset of Rn, and let W be
a Whitney triangulation of Rn \ A. Let δA be a positive C∞-smooth function on
Rn \ A so that

1
104C1

≤ δA(x)
dist(x, A)

≤ 1
102C1

,(2.12)

∣

∣

∣

∣

∂δA

∂xj
(x)

∣

∣

∣

∣
≤ C2,(2.13)

and
∣

∣

∣

∣

∂2δA

∂xi∂xj
(x)

∣

∣

∣

∣
≤ C2

δA(x)
(2.14)

for all x /∈ A, where C1 is the value from Remark 2.10 and C2 is a constant
depending only on n. See, for example, [23, p. 170].

2.15. Remark. — Each n-simplex σ ∈ W contains a ball centered at some
point xσ of radius 2δA(xσ ).

2.16. Smoothing with a variable kernel

Fix a real valued function ϕ in C∞(Rn) which is nonnegative, radial, sup-
ported in B(0, 1), and satisfies

∫

Rn ϕ(x) dx = 1 and

sup
Rn

∣

∣

∣

∣

∂ϕ

∂xi

∣

∣

∣

∣
, sup

Rn

∣

∣

∣

∣

∂2ϕ

∂xi∂xj

∣

∣

∣

∣
≤ C3(2.17)

for some C3 depending at most on n.

2.18. Lemma. — Let f (x) = Bx + b be an affine map with B ∈ Rn×n and b ∈ Rn.

Then

f (x) =
∫

Rn
f ( y)ϕ(x − y) dy.

Proof. — Since ϕ is radial,
∫

Rn
(By + b)ϕ(x − y) dy =

∫

Rn
(−By + Bx + b)ϕ( y) dy = Bx + b.
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2.19. Proposition. — Let A be a closed, nonempty, proper subset of Rn, and let

δ ≡ δA be the regularized distance function on Rn \ A from the previous paragraph. Let u be

a real-valued function on Rn, and denote by Osc(u, x, r) the oscillation of u on B(x, r). Set

U(x) =
{

1
δn(x)

∫

Rn u( y)ϕ
( x−y

δ(x)

)

dy, x ∈ Rn \ A,

u(x), x ∈ A.

Then

(i) U is C∞ on Rn \ A;

(ii) if u is continuous, then U is continuous;

(iii) for x ∈ Rn \ A,
∣

∣

∣

∣

∂U
∂xj

(x)
∣

∣

∣

∣
≤ C4

δ(x)
Osc(u, x, δ(x))(2.20)

and
∣

∣

∣

∣

∂2U
∂xi∂xj

(x)
∣

∣

∣

∣
≤ C5

δ2(x)
Osc(u, x, δ(x)),(2.21)

where C4 and C5 are constants depending only on n.

Smoothing by convolution with a variable kernel has occurred in the litera-
ture, cf. Arakelyan’s approximation theorems [9].

The proof of Proposition 2.19 is by direct calculation and is omitted.

3. Quasisymmetrically equivalent snowflake surfaces in R4

In this section, we consider snowflake surfaces Γα × Γα in R4, 1 ≤ α < 2,
where Γα is the periodic extension of a standard von Koch snowflake segment γ α

in R2. For each α ∈ [1, 2), Γα×Γα is canonically homeomorphic with Γ1×Γ1 = R2.
We show that this homeomorphism is quasisymmetric, and factors as a composition
of s-quasisymmetric maps. Moreover, Γα × Γα is thick in R4 for each α > 1, with
parameters r0 ≡ 1 and β = β(α) ↘ 0 as α → 1.

3.1. von Koch snowflake curves in R2

Fix 1 ≤ α < 2, and define γ α to be the von Koch-type snowflake curve,
homeomorphic with γ 1 = [0, 1], consisting of four self-similar pieces scaled by
factor

r = rα = 4−1/α ∈ [1/4, 1/2).
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Precisely, let

θ = θα = 2 arccos(2−1+1/α) ∈ [0, π/2),

(note that r + r cos θ = 1
2 ), and define contractive similarities ϕα

i : R2 → R2 by

ϕα
1 (x) = rx, ϕα

2(x) = Rθ(rx) + re1,

ϕα
3 (x) = R−θ(rx) + 1

2
e1 + r sin θe2, ϕα

4(x) = rx + (1 − r)e1,
(3.2)

where Rθ : R2 → R2 is given by

Rθ(x1, x2) = (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ).

The von Koch snowflake curve γ α is the invariant set for the iterated func-
tion system Fα = {ϕα

1 , ϕ
α
2 , ϕ

α
3 , ϕ

α
4}, i.e., the unique compact subset of R2 verifying

γ α =
4

⋃

i=1

ϕα
i (γ

α).

Since Fα satisfies the open set condition [17],

dim γ α = log 4
log 1/r

= α.

Denote by

Γα =
⋃

n∈Z

(

γ α + ne1

)

the equivariant extension of γ α with respect to the action of Z on R2 by trans-
lation in the first coordinate.

We write S = {1, 2, 3, 4}, and we denote by Σ = SN, respectively S∗, the
space of all infinite, respectively finite, words with letters drawn from S. When Σ

is endowed with the product topology arising from the discrete topology on S, the
map πα : Σ → γ α given by

πα(w) = lim
m→∞

ϕα
w1

◦ · · · ◦ ϕα
wm

(0), w = (w1, ..., wm...),

becomes a continuous map of compact sets. Thus the maps

f α′
α := πα′ ◦ (πα)−1

are well-defined homeomorphisms from γ α to γ α′
, 1 ≤ α, α′ < 2. We call f α′

α the
canonical homeomorphism from γ α to γ α′

. Observe that f α′
α extends to a homeomor-

phism of Γα onto Γα′
which is equivariant with respect to the action of Z:

f α′
α (x1, x2) = ([x1], 0) + f α′

α (x1 − [x1], x2).

For w = (w1, ..., wm) ∈ S∗ we let ϕα
w := ϕα

w1
◦ · · · ◦ ϕα

wm
. We call the sets

ϕα
w(γ

α) + n · e1, w ∈ S∗, n ∈ Z,

the 4-adic similarity pieces of Γα; if the word w has length m we say that such a set
is of generation m.
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3.3. Snowflake surfaces in R4

Consider the product sets γ α × γ α and Γα × Γα in R4. Define

Fα′
α = f α′

α × f α′
α : Γα × Γα → Γα′ × Γα′

and note that the image of γ α × γ α under Fα′
α is γ α′ × γ α′

.

3.4. Remark. — Observe that Γα × Γα and Fα′
α are equivariant with respect

to the action of Z × Z on R4 by translation in the first and third coordinates.
That is,

Γα × Γα + (i, 0, j, 0) = Γα × Γα

and

Fα′
α (x1 + i, x2, x3 + j, x4) = (i, 0, j, 0) + Fα′

α (x1, x2, x3, x4)

for all (i, j) ∈ Z × Z and all (x1, x2, x3, x4) ∈ R4. For the remainder of the paper,
we use the term “equivariant” to refer to this specific group action.

Our goal in this section is to prove the following proposition.

3.5. Proposition.

(a) For each α ∈ (1, 2), Γα×Γα is thick in R4 with parameters r0 ≡ 1 and β(α) → 0
as α → 1.

(b) For each α, α′ ∈ [1, 2), there exists C = C(α, α′) < ∞ so that

C−1|x − y|α/α′ ≤ ∣

∣Fα′
α (x) − Fα′

α ( y)
∣

∣ ≤ C|x − y|α/α′
(3.6)

for all x, y ∈ Γα × Γα, |x − y| ≤ 1.

(c) Given s > 0 and α ∈ [1, 2), there exists δ(s, α) > 0 so that for each α′ ∈
(α − δ(s, α), α + δ(s, α)) ∩ [1, 2), the canonical homeomorphism Fα′

α is s-quasi-

symmetric. Furthermore, δ(s, α) can be chosen to be continuous in α.

In the proof of Proposition 3.5(c) we use the following lemmas. For any
n ≥ 1, we denote by id the identity map on Rn.

3.7. Lemma. — ‖ id −f α′
α ‖Γα and ‖ id −Fα′

α ‖Γα×Γα are continuous in α and α′, and

approach zero as α′ → α.

This lemma is obvious; we omit the proof (but see Sect. 5 of [28]).
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3.8. Lemma. — Let α, α′ ∈ [1, 2), and assume that J ⊂ Γα is either a 4-adic

similarity piece of Γα or the union of two adjacent 4-adic similarity pieces of generation m.

Then there is a similarity hJ : R2 → R2 with

L(hJ) = 4−(1/α′−1/α)m(3.9)

so that
∥

∥ f α′
α − hJ

∥

∥

J
≤ �(α, α′)L(hJ) diam J,(3.10)

where �(α, α′) can be chosen to be continuous in α and α′, with �(α, α′) → 0 as α′ → α.

Proof. — The proof is essentially contained in [28]; we include a sketch for
completeness. We consider two cases:

Case 1. — J = ϕα
w(γ

1) + ne1 for some w ∈ S∗ and n ∈ Z;

Case 2. — J = (ϕα
wL

(γ 1) + nLe1) ∪ (ϕα
wR

(γ 1) + nRe1) for some wL, wR ∈ S∗ and
nL, nR ∈ Z, nL ≤ nR ≤ nL + 1.

By equivariance, we may assume that n = 0 (case 1) or that nL = 0 (case 2).
First, we consider case 1. Let

hJ = ϕα′
w ◦ (

ϕα
w

)−1

and observe that L(hJ) is given by the formula in (3.9). Since

f α′
α = ϕα′

w ◦ f α′
α ◦ (

ϕα
w

)−1

for all words w ∈ S∗, we have by Lemma 3.7 that
∥

∥ f α′
α − hJ

∥

∥

J
= (rα′)m

∥

∥ f α′
α − id

∥

∥

γα ≤ c(α, α′)4−(1/α′−1/α)m diam J

for some c(α, α′) continuous in α and α′ with c(α, α′) → 0 as α′ → α. (Recall
that rα′ = 4−1/α′

and observe that diam J is comparable with (rα)m = 4−m/α.)
Next we consider case 2. Let JL = ϕα

wL
(γ 1) + nLe1 and JR = ϕα

wR
(γ 1) + nRe1.

The estimates
∥

∥ f α′
α − ϕα′

wL
◦ (

ϕα
wL

)−1∥
∥

JL
≤ c(α, α′)4−(1/α′−1/α)m diam J

and
∥

∥ f α′
α − ϕα

wR
◦ (

ϕα
wR

)−1∥
∥

JR
≤ c(α, α′)4−(1/α′−1/α)m diam J

hold as in case 1. Let

hJ = ϕα′
wL

◦ (

ϕα
wL

)−1
.(3.11)

We distinguish two subcases: (i) nR = 0, and (ii) nR = 1.
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To relate wR to wL on JR, we have in case 2(i),
∥

∥ϕα′
wL

◦ (

ϕα
wL

)−1 − ϕα′
wR

◦ (

ϕα
wR

)−1∥
∥

JR
≤ c′(α, α′)4−(1/α′−1/α)m diam J(3.12)

for some c′(α, α′) continuous in α and α′ with c′(α, α′) → 0 as α′ → α. The
inequality in (3.12) is a special case of an estimate which appears in a general
theorem on s-quasisymmetry of the canonical homeomorphism between invariant
sets of iterated function systems. See Sect. 5 of [28].

In the final case 2(ii), we have
∥

∥ϕα′
wL

◦ (

ϕα
wL

)−1 − (

e1 + ϕα′
wR

) ◦ (

e1 + ϕα
wR

)−1∥
∥

JR

≤ c′(α, α′)4−(1/α′−1/α)m diam J

by equivariance. We obtain (3.10) with �(α, α′) = max{c(α, α′), c′(α, α′)}. This com-
pletes the proof of Lemma 3.8.

Proof of Proposition 3.5. — For part (a), see Väisälä [31, Example 6.13]. To
prove (b), it suffices to show that

∣

∣ f α′
α (x) − f α′

α ( y)
∣

∣ � |x − y|α/α′
(3.13)

for fixed α, α′ ∈ [1, 2) and all x, y ∈ Γα, |x−y| ≤ 1. The notation A � B means that
there exists a constant C, depending at most on α and α′, so that C−1B ≤ A ≤ CB.

We write f = f α′
α and let x, y ∈ Γα, |x − y| ≤ 1, x �= y. There is a set J which

is either a 4-adic similarity piece of generation m on Γα or the union of two such
adjacent pieces, so that x, y ∈ J and diam J � |x − y|. Then J′ = f ( J) is either a
4-adic similarity piece of generation m on Γα′

or the union of two adjacent pieces,
f (x), f ( y) ∈ J′, and diam J′ � | f (x) − f ( y)|. Hence

| f (x) − f ( y)| � diam J′ � (rα′)m = (rα)mα/α′

� (diam J)α/α′ � |x − y|α/α′
.

This completes the proof of (3.13).
To verify part (c), we will show that the hypotheses of Theorem 2.4 hold

for f = Fα′
α and X = Γα ×Γα, with � → 0 as α′ → α. Thus consider the canonical

homeomorphism Fα′
α : Γα × Γα → Γα′ × Γα′

. Suppose that A is a bounded set in
Γα × Γα. If diam A ≥ 1 then the hypotheses of Theorem 2.4 hold with h = id, if
α′ is sufficiently close to α. See Lemma 3.7. Otherwise, choose J1 × J2 ⊃ A subject
to the following constraints:

(i) each factor Ji, i = 1, 2, is either a 4-adic similarity piece of Γα or the
union of two such 4-adic similarity pieces, and all of the similarity pieces
comprising J1 and J2 are of the same generation;

(ii) diam J1 × J2 ≤ 8
√

2 sec θα diam A.
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By Lemma 3.8 there exist similarities hJ1, hJ2 : R2 → R2 with L(hJ1) = L(hJ2) =: L
and

∥

∥ f α′
α − hJi

∥

∥

Ji
≤ �(α, α′)L diam Ji(3.14)

for some �(α, α′) continuous in α and α′ with �(α, α′) → 0 as α′ → α. The
product h = hJ1 × hJ2 is a similarity mapping of R4 with L(h) = L, and

∥

∥Fα′
α − h

∥

∥

J1×J2
≤ √

2 · max
{∥

∥ f α′
α − hJ1

∥

∥

J1
,
∥

∥ f α′
α − hJ2

∥

∥

J2

}

≤ 16 sec θα�(α, α′)L(h) diam A

by (3.14) and constraint (ii) above. By Theorem 2.4, Fα′
α is s-QS for α′ sufficiently

close to α, with s → 0 as α′ → α. The existence of δ(s, α) > 0 as in the
statement is obvious. Continuity of δ(s, α) in α follows from continuity of �(α, α′)
and continuity of the function s(�) in Theorem 2.4.

4. Quasiconformal extension of equivariant s-quasisymmetric maps

For α ∈ [1, 2) we consider the snowflake surface Γα × Γα from the previous
section. Set

I = [0, 1] × [−2, 2] × [0, 1] × [−2, 2],

J = R × (−1, 1) × R × (−1, 1),

and

Aα = Γα × Γα ∩ [−4, 4] × R × [−4, 4] × R.

Observe that Γα × Γα ⊂ R × [0,
√

2/2] × R × [0,
√

2/2] and that Aα ⊂ B(0, 6).
Fix a Whitney triangulation W α of R4 \ Γα × Γα and a Whitney triangu-

lation ˜W α of R4 \ Aα constructed by the procedures in Sect. 2. We require in
addition the following:

– The interior of any n-simplex in W α or ˜W α does not meet ∂I;
– (Common triangulations for R4 \ Γα × Γα and R4 \ Aα near the origin) For

each α ∈ [1, 2) and each n-simplex σ ⊂ I, we have σ ∈ W α if and only
if σ ∈ ˜W α.

– (Equivariant simplices) For each α ∈ [1, 2), if σ ∈ W α is an n-simplex
with σ ⊂ I, then σ + (i, 0, j, 0) ∈ W α for all i, j ∈ Z, and if σ ∈ ˜W α

is an n-simplex with σ ⊂ I, then σ + (i, 0, j, 0) ∈ ˜W α for all integers
−2 ≤ i, j ≤ 1;
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– (Congruent simplices away from the snowflake surface) The triangulations
W α, 1 ≤ α < 2, all contain a common subcollection W ∗ of n-simplices
satisfying

⋃

{σ : σ ∈ W ∗} = R4 \ J.

4.1. Extension

By Theorem 2.7, Γ1 × Γ1 = R2 has the QSEP in R4. When 1 < α < 2,
Γα × Γα is thick in R4. Since neither Γα × Γα nor its complement is bounded,
Theorem 2.8 does not apply directly. However, the equivariance of the snowflake
surfaces Γα × Γα and the corresponding canonical homeomorphisms Fα′

α substitutes
for the assumption of boundedness. It suffices to establish the following proposition.

4.2. Proposition. — For each α ∈ [1, 2) there exists s0 = s0(α) > 0 so that every

equivariant s-QS map f : Γα × Γα → R4 with 0 < s ≤ s0 has an equivariant s1-QS

extension g : R4 → R4, where s1 = s1(s, α) → 0 as s → 0. In fact, g is K-QC, with

K = K(s, α) → 1 as s → 0.

Recall that the term “equivariant” refers to the specific group action in Re-
mark 3.4.

In addition to the conclusion of Proposition 4.2, the process of constructing
g and specific estimates which arise therein, play an essential role in our proof of
Theorem 1.5. We emphasize that aside from the use of equivariance, the ideas
in the following construction, and in particular, in the proof of Lemma 4.3, are
due to Tukia and Väisälä. We follow closely the steps and notation from [27]
and [31], and choose sets and constants that are, while not always the same, at
least comparable to those from these references.

Fix α ∈ [1, 2). Following [27] and [31], we introduce an auxiliary parameter
q > 0. To prove the extension property in Proposition 4.2, it suffices to find
q0(α) ∈ (0, 1) and, for each q ∈ (0, q0(α)] a number s = s(q, α) > 0 so that
every equivariant s-QS map f : Γα × Γα → R4 has an equivariant s1-QS extension
g : R4 → R4 with s1 = s1(q, α) > 0 and s(q, α) ≤ s1(q, α) → 0 as q → 0.

We will prove the following lemma on extension of the s(q, α)-quasisymmetric
map f : Γα × Γα → R4. Here and henceforth we abbreviate

dα(x) := dist(x,Γα × Γα).

4.3. Lemma. — Let 0 < q < 1/10, let b = q−1/3 if α > 1 and b = 20 if α = 1,

and assume that s = s(q, α) is sufficiently small. Then to each x ∈ R4 \ Γα × Γα there

corresponds a similarity hα
x : R4 → R4 so that the estimates

∥

∥hα
x − hα

y

∥

∥

B( y,dα( y))
≤ M(α)q2/3dα(x)L

(

hα
x

)

(4.4)
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and

L
(

hα
y

)

dα( y) ≤ M(α)bL
(

hα
x

)

dα(x)(4.5)

hold for all x, y ∈ R4 \ Γα × Γα satisfying | y − x| < bdα(x). Moreover, there exists an

extension g of f to R4 so that g is affine on each n-simplex in W α, and that for each

x ∈ R4 \ Γα × Γα and each n-simplex σ in W α containing x,

∥

∥ g − hα
x

∥

∥

B(x,bdα(x))
≤ M(α)q2/3bdα(x)L

(

hα
x

)

(4.6)

and

∥

∥ g − hα
x

∥

∥

σ
≤ M(α)q2/3r(σ)L

(

hα
x

)

,(4.7)

where r(σ) is the radius of the largest ball contained in σ . Here M(α) > 1 denotes a constant

depending only on α.

Compare [27, pp. 165–169] and [31, pp. 264–268].

Proof. — First, consider the case 1 < α < 2. Let 0 < q < 1/10 and b = q−1/3.
We require s sufficiently small so that �(s, 4) < q2/12 in Theorem 2.3. After
replacing f by h−1 ◦ f for a suitable similarity h, we get

‖ id −f ‖Aα < q2.

Assign, to each x ∈ R4 \Γα ×Γα, a set Q (x) := B(x, bdα(x))∩Γα ×Γα and a similar-
ity hα

x : R4 → R4 so that hα
x = id if dα(x) ≥ q and

∥

∥hα
x − f

∥

∥

Q (x)
≤ �(s)L

(

hα
x

)

diam Q (x)

if dα(x) < q. We require in addition that

hα
x is equivariant in x,(4.8)

i.e., hα
x = hα

x′ whenever x′ − x = (i, 0, j, 0) for some integers i and j. The existence
of hα

x follows from Theorem 2.3, the equivariance of the map f and the simplices
in W α, and the small value of q. We write �(s) in place of �(s, 4).

Define an extension g of f as follows. At each vertex v of an n-simplex
σ ∈ W α, set

g(v) = hα
v (v),

extend g to R4 \ Γα × Γα so that g is affine on each n-simplex in W α, and let
g|Γα×Γα = f . Observe that g = id on {dα > 2q} ⊃ R4 \ J, and that g is equivariant.
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The arguments of Väisälä for Theorem 2.8 cannot be applied directly to
establish the quasiconformality of g since Γα × Γα is unbounded. However, the
equivariance of the construction permits us to restrict our attention to the bounded
set Aα ⊂ Γα × Γα, where the results of Theorem 2.8 can be applied.

Let f̃ = f |Aα . Extend f̃ from Aα to R4 by the same procedure. To each
x ∈ R4 \ Aα, assign a set Q̃ (x) = B(x, bdα(x)) ∩ Aα and a similarity h̃α

x : R4 → R4

so that h̃α
x = id if dist(x, Aα) ≥ q and

∥

∥h̃α
x − f

∥

∥

Q̃ (x)
≤ �(s)L

(

h̃α
x

)

diam Q̃ (x)

if dist(x, Aα) < q. The common triangulations for R4 \ Γα × Γα and R4 \ Aα in I
permit us to require in addition that

h̃α
x = hα

x(4.9)

for all x with max{|x|1, |x|3} ≤ 2.
As in the previous paragraph, define g̃(v) = h̃α

v (v) at each vertex v of an
n-simplex σ ∈ ˜W α, and extend g̃ affinely to all of σ . Conditions (4.8) and (4.9)
ensure that

g̃(x1 + i, x2, x3 + j, x4) = g̃(x1, x2, x3, x4) + (i, 0, j, 0)(4.10)

whenever 0 ≤ x1, x3 ≤ 1 and i, j ∈ {−2,−1, 0, 1}, and that

g(x1, x2, x3, x4) = g̃(x1, x2, x3, x4)(4.11)

whenever max{|x1|, |x3|} ≤ 2.
Because Aα is thick and bounded, it follows from the proof of Theorem 2.8

in [31] (see, in particular, the proofs of equations (6.3), (6.7), (6.8) and (6.9) therein)
that functions M(α) and s = s(q, α) can be chosen so that the estimates (4.4)–(4.7)
hold for x, y ∈ R4 \ Aα, with h̃α

x , h̃α
y , g̃ and dist(x, Aα) in place of hα

x , hα
y , g and

dα(x). Then we obtain (4.4)–(4.7) as stated for α ∈ (1, 2) and sufficiently small s by
(4.11). The function M(α) may be taken to be continuous and decreasing in the
thickness constant β(α), thus in α, while s(q, α) may be taken to be continuous
in α, and increasing in q for fixed α.

Now assume α = 1. We follow the notation and constructions from Sect. 5
of [27]. Assign, to each dyadic square Q ⊂ R2, a similarity uQ : R2 → R4 so that

‖uQ − f ‖Q ≤ �(s)L(uQ ) diam Q ;
the existence of �(s) follows from Theorem 2.3. When {uQ } are chosen following
certain additional rules, they can be extended to similarities {hQ } from R4 to R4

so that
∥

∥h1
Q − h1

Q ′
∥

∥

ZQ
≤ ε(s)L(uQ ) diam Q
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for all dyadic squares Q and Q ′ satisfying Q ∩ Q ′ �= ∅ and

1/2 ≤ diam Q / diam Q ′ ≤ 2,

where ZQ is the cube in R4 concentric with Q of diameter b diam Q and edges
parallel to the coordinate axes. (To avoid lengthy definition, the set ZQ described
in the previous sentence is not the same as that in [27, p. 168], however, they
both contain Q in their center half and have comparable diameters.) The function
ε(s) is derived from �(s) and satisfies lims→0 ε(s) = 0. Proper choice of the planar
similarities {uQ } and their extensions to similarities {hQ } on R4 requires consider-
able work. See [27, pp. 159–163]. Finally, to each x ∈ R4 \ R2, assign a dyadic
square Q (x) ⊂ R2 following certain rules (as in pp. 164–169 of [27]). In particular,
we require

1 ≤ diam Q (x)
dist(x, R2)

≤ 2

for all such x. Set h1
x = hQ (x).

As before, define g(v) = h1
v (v) at each vertex v on an n-simplex σ ∈ W 1,

extend g to be affine on each such σ , and let g = f on R2. Now it follows from
the proof of Theorem 2.7 in [27] (see in particular equations (5.9) and (5.10)) that
s = s(q, 1) and hence also �(s) and ε(s) can be chosen small enough so that (4.4),
(4.6) and (4.7) hold with α = 1. The proof of the first inequality in [31, (6.7)]
can be reproduced to give (4.5). This completes the proof of Lemma 4.3.

4.12. Constants

Let us pause to discuss the dependence of the various constants that have
arisen. Recall that the constants Ci, 1 ≤ i ≤ 5, from Remark 2.10, (2.13), (2.14),
(2.17), (2.20) and (2.21) depend only on the dimension n = 4, and hence are
absolute constants.

When 1 < α < 2, M(α) depends on n = 4, on the diameter of Aα, and on
the numbers r0 = 1 and β(α) describing the thickness of Γα × Γα. It is important
to observe that M(α) depends only on α, and is continuous and decreasing on
the interval (1, 2). In fact M(α) → ∞ as α → 1.

The constant M(1) is derived from a different argument (Theorem 2.7) where
thickness is not used. In fact, M(1) depends on the dimension n = 4 only, and
hence is an absolute constant.

We choose

q0(α) = min
{(

1010C1C4C5M(α)
)−6

,
(

K0(4)1/6 − 1
)3(

106C1C4M(α)
)−3}

(4.13)
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continuous and increasing in α, and assume from now on that 0 < q < q0(α), thus

1010C1C4C5M(α)q1/3 < q1/6(4.14)

and
(

1 + 106C1C4M(α)q1/3
)6

< K0(4).(4.15)

Here K0(n) is the constant in Theorem 5.3.
We reiterate that the functions s(q, α) and s1(q, α) are chosen to be continu-

ous with respect to α and increasing with respect to q, with s(q, α) ≤ s1(q, α) → 0
as q → 0. For fixed α, the inverse q = q(s, α) of s = s(q, α) is an increasing
function of s, with q(s, α) → 0 as s → 0. We define

s0(α) = s(q0(α), α)(4.16)

and observe that s0(α) is continuous on the interval (1, 2) by the preceding re-
marks.

4.17. Lemma. — The map g defined in Lemma 4.3 is a sense preserving quasicon-

formal map of R4, whose linear dilatation H( g) satisfies

H( g) ≤ (1 + 2M(α)q2/3)2(4.18)

a.e. in R4.

For the definition of the linear dilatation, see [29, Definition 22.2].
Lemma 4.17 for g (when α = 1) and for g̃ (when 1 < α < 2) can be proved

by following the proofs of Theorems 2.7 and 2.8, together with Theorem 2.5.
Lemma 4.17 then holds for g (when 1 < α < 2) by the equivariance, and the fact
that g and g̃ coincide on {x : |x1| ≤ 2 and |x3| ≤ 2}.

Let us sketch the proof of Lemma 4.17. As in the proofs of Theorems 2.7
and 2.8, the continuity of g is straightforward, and the sense preservation, in-
jectivity and surjectivity can be deduced from the estimates in Lemma 4.3 and
topological considerations.

On each n-simplex σ ∈ W α, g is affine. It follows from (4.7) and Lemma 4.19
below that the linear dilatation H( g)(x) is bounded by (1 + 2M(α)q2/3)2 on the
union of the interiors of the n-simplices in W α. Observing that the set
∪{∂σ : σ ∈ W α} has σ -finite 3-dimensional measure, it follows from a removabil-
ity theorem (Theorem 35.1 and Remark 34.2 of [29]) that g is quasiconformal in
R4 \Γα ×Γα. Hence g is quasiconformal in R4 when α = 1, since R2 is removable.
The verification of the boundedness of H( g) when 1 < α < 2 requires some work;
see the proof of a similar theorem in Väisälä [31, p. 260]. In all cases we deduce
that g is quasiconformal on all of R4. This completes the proof of Lemma 4.17.

Proposition 4.2 follows from Lemma 4.17 and Theorem 2.5.
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In the proof of Lemma 4.17 the following result was used.

4.19. Lemma. — Let h be a similarity and let g be an affine map. If

‖ g − h‖B(x,r) < λrL(h),

for some 0 < λ < 1/100, then

| g′ − h′| ≤ λL(h)

and

H( g) ≤ (1 + 2λ)2,

moreover, g is sense-preserving if and only if h is sense-preserving.

Here we denote by |A| := supv:|v|=1 |Av| the operator norm of a matrix A.
In what follows, we will also make use of the quantity

�(A) := inf
v:|v|=1

|Av|.

Proof. — Note that | g(x + y)− h(x + y)| < λrL(h) when | y| < r. Replacing y by
−y and subtracting, we obtain by linearity the estimate 2| g′( y) − h′( y)| ≤ 2λrL(h)
when | y| < r. Thus | g′ − h′| ≤ λL(h). The remaining statements can be found in
[27, 3.5] and [31, 2.7].

4.20. Estimates

We now derive from Lemma 4.3 a few estimates for the extension g; some
of these have been implicitly used in [27] and [31].

4.21. Lemma. — For almost every x and y in R4 \ Γα × Γα, the following estimates

hold:

(i) |(hα
x )

′ − (hα
y )

′| ≤ 2M(α)q2/3L(hα
x ) and

1 − 2M(α)q2/3 ≤ L
(

hα
y

)

/L(hα
x ) ≤ 1 + 2M(α)q2/3

if | y − x| ≤ dα(x)/2;

(ii) | g′(x) − (hα
x )

′| ≤ M(α)q2/3L(hα
x ) and

1 − M(α)q2/3 ≤ �( g′(x))
L
(

hα
x

) ≤ | g′(x)|
L
(

hα
x

) ≤ 1 + M(α)q2/3;

(iii) | g′(x) − g′( y)| ≤ 5M(α)q2/3L(hα
x ) if | y − x| ≤ dα(x)/2;
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(iv)

1 − 4M(α)q2/3 ≤ | g(x) − g( y)|
|x − y|L(

hα
x

) ≤ 1 + 4M(α)q2/3

if | y − x| ≤ dα(x)/2, and

| g(x) − g( y)| ≤ (|x − y| + 2M(α)q2/3bdα(x))L
(

hα
x

)

if | y − x| ≤ bdα(x);
(v)

(

1
2

− 3M(α)q2/3

)

≤ dist( g(x), f (Γα × Γα))

dα(x)L
(

hα
x

) ≤ (1 + 2M(α)b q2/3).

Proof. — Recall that b = q−1/3 when α > 1 and b = 20 when α = 1. Assume
that x and y are not on the boundary of any n-simplex in W α. Thus (i) follows
from (4.4) and Lemma 4.19, (ii) follows from (4.7) and Lemma 4.19, and (iii)
follows from (i), (ii) and the triangle inequality.

If | y − x| < dα(x)/2, then
∣

∣ g(x) − g( y) − (

hα
x

)′
(x − y)|

≤ max
z∈[x,y]

(∣

∣ g′(z) − (

hα
z

)′∣
∣ + ∣

∣

(

hα
z

)′ − (

hα
x

)′∣
∣

)|x − y|,
which together with (i) and (ii) gives the first part of (iv). The second part of (iv)
follows from the triangle inequality, and (4.6).

Let z be a point in Γα × Γα with |x − z| = dα(x). Then

| g(x) − f (z)| = | g(x) − g(z)| ≤ (1 + 2M(α)bq2/3)dα(x)L
(

hα
x

)

by (iv); this proves the right hand inequality in (v). On the other hand, for any
w with |w − x| = dα(x)/2,

| g(x) − g(w)| ≥
(

1
2

− 3M(α)q2/3

)

dα(x)L
(

hα
x

)

by (ii) and (iii); this proves the left hand inequality in (v).

5. Smoothing

For α ∈ [1, 2), let A = Γα × Γα and choose and fix a regularized distance
function δα = δA to A which satisfies properties (2.12)–(2.14). Define

G(x) =
{

δα(x)−4
∫

R4 g( y)ϕ
(

x−y
δα(x)

)

dy, on R4 \ Γα × Γα,

g(x), on Γα × Γα,

where g is the extension in the previous section.



SMOOTH QUASIREGULAR MAPS WITH BRANCHING IN Rn 229

5.1. Lemma. — For almost every x and y in R4 \ Γα × Γα, the following estimates

hold:

(i) |G′(x) − g′(x)| ≤ 12 · 104C1C4M(α)q1/3L(hα
x );

(ii) |G(x) − g(x)| ≤ 3 · 104C1C4M(α)q1/3d(x)L(hα
x );

(iii)

1
2

− 105C1C4M(α)q1/3 ≤ dist(G(x), f (Γα × Γα))

dα(x)L
(

hα
x

)

≤ 1 + 105C1C4M(α)q1/3

and

1 − 106C1C4M(α)q1/3 ≤ �(G′(x))
L
(

hα
x

) ≤ |G′(x)|
L
(

hα
x

) ≤ 1 + 106C1C4M(α)q1/3;

(iv)

|G′(x) − G′( y)| ≤ 109C2
1C5M(α)|x − y|L(

hα
x

)

/dα(x)

and

|G′(x)−1 − G′( y)−1| ≤ 4 · 109C2
1C5M(α)|x − y|/(L

(

hα
x

)

dα(x)
)

if |x − y| ≤ dα(x)/2;

(v)

1 − 3 · 105C1C4M(α)q1/3 ≤ |G(x) − G( y)|
|x − y|L(

hα
x

) ≤ 1 + 3 · 105C1C4M(α)q1/3

if |x − y| ≤ dα(x)/2.

Proof. — Since α is fixed, we write d , δ, hx for dα, δα and hα
x . Suppose that

x is in the interior of some n-simplex σ in W α. Then gσ := g|σ is an affine map,
and we write gσ(z) = Bz + b. By Lemma 2.18,

G(x) − g(x) = G(x) − Bx − b

= δ−4(x)
∫

R4
( g( y) − By − b)ϕ

(

x − y
δ(x)

)

dy.

Write G = (G1, G2, G3, G4) and g = ( g1, g2, g3, g4). Then

max
i, j=1,...,4

∣

∣

∣

∣

∂

∂xj
(Gi − gi)(x)

∣

∣

∣

∣
≤ C4

δ(x)
Osc( g − B − b, x, δ(x))
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by Proposition 2.19. Note that g(x) = gσ (x) = Bx + b, so

|( g( y) − By − b) − ( g(x) − Bx − b)| = | g( y) − gσ( y)|
≤ | g( y) − hx( y)| + ∣

∣hx( y) − gσ ( y)
∣

∣

for y ∈ B(x, δ(x)). We get | g( y) − hx( y)| ≤ M(α)q1/3d(x)L(hα
x ) from Lemma 4.3,

and
∣

∣hx( y) − gσ( y)
∣

∣ ≤ ∣

∣hx( y) − gσ( y) − hx(x) + gσ(x)
∣

∣ + ∣

∣hx(x) − gσ(x)
∣

∣

≤ |h′
x − g′(x)| · | y − x| + |hx(x) − g(x)|

≤ M(α)q2/3δ(x)L(hx) + M(α)q1/3d(x)L(hx)

≤ 2M(α)q1/3d(x)L(hx)

by Lemma 4.3 and Lemma 4.21(ii). Since d(x) < 104C1δ(x),
∣

∣

∣

∣

∂

∂xj
(Gi − gi)(x)

∣

∣

∣

∣
≤ 3 · 104C1C4M(α)q1/3L(hx).

This proves (i).
Again assume x ∈ σ for some n-simplex σ ∈ W α. By Remark 2.15, σ contains

a ball B(xσ , 2δ(x)). Since g is affine on σ , G(xσ ) = g(xσ ) (Lemma 2.18), and
|x − xσ | ≤ diam σ ≤ d(x)/4, (i) implies that

|G(x) − g(x)| = |G(x) − g(x) − (G(xσ ) − g(xσ ))|
≤ 3 · 104C1C4M(α)q1/3L(hx)d(x).

This proves (ii).
The first part of (iii) follows from (ii) and Lemma 4.21(v). The second part

follows from (i) and Lemma 4.21(ii):

|G′(x) − h′
x| ≤ |G′(x) − g′(x)| + | g′(x) − h′

x| ≤ 106C1C4M(α)q1/3L
(

hα
x

)

.

To prove (iv), we use the second derivative estimates for the convolution in
Proposition 2.19 together with the second part of Lemma 4.21(iv) and (4.14). We
get

∣

∣

∣

∣

∂

∂xj
Gi(x) − ∂

∂xj
Gi( y)

∣

∣

∣

∣
≤ C5

δ2(x)
Osc( g, x, 3d(x)/4)|x − y|

≤ C5

δ2(x)

(

3
2

d(x) + 2M(α)bq2/3d(x)
)

L(hx)|x − y|
≤ 2 · 108C2

1C5|x − y|L(hx)/d(x),

(5.2)

which gives the first inequality in (iv).
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The second inequality follows from the first together with the second part
of (iii) and Lemma 4.21(i):

|G′(x)−1 − G′( y)−1| = |G′(x)−1(G′( y) − G′(x))G′( y)−1|
≤ |G′( y) − G′(x)|

�(G′(x)) · �(G′( y))

≤ 4 · 109C2
1C5M(α)

|x − y|
L(hx)d(x)

.

Finally, (v) follows from (i) and Lemma 4.21(iv).

To verify the quasiconformality of G, we use some results from the gen-
eral theory of quasiregular maps. Theorem 5.3 is due to Gol’dshtĕın and Martio–
Rickman–Väisälä, and Theorem 5.4 is due to Zorich. See [20, Theorem VI.8.14
and Corollary III.3.8].

5.3. Theorem (Martio–Rickman–Väisälä, Gol’dshteı̆n). — For each n ≥ 3, there exists

a constant K0(n) > 1 so that every nonconstant K0(n)-quasiregular map f : U → Rn,

U a domain in Rn, is a local homeomorphism.

5.4. Theorem (Zorich). — Each locally homeomorphic quasiregular map f : Rn → Rn,

n ≥ 3, is a homeomorphism, hence quasiconformal.

5.5. Proposition. — G is a quasiconformal homeomorphism on R4, and G and G−1

are C∞ on R4 \ Γα × Γα and R4 \ f (Γα × Γα), respectively.

Proof. — Continuity on R4 and C∞-smoothness on R4 \Γα ×Γα for G follow
from Proposition 2.19.

Lemma 5.1(v) provides a bound for the linear dilatation of G on the com-
plement of Γα × Γα:

H(G) ≤ (

1 + 106C1C4M(α)q1/3
)2

.

At each point x ∈ R4 \ Γα × Γα, G is differentiable and

max

{ |G′(x)|4

det G′(x)
,

det G′(x)
�(G′(x))4

}

≤ H(G)3 ≤ (

1 + 106C1C4M(α)q1/3
)6

.(5.6)

Suppose now that y ∈ Γα × Γα and x /∈ Γα × Γα; then

|G( y) − G(x)| = | g( y) − G(x)|
≥ | g( y) − g(z)| + | g(z) − g(x)| − | g(x) − G(x)|
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where z is a point on ∂B(x, d(x)/2) with g(z) on the line segment [ g(x), g( y)]. By
Lemma 5.1(ii) and Lemma 4.21(iv),

| g(x) − G(x)| ≤ 3 · 104C1C4M(α)q1/3d(x)L
(

hα
x

)

≤ 106C1C4M(α)q1/3| g(z) − g(x)|;
whence

|G( y) − G(x)| ≥ (

1 − 106C1C4M(α)q1/3
)| g( y) − g(x)|.

On the other hand,

|G( y) − G(x)| ≤ | g( y) − g(z)| + | g(z) − g(x)| + | g(x) − G(x)|
≤ (

1 + 106C1C4M(α)q1/3
)| g( y) − g(x)|.(5.7)

By Lemma 5.1(iii) and Lemma 4.21(ii), the ratios

�(G′(x))
| g′(x)| and

|G′(x)|
�( g′(x))

are uniformly bounded away from zero and infinity on the union of the interiors of
the n-simplices in W α. Hence all directional derivatives of G and g are uniformly
comparable on this set. Furthermore, g is ACL (absolutely continuous on lines)
on R4. (See [29, §26] for the definition of absolute continuity on lines.) It follows
that

G is ACL on the complement of Γα × Γα.(5.8)

From (5.7), (5.8) and the fact that G = g on Γα × Γα, we obtain that G is ACL
on R4. Finally, since Γα × Γα has 4-measure zero and g is ACL4,

G is ACL4 on R4.(5.9)

(See [29, §26] for the definition of ACLn.)
From (5.6) and (5.9), we conclude that G is K-quasiregular with

K := (

1 + 106C1C4M(α)q1/3
)6

,

see [20, Definition I.2.1]. Thus

K ≤ K0(4)(5.10)

by (4.15), where K0(n) is the constant in Theorem 5.3. Finally, it follows from
Theorem 5.3 that G is a local homeomorphism, and then from Theorem 5.4 that
G is a homeomorphism. Thus G is quasiconformal.



SMOOTH QUASIREGULAR MAPS WITH BRANCHING IN Rn 233

The C∞-smoothness of G−1 on R4 \ f (Γα × Γα) follows from the injectivity
of G.

Finally, surjectivity of G follows from the quasiconformality.

6. Proof of Theorem 1.5

Let q0(α) and s0(α) be the functions defined in (4.13) and (4.16) respectively,
and recall that s0(α) is continuous on the interval (1, 2).

Given ε > 0, fix α = 2 − ε. Let

α1 = 1 + 1
2
δ(s0(1), 1),

where δ(s, α) is the function from Proposition 3.5(c). Let

s := min{s0(t) : α1 ≤ t ≤ 2 − ε}
and observe that s > 0 since s0(α) is continuous on (1, 2). Next, let

δ := min{δ(s, t) : α1 ≤ t ≤ 2 − ε}
and observe that δ > 0 since δ(s, α) is continuous in α. Finally, choose

1 = α0 < α1 < · · · < αm = α

so that |αk+1 − αk| < δ for each k = 1, ..., m − 1. From Proposition 3.5(c) and
the choice of δ, the canonical map fk := Fαk+1

αk
(in the notation of Sect. 3) from

Γαk × Γαk to Γαk+1 × Γαk+1 is s-quasisymmetric for k = 1, 2, ..., m − 1, and is s0(1)-
quasisymmetric for k = 0. From the choice of s, each fk admits a quasiconformal
extension gk to R4, following the construction in Proposition 4.2. Applying the
smoothing procedure of Sect. 5 to each gk, we obtain a function Gk smooth on
R4 \ Γαk × Γαk and satisfying Gk = fk on Γαk × Γαk . Finally, the choice of q0(α)

and s0(α) and Proposition 5.5 guarantee that Gk is quasiconformal on R4. Let
Hk = G−1

k and set

H = H0 ◦ · · · ◦ Hm−2 ◦ Hm−1.

Observe that the functions Gk and Hk, 0 ≤ k ≤ m − 1, are quasiconformal with
a uniform bound on the dilatation depending only on ε.

Let U = R×(−2, 2)×R×(−2, 2). From the extension construction in Sect. 4
and the smoothing process in Sect. 5, it follows that Gk = id on R4 \ U for all k,
whence also Hk, H = id on R4 \ U.
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6.1. Proposition. — Assume X, Y ∈ U. There exists λ(α) > 1 so that

λ(α)−1 ≤ |H′(X)|
dist(X,Γα × Γα)α−1

≤ λ(α),(6.2)

λ(α)−1 ≤ |H(X) − H(Y)|
|X − Y|α ≤ λ(α) for all X ∈ Γα × Γα, |X − Y| ≤ 1,(6.3)

and

|H′(X) − H′(Y)| ≤ λ(α)|X − Y|α−1 for all |X − Y| ≤ 1.(6.4)

The map H is Cα-smooth (recall α = 2 − ε), quasiconformal on R4, and maps Γα × Γα

onto R2.

We postpone the proof of this proposition until we have completed the proof
of Theorem 1.5.

Let d ≥ 2 be an integer, and let w : R4 → R4 be the winding map

w(x1, x2, x3, x4) = (x1, r cos dθ, x3, r sin dθ),

where (r, θ) denote polar coordinates in the x2x4-plane. We observe the following
properties of w:

– w is quasiregular with branch set Π := {(x1, 0, x3, 0) : x1, x3 ∈ R} [20,
p. 13].

– w is Lipschitz on R4,
– w = (w1, w2, w3, w4) is C∞-smooth on R4 \ Π and

max
k,i, j

∣

∣

∣

∣

∂2wk

∂xi∂xj
(x)

∣

∣

∣

∣
≤ C

dist(x,Π)
for x ∈ R4 \ Π.

In what follows, we use the notation A � B, respectively A � B, to mean
that there exists a constant C depending only on ε so that A ≤ CB, respectively
C−1B ≤ A ≤ CB.

The composition F := w◦H is a quasiregular map on R4 of degree d whose
branch set Γα × Γα has Hausdorff dimension 4 − 2ε. Its derivative is

F′(X) =
{

w′(H(X))H′(X), if X /∈ Γα × Γα,
0, if X ∈ Γα × Γα,

which shows that F is C1 except possibly on Γα × Γα. Since w is Lipschitz,

|F′(X)| � |H′(X)| � dα(X)α−1

for all X /∈ Γα × Γα, see (6.2). Thus F is C1.
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It remains to show that

|F′(X) − F′(Y)| � |X − Y|α−1(6.5)

for all X, Y.
If Y ∈ Γα × Γα and X �∈ Γα × Γα, then F′(Y) = 0 and

|F′(X)| � |H′(X)| � dα(X)α−1 ≤ |X − Y|α−1.

Finally, if X, Y �∈ Γα × Γα write

|F′(X) − F′(Y)| ≤ |w′(H(X)) − w′(H(Y))||H′(X)|
+ |w′(H(Y))||H′(X) − H′(Y)|.

If dα(X) + dα(Y) ≤ 6|X − Y| then

|F′(X) − F′(Y)| � |H′(X)| + |H′(Y)| � dα(X)α−1 + dα(Y)α−1

� |X − Y|α−1

by (6.2).
Suppose instead that

dα(X) + dα(Y) > 6|X − Y|(6.6)

and assume that dα(X) ≥ dα(Y). Then dα(X) > 3|X − Y| so dα(Z) ≥ dα(X)/2
and |H′(Z)| � dα(Z)α−1 for all Z ∈ [X, Y]. The curve C = H([X, Y]) has length
� |X − Y|dα(X)α−1 and satisfies dist(C,Π) � dα(X)α. Using the estimate for the
second derivative of w, we find

|w′(H(X)) − w′(H(Y))||H′(X)| � dα(X)−α length(C)|H′(X)|
� |X − Y|dα(X)α−2 ≤ |X − Y|α−1.

On the other hand, dα(X), dα(Y) ≤ 3 for all X, Y ∈ U. Thus |X − Y| ≤ 1 for
X, Y satisfying (6.6) and so

|w′(H(Y))||H′(X) − H′(Y)| � |H′(X) − H′(Y)| � |X − Y|α−1

by (6.4). This completes the proof of (6.5) and hence completes the proof of Theo-
rem 1.5.

6.7. Remark. — The snowflake property (6.3) of H in Proposition 6.1 is
essential in establishing the C2−ε-smoothness of F, since w is only Lipschitz con-
tinuous.
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It remains to prove Proposition 6.1. We first give some estimates for Gk

and Hk and their derivatives, and introduce the abbreviated notations dk = dαk for
the distance function to Γαk × Γαk and hk,x = hαk

x for the similarities used in the
construction of gk. Recall that U = R × (−2, 2) × R × (−2, 2).

6.8. Lemma. — Consider points x, y, X, Y ∈ U.

(i) |Gk(x) − Gk( y)| � |x − y|αk/αk+1 provided x ∈ Γαk × Γαk and |x − y| ≤ 1, and

|Hk(X) − Hk(Y)| � |X − Y|αk+1/αk

provided X ∈ Γαk+1 × Γαk+1 and |X − Y| ≤ 1;

(ii) dk+1(Gk(x)) � dk(x)αk/αk+1 provided x �∈ Γαk × Γαk , and

dk(Hk(X)) � dk+1(X)αk+1/αk

provided X �∈ Γαk+1 × Γαk+1 ;

(iii) G′
k exists on the complement of Γαk × Γαk and

|G′
k(x)| � L(hk,x) � dk+1(Gk(x))/dk(x)

if x �∈ Γαk ×Γαk , while H′
k exists on all of R4, H′

k(X) = 0 if X ∈ Γαk+1 ×Γαk+1 ,

and

|H′
k(X)| � dk(Hk(X))/dk+1(X)

if X �∈ Γαk+1 × Γαk+1 ;

(iv) |H′
k(X) − H′

k(Y)| � |X − Y|(αk+1/αk)−1 for all |X − Y| ≤ 1 and

|H′
k(X) − H′

k(Y)| � |X − Y|dk+1(X)(αk+1/αk)−2

for all Y ∈ B(X, dk+1(X)/2).

Proof. — To prove (i), we recall from Proposition 3.5 and the fact that Gk =
gk = fk on Γαk × Γαk that |Gk(x) − Gk( y)| � |x − y|αk/αk+1 for all x, y ∈ Γαk × Γαk ,
|x − y| ≤ 1. If x ∈ Γαk × Γαk and y /∈ Γαk × Γαk , choose z ∈ Γαk × Γαk with
|x − z| = |x − y|; since the linear dilatations H(Gk) are uniformly bounded on R4,
we have

|Gk(x) − Gk( y)| � |Gk(x) − Gk(z)| � |x − z|αk/αk+1 = |x − y|αk/αk+1.

The estimates on Hk follow by taking the inverse.
To prove (ii), let X = Gk(x), choose Y ∈ Γαk+1 × Γαk+1 so that |X − Y| =

dk+1(X), and let y = G−1
k (Y). Since x ∈ U, we have X ∈ U and |X−Y| � 1. Then

dk(x) ≤ |x − y| � |X − Y|αk+1/αk = dk+1(X)αk+1/αk
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by (i). For the inverse, choose z ∈ Γαk × Γαk satisfying |x − z| = dk(x), and let
Z = Gk(z); then |x − z| � 1 and

dk+1(X) ≤ |X − Z| � |x − z|αk/αk+1 = dk(x)αk/αk+1.

This proves the first part of (ii). The second half of (ii) now follows by taking the
inverse.

Part (iii) follows from Lemma 5.1(iii).
To prove (iv), we assume Lemma 6.9 below and let x = Hk(X) and y =

Hk(Y). We consider three cases; any remaining cases are covered by interchanging
X and Y.

Case 1. — Y ∈ Γαk+1 ×Γαk+1 . By Lemma 5.1(iii) and parts (ii) and (iii) of this
proposition,

|H′
k(X) − H′

k(Y)| = |H′
k(X)| � dk+1(X)(αk+1/αk)−1 ≤ |X − Y|(αk+1/αk)−1.

Case 2. — Y ∈ B(X, aαdk+1(X)), where aα is as in Lemma 6.9(ii). By Lem-
ma 5.1(iv),(v) and part (ii) of this proposition,

|H′
k(X) − H′

k(Y)| � |x − y|
dk(x)

L(hk,x)
−1 � |X − Y|

dk(x)
L(hk,x)

−2

� |X − Y|dk+1(X)(αk+1/αk)−2 � |X − Y|(αk+1/αk)−1.

Case 3. — Y /∈ B(X, aαdk+1(X)) ∪ Γαk+1 × Γαk+1 . Choose Z ∈ Γαk+1 × Γαk+1 so
that |X − Z| = dk+1(X). Then |X − Z| � |X − Y|, |Y − Z| � |X − Y|, and the
first part of (iv) follows by applying Case 1 to X, Z and to Y, Z, and using the
triangle inequality.

The second part of (iv) is essentially contained in the proof of Case 2 of
the first part. This completes the proof of Lemma 6.8.

6.9. Lemma. — (i) There exists Aα > 1 so that whenever |X − Y| ≤ 1 and

0 ≤ k ≤ l ≤ m − 1, then

|Hk ◦ · · · ◦ Hl(X) − Hk ◦ · · · ◦ Hl(Y)| ≤ Aα.

(ii) There exists 0 < aα < 1/2 so that whenever 0 ≤ k ≤ l ≤ m − 1, |X − Y|
≤ aαdl+1(X) and 0 ≤ k ≤ m − 1, then

|Hk ◦ · · · ◦ Hl(X) − Hk ◦ · · · ◦ Hl(Y)| ≤ 1
2

dk(Hk ◦ ... ◦ Hl(X)).
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Part (i) of this lemma is clear. Part (ii) follows from the fact that m depends
only on α, and the maps Gk are K-quasiconformal for a common value of K
depending only on α.

Proof of Proposition 6.1. — Note that (6.2) and (6.3) follow from Lemmas 6.8
and 6.9, and the chain rule.

To prove (6.4), we consider three cases as in Lemma 6.8(iv); any remaining
cases are covered by interchanging X and Y. Assume that |X − Y| ≤ 1, and recall
that αm = α and dm = dα.

Case 1. — Y ∈ Γαm × Γαm . Then H′(Y) = 0 and (6.4) follows from (6.2).

Case 2. — Y ∈ B(X, aαdm(X)). We shall prove that

|(Hk ◦ · · · ◦ Hm−1)
′(X) − (Hk ◦ · · · ◦ Hm−1)

′(Y)| � |X − Y|dm(X)αm/αk−2(6.10)

for k = m−1, m−2, ..., 1, 0 in succession. Then the Hölder continuity (6.4) follows
from (6.10) by choosing k = 0.

Note from Lemma 6.8(ii),(iii) and Lemma 6.9 that

dk(Hk ◦ · · · ◦ Hm−1(X)) � dm(X)αm/αk(6.11)

and
|Hk+1 ◦ · · · ◦ Hm−1(X) − Hk+1 ◦ · · · ◦ Hm−1(Y)|

� |X − Y|dk+1(Hk+1 ◦ · · · ◦ Hm−1(X))

dm(X)
.

(6.12)

By Lemma 6.8(iv), the estimate (6.10) holds for k = m − 1. Assume that (6.10)
holds for k + 1; we will show that it holds for k. By the chain rule, Lemmas 6.8
and 6.9, (6.11) and (6.12), and (6.10) for k + 1, we get

|(Hk ◦ · · · ◦ Hm−1)
′(X) − (Hk ◦ · · · ◦ Hm−1)

′(Y)|
� |H′

k(Hk+1 ◦ · · · ◦ Hm−1(X))|
× |(Hk+1 ◦ · · · ◦ Hm−1)

′(X) − (Hk+1 ◦ · · · ◦ Hm−1)
′(Y)|

+ |H′
k(Hk+1 ◦ · · · ◦ Hm−1(X)) − H′

k(Hk+1 ◦ · · · ◦ Hm−1(Y))|
× |(Hk+1 ◦ · · · ◦ Hm−1)

′(Y)|
� dk(Hk ◦ · · · ◦ Hm−1(X))

dk+1(Hk+1 ◦ · · · ◦ Hm−1(X))
|X − Y|dm(X)αm/αk+1−2

+ |Hk+1 ◦ · · · ◦ Hm−1(X) − Hk+1 ◦ · · · ◦ Hm−1(Y)|
× dk+1(Hk+1 ◦ · · · ◦ Hm−1(X))αk+1/αk−2 dk+1(Hk+1 ◦ · · · ◦ Hm−1(X))

dm(X)

� |X − Y|dm(X)αm/αk−2.

Thus (6.10) holds for all k = m − 1, m − 2, ..., 1, 0.
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Case 3. — Y /∈ B(X, aαdm(X)) ∪ Γαm × Γαm . Choose Z ∈ Γαm × Γαm with
|X−Z| = dm(X). Then (6.4) follows by applying Case 1 to X, Z and to Y, Z, and
using the triangle inequality.

This completes the proof of Proposition 6.1.

7. Proof of Theorem 1.6

The proof of Theorem 1.6 relies on the construction by David and Toro
of codimension one snowflake surfaces. See [7], specifically Theorem 2.10 with
Z = Rn−2 and f (r) = max{1, r−ε/(1+ε)} and the discussion following (13.33).

7.1. Theorem (David–Toro). — For each n ≥ 3 there exists ε0(n) > 0 and C =
C(n) > 1 so that for each ε ∈ (0, ε0(n)) there exists a K-quasiconformal map Φ : Rn−1 →
Rn−1 with

C−1|x − y|1/(1+ε) ≤ |Φ(x) − Φ( y)| ≤ C|x − y|1/(1+ε)(7.2)

for all x, y ∈ Rn−2, |x − y| ≤ 1. Furthermore, K → 1 as ε → 0.

David and Toro prove significantly stronger results; the domain Rn−2 may
be replaced by a metric space (Z, d) satisfying a Reifenberg flatness condition and
the snowflake property in (7.2) may be replaced by Orlicz-type conditions

C−1|x − y| f (|x − y|) ≤ |Φ(x) − Φ( y)| ≤ C|x − y| f (|x − y|)
for a variety of gauge functions f (r).

By the celebrated quasiconformal extension theorem of Tukia–Väisälä [26],
the map Φ of Rn−1 in Theorem 7.1 may be further extended to a quasiconfor-
mal map of Rn. We continue to denote this extension by Φ. Observe that the
extension procedure in [26] is ostensibly different from that in [27] and [31] used
in Sect. 4. It is therefore not obvious whether the smoothing procedure developed
in Sect. 5 can be applied directly to the extended map Φ. We bypass the issue
by an alternative argument. Choose ε sufficiently small so that the David–Toro
map Φ in Theorem 7.1 is K-quasiconformal with K very close to one, hence
s-quasisymmetric with s very close to zero (see Theorem 2.5). Then ϕ = Φ|Rn−2

may be re-extended to a quasiconformal map g : Rn → Rn by the Tukia–Väisälä
extension procedure from [27] and [31] (see Theorem 2.7). The smoothing pro-
cedure from Sect. 5 applies to g, yielding a quasiconformal map G on Rn whose
inverse has the snowflake property in Proposition 6.1. The desired quasiregular
map in Theorem 1.5 is obtained as the composition of a winding map with G−1.



240 ROBERT KAUFMAN, JEREMY T. TYSON, JANG-MEI WU

Proof of Theorem 1.6. — Let n ≥ 5 and d ≥ 2 be given. According to Theo-
rem 2.7, Rn−2 has the quasisymmetric extension property in Rn; choose s0 > 0 so
that every s-quasisymmetric embedding ϕ : Rn−2 → Rn with s < s0 admits a qua-
sisymmetric extension. Next, choose K > 1 so that every K-quasiconformal map
of Rn is s-quasisymmetric for some s ∈ (0, s0) (Theorem 2.5), and choose ε > 0
so that the map Φ from Theorem 7.1 is K-quasiconformal. Let ϕ = Φ|Rn−2 . Ap-
plying Theorem 2.7 (with p = n − 2) and following the procedure summarized in
Sect. 4 (in the case α = 1), extend ϕ to an s1-quasisymmetric homeomorphism
g : Rn → Rn. When s is sufficiently small, the smoothing procedure in Sect. 5
applied to g yields a quasiconformal map G : Rn → Rn, C∞-smooth on Rn \ Rn−2,
with G = ϕ on Rn−2, and as in Proposition 6.1, the snowflake property

C−1|X − Y|1+ε ≤ |G−1(X) − G−1(Y)| ≤ C|X − Y|1+ε(7.3)

holds for all X ∈ Σ = ϕ(Rn−2) and all Y ∈ Rn with |X − Y| ≤ 1. Here C denotes
a suitable constant depending only on the dimension n.

Let w : Rn → Rn be the winding map of degree d

w(x1, ..., xn−2, r cos θ, r sin θ) = (x1, ..., xn−2, r cos dθ, r sin dθ),

where (r, θ) are polar coordinates in the xn−1xn-plane. The mapping w is quasireg-
ular with branch set Rn−2. Using (7.3) together with properties of w, it follows that
F = w ◦ G−1 is a C1+ε-smooth quasiregular map on Rn of degree d with branch
set BF = Σ. The proof of Theorem 1.6 is complete.
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4. A. V. ČERNAVSKĬı, Finite-to-one open mappings of manifolds, Mat. Sb. (N.S.), 65 (1964), 357–369.
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no. 26 (Été 1967). Les Presses de l’Université de Montréal, Montréal, Que. (1968).
10. J. HEINONEN, The branch set of a quasiregular mapping, in Proceedings of the International Congress of Mathematicians,

Vol. II (Beijing, 2002), Higher Ed. Press, Beijing (2002), pp. 691–700.
11. J. HEINONEN and S. RICKMAN, Quasiregular maps S3 → S3 with wild branch sets, Topology, 37 (1998), 1–24.
12. J. HEINONEN and S. RICKMAN, Geometric branched covers between generalized manifolds, Duke Math. J., 113

(2002), 465–529.



SMOOTH QUASIREGULAR MAPS WITH BRANCHING IN Rn 241

13. T. IWANIEC and G. MARTIN, Geometric function theory and non-linear analysis, Oxford Mathematical Monographs. The
Clarendon Press, Oxford University Press, New York (2001).

14. M. KIIKKA, Diffeomorphic approximation of quasiconformal and quasisymmetric homeomorphisms, Ann. Acad.
Sci. Fenn., Ser. A I, Math., 8 (1983), 251–256.

15. O. MARTIO and S. RICKMAN, Measure properties of the branch set and its image of quasiregular mappings, Ann.
Acad. Sci. Fenn., Ser. A I, 541 (1973), 16.

16. O. MARTIO, S. RICKMAN and J. VÄISÄLÄ, Topological and metric properties of quasiregular mappings, Ann. Acad.
Sci. Fenn., Ser. A I, 488 (1971), 31.

17. P. MATTILA, Geometry of sets and measures in Euclidean spaces, vol. 44 of Cambridge Studies in Advanced Mathematics,
Cambridge University Press, Cambridge (1995).

18. Y. G. RESHETNYAK, Space mappings with bounded distortion, Sibirsk. Mat. Z., 8 (1967), 629–659.
19. Y. G. RESHETNYAK, Space mappings with bounded distortion, vol. 73 of Translations of Mathematical Monographs,

American Mathematical Society, Providence (1989). Translated from the Russian by H. H. McFadden.
20. S. RICKMAN, Quasiregular Mappings, Springer, Berlin (1993).
21. S. RICKMAN, Construction of quasiregular mappings, in Quasiconformal mappings and analysis (Ann Arbor, MI 1995),

Springer, New York (1998), pp. 337–345.
22. J. SARVAS, The Hausdorff dimension of the branch set of a quasiregular mapping, Ann. Acad. Sci. Fenn., Ser. A I,

Math., 1 (1975), 297–307.
23. E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30,

Princeton University Press, Princeton, N.J. (1970).
24. D. SULLIVAN, Hyperbolic geometry and homeomorphisms, in Geometric topology (Proc. Georgia Topology Conf., Athens,

Ga. 1977), Academic Press, New York (1979), pp. 543–555.
25. P. TUKIA and J. VÄISÄLÄ, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn., Ser. A I, Math.,

5 (1980), 97–114.
26. P. TUKIA and J. VÄISÄLÄ, Quasiconformal extension from dimension n to n + 1, Ann. of Math. (2), 115 (1982),

331–348.
27. P. TUKIA and J. VÄISÄLÄ, Extension of embeddings close to isometries or similarities, Ann. Acad. Sci. Fenn., Ser.

A I, Math., 9 (1984), 153–175.
28. J. T. TYSON and J.-M. WU, Quasiconformal dimensions of self-similar fractals, Rev. Mat. Iberoamer., accepted for

publication.
29. J. VÄISÄLÄ, Lectures on n-dimensional quasiconformal mappings, no. 229 in Lecture Notes in Mathematics, Springer,

Berlin (1971).
30. J. VÄISÄLÄ, A survey of quasiregular maps in Rn, in Proceedings of the International Congress of Mathematicians (Helsinki

1978), Acad. Sci. Fennica, Helsinki (1980), pp. 685–691.
31. J. VÄISÄLÄ, Bi-Lipschitz and quasisymmetric extension properties, Ann. Acad. Sci. Fenn., Ser. A I, Math., 11 (1986),

239–274.

R. K., J. T. T., J.-M. W.
Department of Mathematics,
University of Illinois,
1409 West Green Street,
Urbana, IL 61801, USA
{rpkaufma, tyson, wu}@math.uiuc.edu
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