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ABSTRACT

We prove that a knot is the unknot if and only if its reduced Khovanov cohomology has rank 1. The proof has two
steps. We show first that there is a spectral sequence beginning with the reduced Khovanov cohomology and abutting to
a knot homology defined using singular instantons. We then show that the latter homology is isomorphic to the instanton
Floer homology of the sutured knot complement: an invariant that is already known to detect the unknot.

1. Introduction

1.1. Statement of results

This paper explores a relationship between the Khovanov cohomology of a knot,
as defined in [16], and various homology theories defined using Yang-Mills instantons,
of which the archetype is Floer’s instanton homology of 3-manifolds [8]. A consequence
of this relationship is a proof that Khovanov cohomology detects the unknot. (For related
results, see [10-12].)

Theorem 1.1. — A knot in S® is the unknot if and only if its reduced Khovanov cohomology
isZ.

In [21], the authors construct a Floer homology for knots and links in 3-manifolds
using moduli spaces of connections with singularities in codimension 2. (The locus of the
singularity is essentially the link K, or R x K in a cylindrical 4-manifold.) Several varia-
tions of this construction are already considered in [21], but we will introduce here one
more variation, which we call I*(K). Our invariant I*(K) is an invariant for unoriented
links K C S* with a marked point x € K and a preferred normal vector v to K at x.
The purpose of the normal vector is in making the invariant functorial for link cobor-
disms: if S C [0, 1] x S? is a link cobordism from K to Kg, not necessarily orientable, but
equipped with a path y joining the respective basepoints and a section v of the normal
bundle to S along y, then there is an induced map,

F(K,) — T(Ky)

that is well-defined up to an overall sign and satisfies a composition law. (We will discuss
what is needed to resolve the sign ambiguity in Section 4.4.) The definition is set up
so that I*(K) = Z when K is the unknot. We will refer to this homology theory as the
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reduced singular instanton knot homology of K. (There is also an unreduced version
which we call I*(K) and which can be obtained by applying I to the union of K with an
extra unknotted, unlinked component.) The definitions can be extended by replacing S*
with an arbitrary closed, oriented 3-manifold Y. The invariants are then functorial for
suitable cobordisms of pairs.

Our main result concerning I*(K) is that it is related to reduced Khovanov coho-
mology by a spectral sequence. The model for this result is a closely-related theorem due
to Ozsvath and Szab6 [29] concerning the Heegaard Floer homology, with Z/2 coeffi-
cients, of a branched double cover of S°. There is a counterpart to the result of [29] in
the context of Seiberg-Witten gauge theory, due to Bloom [3].

Proposition 1.2. — With Z coefficients, there 1s a spectral sequence whose Eiy term is the reduced
Khovanov cohomology, Khr(K), of the mirror image knot K, and which abuts to the reduced singular
instanton homology 1 (K).

As an immediate corollary, we have:

Corollary 1.3. — The rank of the reduced Khovanov cohomology Khr(K) s at least as large
as the rank of I/(K).

To prove Theorem 1.1, it will therefore suffice to show that I*(K) has rank bigger
than 1 for non-trivial knots. This will be done by relating I’(K) to a knot homology that
was constructed from a different point of view (without singular instantons) by Floer in
[9]. Floer’s knot homology was revisited by the authors in [23], where it appears as an in-
variant KHI(K) of knots in S*. (There is a slight difference between KHI(K) and Floer’s
original version, in that the latter leads to a group with twice the rank.) It is defined using
SU(2) gauge theory on a closed 3-manifold obtained from the knot complement. The
construction of KHI(K) in [23] was motivated by Juhasz’s work on sutured manifolds
in the setting of Heegaard Floer theory [13, 14]: in the context of sutured manifolds,
KHI(K) can be defined as the instanton Floer homology of the sutured 3-manifold ob-
tained from the knot complement by placing two meridional sutures on the torus bound-
ary. It is defined in [23] using complex coeflicients for convenience, but one can just as
well use Q or Z[1/2]. The authors establish in [23] that KHI(K) has rank larger than
1 if K is non-trivial. The proof of Theorem 1.1 is therefore completed by the follow-
ing proposition (whose proof turns out to be a rather straightforward application of the
excision property of instanton Floer homology).

Proposition 1.4. — With Q coefficients, there s an isomorphism between the singular instanton
homology 1*(K; Q) and the sutured instanton homology of the knot complement, KHI(K; Q).

Remark. — We will see later in this paper that one can define a version of KHI(K)
over Z. The above proposition can then be reformulated as an isomorphism over Z
between I*(K) and KHI(K).
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Corollary 1.3 and Proposition 1.4 yield other lower bounds on the rank of the
Khovanov cohomology. For example, it is shown in [22] that the Alexander polynomial
of a knot can be obtained as the graded Euler characteristic for a certain decomposition
of KHI(K), so we can deduce:

Corollary 1.5. — The rank of the reduced Khovanov cohomology Khr(K) is bounded below by
the sum of the absolute values of the coefficients of the Alexander polynomial of K.

For alternating (and more generally, quasi-alternating) knots and links, it is known
that the rank of the reduced Khovanov cohomology (over Q or over the field of 2 ele-
ments) is equal to the lower bound which the above corollary provides [25, 27]. Further-
more, that lower bound is simply the absolute value of the determinant in this case. We
therefore deduce also:

Corollary 1.6. — When K is quasi-alternating, the spectral sequence from Khr(K) to T*(K)
has no non-zero differentials after the £\ page, over Q or Z./2. In particular, the total rank of "(K) is
equal to the absolute value of the determinant of K.

The group KHI(K) closely resembles the “hat” version of Heegaard knot homol-
ogy, HFK(K), defined in [28] and [31]: one can perhaps think of KHI(K) as the “in-
stanton” counterpart of the “Heegaard” group I-TFT((K). The present paper provides a
spectral sequence from Khr(K) to KHI(K), but at the time of writing it is not known
if there 1s a similar spectral sequence from Khr(K) to @(K) for classical knots. This
was a question raised by Rasmussen in [32], motivated by observed similarities between
reduced Khovanov cohomology and Heegaard Floer homology. There are results in the
direction of providing such a spectral sequence in [26], but the problem remains open.

1.2. Outlne

Section 2 provides the framework for the definition of the invariant I*(K) by dis-
cussing instantons on 4-manifolds X with codimension-2 singularities along an embedded
surface X. This is material that derives from the authors’ earlier work [18], and it was de-
veloped further for arbitrary structure groups in [21]. In this paper we work only with the
structure group SU(2) or PSU(2), but we extend the previous framework in two ways.
First, in the previous development, the locus ¥ of the singularity was always taken to be
orientable. This condition can be dropped, and we will be considering non-orientable
surfaces. Second, the previous expositions always assumed that the bundle which carried
the singular connection had an extension across X to a bundle on all of X (even though
the connection did not extend across the singularity). This condition can also be relaxed.
A simple example of such a situation, in dimension 3, arises from a 2-component link K
in S*: the complement of the link has non-trivial second cohomology and there is there-
fore a PSU(2) bundle on the link complement that does not extend across the link. The
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second Stiefel-Whitney class of this bundle on S*\K is dual to an arc @ running from one
component of K to the other.

Section 3 uses the framework from Section 2 to define an invariant I°(Y, K) for
suitable links K in 3-manifolds Y. The label w is a choice of representative for the dual of
w, for a chosen PSU(2) bundle on Y\K: it consists of a union of circles in S*\ K and arcs
joining components of K. The invariant I*(K) for a classical knot or link K arises from
this more general construction as follows. Given K with a framed basepoint, we form a
new link,

K'=KUL

where L is the oriented boundary of a small disk, normal to K at the basepoint. We take
o to be an arc joining the basepoint of K to a point on L: a radius of the disk in the
direction of the vector of the framing. We then define

IH(K) = I”(S?, KY).

This construction and related matters are described in more detail in Section 4.

Section 5 deals with Floer’s excision theorem for Floer homology, as it applies in
the context of this paper. In order to work with integer coefficients, some extra work
is needed to deal with orientations and PSU(2) gauge transformations that do not lift
to SU(2). The excision property is used to prove the relationship between I*(K) and
KHI(K) asserted in Proposition 1.4, and also to establish a multiplicative property of
I*(K) for split links K.

Sections 6, 7 and 8 are devoted to the proof of Proposition 1.2, concerning the
spectral sequence. The first part of the proof is to show that I¥(K) can be computed
from a “cube of resolutions”. This essential idea comes from Ozsvath and Szabd’s paper
on double-covers [29], and is closely related to Floer’s surgery long exact sequence for
mstanton Floer homology. It can be seen as an extension of a more straightforward prop-
erty of I(K), namely that it has a long exact sequence for the unoriented skein relation:
that 1s, if Ky, K| and Ky are knots or links differing at one crossing as shown in Figure 6,
then the corresponding groups I*(K;) form a long exact sequence in which the maps
arise from simple cobordisms between the three links. The cube of resolutions provides a
spectral sequence abutting to I*(K). Section 8 establishes that the E, term of this spectral
sequence is the reduced Khovanov cohomology of K.

Remark. — Although it 1s often called Khovanov homology, Khovanov’s invariant is
a cohomology theory, and we will follow [16] in referring to it as such. The groups we
write as Kh(K), or in their bigraded version as Kh'/(K), are the groups named H"/(K)
in [16].
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2. Singular instantons and non-orientable surfaces

2.1. Motivation

In [18, 19], the authors considered 4-dimensional connections defined on the com-
plement of an embedded surface and having a singularity along the surface. The basic
model is an SU(2) connection in the trivial bundle on R*\R? given by the connection

matrix
fa 0
7 (O —a) db

where o is some parameter in the interval (0, 1/2). Given a closed, embedded surface
¥ in an oriented 4-manifold X, one can study anti-self-dual connections on X\ 2 whose
behavior near ¥ is modeled on this example. The moduli spaces of such connections
were defined and studied in [18]. In [21], a corresponding Floer homology theory was
constructed for knots in 3-manifolds; but for the Floer homology theory it was necessary
to take o = 1/4.

We will now take this up again, but with a slightly more general setup than in the
previous paper. We will continue to take o = 1/4, and the local model for the singularities
of our connections will be the same: only the global topology will be more general. First
of all, we will allow our embedded surface ¥ to be non-orientable. Second, we will not
require that the bundle on the complement of the surface admits any extension, globally,
to a bundle on the 4-manifold: specifically, we will consider PU(2) bundles on X*\ £?
whose second Stiefel-Whitney class is allowed to be non-zero on some torus y x S!,
where y is a closed curve on ¥ with orientable normal and the S' factor is the unit
normal directions to £ C X along this curve. It turns out that the constructions of [18]
and [21] carry over with little difficulty, as long as we take @ = 1/4 from the beginning,

Our first task will be to carefully describe the models for the sort of singular connec-
tions we will study. A singular PU(2) connection on X\ X of the sort we are concerned
with will naturally give rise to 2-fold covering space 7 : £, — X. To understand why
this is so, consider the simplest local model: a flat PU(2) connection A; on B*\ B? whose
holonomy around the linking circles has order 2. The eigenspaces of the holonomy de-
compose the associated R? bundle as & @ Q, where & is a trivial rank-1 bundle and Q
is a 2-plane bundle, the —1 eigenspace. Suppose we wish to extend Q from B*\B? to all
of B*. To do this, we construct a new connection A, as

1
AO - A1 - Zid@
where 6 is an angular coordinate in the 2-planes normal to B and i is a section of the

adjoint bundle which annihilates & and has square —1 on Q). Then Ay is a flat connection
in the same bundle, with trivial holonomy, and it determines canonically an extension of
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the bundle across B. In this process, there is a choice of sign: both df and i depend on
a choice (orientations of B* and Q respectively). If we change the sign of idf then we
obtain a different extension of the bundle.

In the global setting, when we have a surface ¥ C X, we will have two choices
of extension of our PU(2) bundle at each point of ¥. Globally, this will determine a
double-cover (possibly trivial),

T XA — 2.

It will be convenient to think of the two different extensions of the PU(2) bundle as being
defined simultaneously on a non-Hausdorff space X . This space comes with a projection
7 : XA — X whose fibers are a single point over each point of X\ ¥ and whose restriction
to 7' (X) is the double-covering 4.

2.2. The topology of singular connections

To set this up with some care, we begin with a closed, oriented, Riemannian 4-
manifold X, a smoothly embedded surface £ C X. We identify a tubular neighborhood
v of ¥ with the disk bundle of the normal 2-plane bundle Ny — X. This identification
gives a tautological section s of the pull-back of Ny to v. The section s is non-zero over
v\o, so on v\o we can consider the section

(1) s1=s/|s|.

On the other hand, let us choose any smooth connection in Ny — X and pull it back to
the bundle Ny — v. Calling this connection V, we can then form the covariant derivative
Vs;. We can identify the adjoint bundle of the O(2) bundle Ny as :R,x), where R,x) is
the real orientation line bundle of X. So the derivative of s; can be written as

VS] = i?’]Sl

for n a 1-form on v\ X with values in R,). This 7 is a global angular 1-form on the
complement of X in v.

Fix alocal system A on ¥ with structure group %1, or equivalently a double-cover
7T : XA — 2. This determines also a double-cover 7 : Vo — v. We form a non-Hausdorff
space X as an identification space of X\ ¥ and V4, in which each x € D5\ 2 is identified
with its image under 7 in X\ ¥. We write vy C X, for the (non-Hausdorff) image of the
tubular neighborhood V.

The topological data describing the bundles in which our singular connections live
will be the following. We will have first a PU(2)-bundle P — X. (This means that we
have a bundle on the disjoint union of V5 and X\ X together with a bundle isomorphisms
between the bundle on VA \ XA and pull-back of the bundle from X\ X.) In addition, we
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will have a reduction of the structure group of PAl,, to O(2). We will write Q for the
associated real 2-plane bundle over v,.

The bundle Q will be required to have a very particular form. To describe this,
we start with 2-plane bundle Q — X, whose orientation bundle is identified with the
orientation bundle of XA:

o(0) —> o(Zy).

We can pull Q back to Dg. In order to create from this a bundle over the non-Hausdorff
quotient v, we must give for each x € A\ X5 an identification of the fibers,

(2) Q= Q

where 7 1s the covering transformation. Let us write

(3) Hom™ (Q;). Q,)

for the 2-plane consisting of linear maps that are scalar multiples of an orientation-
reversing isometry (i.e. the complex-anti-linear maps if we think of both Q, and Q;,
as oriented). Like Q, and Q(x), the 2-plane (3) has its orientation bundle canonically
identified with o(2): our convention for doing this is to fix any vector in Q;, and use
it to map Hom™ (Q;,, Q,) to Q,. We will give an identification (2) by specifying an
orientation-preserving bundle isometry of 2-plane bundles on X4,

p :Ns, = Hom (*(Q), Q).
This p should satisfy

p()p(t(v)) =1

for a unit vector v in Ny, . The identification (2) can then be given by p(s,), where s; 1s
as in (1). The existence of such a p is a constraint on Q).
To summarize, we make the following definition.

Defination 2.1. — Guven a pair (X, X), by singular bundle data on (X, ) we will mean
a chowce of the following items:

(@) a double-cover X p — X and an associated non-Hausdor(f space X x;

(b) a principal PU(2)-bundle Pa on Xa;

() a 2-plane bundle Q — X5 whose orientation bundle is identified with o( A );
(d) an orentation-preserving bundle 1sometry

p:Ng, — Hom’(r*(Q), Q);

(e) an wdentification, on the non-Hausdorff neighborhood v a, of the resulting quotient bundle Qo
with an O(2) reduction of Paly, .
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Remark. — When the conditions in this definition are fulfilled, the double-cover X
is in fact determined, up to isomorphism, by the PU(2) bundle P on X\ 3. It is also the
case that not every double-cover of ¥ can arise as X 5. We shall return to these matters
in the next subsection.

Given singular bundle data on (X, ¥), we can now write down a model singular
connection. We start with a smooth connection ay in the bundle Q—) YA, so chosen
that the induced connection in Hom™ (t*(Q), Q) coincides with the connection V in
Ny, under the isomorphism p. (Otherwise said, p is parallel.) By pull-back, this a, also
determines a connection in Qon Va. On the deleted tubular neighborhood vA\ X4, the
bundles 7*(Q) and Q are being identified by the isometry p(s,); but under this identi-
fication, the connection ¢ 1s not preserved, because s; is not parallel. So a5 does not by
itself give rise to a connection over v\ X downstairs. The covariant derivative of s 1s sy,
where 7 is a 1-form with values in R, or equivalently in R, @, on va. We can therefore
form a new connection

. i
a =do+§77

as a connection in Q—) Va\Xa. With respect to this new connection, the isometry p(s;)
1s covariant-constant, so a; descends to a connection ¢, on the resulting bundle Q) — v\ X
downstairs.

Since Q) 1s a reduction of the PU(2) bundle P on v\ X, the O(2) connection ¢,
gives us a PU(2) connection in P there. Let us write A, for this PU(2) connection. We
may extend A, in any way we wish to a connection in P over all of X\ 2. If we pick a
point x in X4, then a standard neighborhood of x in X, is a B¥ meeting X, in a standard
B2. In such a neighborhood, the connection A; on B*\B? can be written as

L/7 0
AI_A0+Z (0 _l) 779
where Ay is a smooth PU(2) connection with reduction to O(2). Here are notation iden-

tifies the Lie algebra of PU(2) with that of SU(2), and the element ¢ in Lie(O(2)) corre-
sponds to the element

1(i 0
o\o —i

in su(2). Note that in this local description, the connection A, depends in a significant
way on our choice of x € X, not just on the image of x in 3. Two different points x and
" with the same image in ¥ give rise to connections Ay and Aj, which differ by a term

1(i 0
olo —i)™
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We will refer to any connection A; arising in this way as a model singular connection.
Such an A, depends on a choice of singular bundle data (Definition 2.1), a choice of «
making p parallel, and a choice of extension of the resulting connection from the tubular
neighborhood to all of X\X. The latter two choices are selections from certain affine
spaces of connections, so it is the singular bundle data that is important here.

2.3. Topological classification of singular bundle data

When classifying bundles over X, up to isomorphism, it is helpful in the calcu-
lations to replace this non-Hausdorfl space by a Hausdorfl space with the same weak
homotopy type. We can construct such a space, X%, as an identification space of the disk
bundle V5 and the complement X\int(v), glued together along dv using the 2-to-1 map
d(Va) — 0v. There is a map

m:Xh - X

which is 2-to-1 over points of int(v) and I-to-1 elsewhere. The inverse image of v under
the map 7 is a 2-sphere bundle

SP?es D> X,

In the case that A is trivial, this 2-sphere bundle D is the double of the tubular neighbor-
hood v, and a choice of trivialization of A determines an orientation of D. When A is
non-trivial, D is not orientable: its orientation bundle is A. There is also an involution

X h
L X\ — X,

with 7 o t = 7t whose restriction to each S? in D is an orientation-reversing map.

In H, (X}’A; Q) there 1s a unique class [X ] which is invariant under the involution
¢t and has m,[X ] = [X]. This class is not integral: in terms of a triangulation of X’ZA,
the class can be described as the sum of the 4-simplices belonging to X\, plus half
the sum of the simplices belonging to D, with all simplices obtaining their orientation
from the orientation of X. In the case that the double-cover ¥, — X is trivial, there is a
different fundamental class to consider. In this case, X, is the union of two copies of X,
identified on the complement of 2. A choice of trivialization of A picks out one of these
two copies: call it X C X. The fundamental class [X ] is an integral class in H4(X):
it can be expressed as

[X4]=([Xal+[D]/2)

where D is oriented using the trivialization of A. A full description of Hy with Z coeffi-
cients is given by the following, whose proof is omitted.
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Lemma 2.2. — The group Hy (X ; Z) has rank | + s, where s is the number of components
of X on which A s trivial. If A s trivial and trivialized, then free generators are provided by (a) the
Jundamental classes of the components of the 2-sphere bundle D, and (b) the integer class [X ] determined
by the trivialization. If A s non-trivial, then free generators are provided by (a) the fundamental classes
of the orientable components of D, and (b) the integer class 2[X].

The top cohomology of X/ contains 2-torsion if A is non-trivial:

Lemma 2.3. — If a 1s the number of components of X on which A s non-trival, then the
torsion subgroup of H* (XA ; Z) is isomorphic to (Z/2)*" if a > 2 and is zero otherwise. To describe
generators, let x, ..., x, be points in the different non-orientable components of D which map under
7 to points i int(v). Let & be the image in H4(X}‘A) of a generator of H*(X" ,X}’A\xi) =7,
oriented so that (&;, [Xal) = 1. Then generators for the torsion subgroup are the elements &; — &1, for
1=1,...,a—1.

Progf: — This 1s also straightforward. The element & — &, 1s non-zero because it
has non-zero pairing with the Z/2 fundamental class of the i-th component of D. On the
other hand, 2&; = 2&,,,, because both of these classes are equal to the pull-back by 7 of
the generator of H*(X; Z). ]

Because we wish to classify SO(3) bundles, we are also interested in H? with Z/2
coeflicients.

Lemma 2.4. — The group H*(X"; Z/2) lies in an exact sequence
0— HA(X; Z/2) > HA(XA; Z/2) —> (Z/2) — H (X)

where N s the number of components of . The map e is the restriction map to

P z/2)

Jor a collection of fibers S} C D, one_fiom each component of D. If A; € H,(X) denoles the Poincaré
dual of wi(Aly,), then the last map ts given by

(€1,....en) > Y ek € Hi(X: Z/2).

Progf: — With Z/2 coeflicients understood, we have the following commutative
diagram, in which the vertical arrows from the bottom row are given by 7*, the rows
are exact sequences coming from Mayer-Vietoris, and the middle column is a short exact



KHOVANOV HOMOLOGY IS AN UNKNOT-DETECTOR 107

sequence:
(Z/2)Y
- —— HXY) — H’(X\Z) @ H2(D) —— H?*(dv) — -
- —— H*X) —— H*X\X) @ H*(v) — H?’@v) —— ---
The lemma follows from an examination of the diagram. UJ

Let us recall from [5] that SO(3) bundles P on a 4-dimensional simplicial complex
Z can be classified as follows. First, P has a Stiefel-Whitney class wy(P), which can take
on any value in H?(Z; Z/2). Second, the isomorphism classes of bundles with a given
wy(P) = w are acted on transitively by H*(Z; Z). In the basic case of a class in H* rep-
resented by the characteristic function of a single oriented 4-simplex, this action can be
described as altering the bundle on the interior of the simplex by forming a connect sum
with an SO(3) bundle Q — S* with 5, (Q)[S*] = —4 (i.e. the SO(3) bundle associated
to an SU(2) bundle with ¢, = 1). Acting on a bundle P by a class z € H*(Z; Z) alters
p1(P) by —4z. The action is may not be effective if the cohomology of Z has 2-torsion:
according to [5], the kernel of the action is the subgroup

TYZ; w) cHYZ; Z)
given by
THZ; w) ={B(x) U B(x) + Bxuwy(P) | xe H'(Z; Z/2)},

where B is the Bockstein homomorphism H'(Z; Z/2) — H'"'(Z; Z). There are two
corollaries to note concerning the class p;(P) here. First, if H*(Z; Z) contains classes
z with 4z = 0 which do not belong to 7*(Z; w), then an SO(3) bundle P — Z with
wy(P) = w is not determined up to isomorphism by its Pontryagin class. Second, p, (P) is
determined by w = wy(P) to within a coset of the subgroup consisting of multiples of 4;
on in other words, the image of p;(P) of p;(P) in H*(Z; Z/4) is determined by w,(P).
According to [5] again, the determination is

() =Pwy(P)),

where P is the Pontryagin square, H*(Z; Z/2) — H*(Z; Z/4).
Now let us apply this discussion to X4 and the bundles P, arising from singular
bundle data as in Definition 2.1. The conditions of Definition 2.1 imply that wy(Px)
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is non-zero on every 2-sphere fiber in D. A first step in classifying such bundles P, is
to classify the possible classes wy satisfying this condition. Referring to Lemma 2.4, we
obtain:

Proposition 2.5. — Let A C X be a 1-cycle with Z/ 2 coefficients dual to w, (A). A necessary
and sufficient condition that there should exist a bundle Py — X with wo non-zero on every 2-sphere
Sfiber of D s that A represent the zero class in Hy(X; Z/2). When this condition holds the possible
values for wy lie in a single coset of H*(X; Z/2) in H*(X4; Z/2).

Let us fix wy and consider the action of H*(X,; Z) on the isomorphism classes of
bundles P,. We orient all the 4-simplices of X% using the map 7 to X. We also choose
trivializations of A on all the components of X on which it is trivial. We can then act by
the class in H* represented by the characteristic function of a single oriented 4-simplex o
We have the following cases, according to where o lies.

(a) If o is contained in X\v C X%, then we refer to this operation as adding an
winstanton.
(b) If o 1s contained in D, then we have the following subcases:

(1) if the component of D is orientable, so that it is the double of v, and if o
belongs to the distinguished copy of v in D picked out by our trivialization
of A, then we refer this operation as adding an anti-monopole on the given
component;

(1) if the component of D is again orientable, but o lies in the other copy of v,
then we refer to the action of this class as adding a monopole;

(1) if the component of D is not orientable then the characteristic function
of any 4-simplex in D is cohomologous to any other, and we refer to this
operation as adding a monopole.

We have the following dependencies among these operations, stemming from the
fact that the corresponding classes in H*(X% ; Z) are equal:

(a) adding a monopole and an anti-monopole to the same orientable component
1s the same as adding an instanton;

(b) adding two monopoles to the same non-orientable component is the same as
adding an instanton.

Further dependence among these operations arises from the fact that the action
of the subgroup 7*(X,; wy) is trivial. The definition of 7* involves H'(X%; Z/2), and
the latter group is isomorphic to H'(X; Z/2) via 7*. Since H*(X; Z) has no 2-torsion,
the classes B(x) u B(x) are zero. Calculation of the term B (x U wy) leads to the following
interpretation:

(c) For any class x in H'(X; Z/2), let n be the (necessarily even) number of com-
ponents of ¥ on which w;(A) U (x|x) 1s non-zero. Then the effect of adding
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in n monopoles, one on each of these components, is the same as adding n/2
Instantons.

Our description so far gives a complete classification of SO(3) (or PSU(2)) bundles
P, — X, having non-zero wy on the 2-sphere fibers of D. Classifying such bundles
turns out to be equivalent to classifying the (a priori more elaborate) objects described as
singular bundle data in Definition 2.1.

Proposition 2.6. — For fixed A, the forgetful map from the set of isomorphism classes of singular
bundle data to the set of isomorphism classes of SO(3) bundles Pa on X s a byection onto the
wsomorphism classes of bundles P with wo(Pa) odd on the 2-sphere fibers in D.

Progf: — Let Py — X be given. We must show that the restriction of P, to the
non-Hausdorff neighborhood v, (or equivalently, on X%, the restriction of P, to the
2-sphere bundle P) admits a reduction to an O(2) bundle Q4 of the special sort described
in the definition. We must also show that this reduction is unique up to homotopy.

Consider the reduction of P, to the 2-sphere bundle D. The space D is the double
of the tubular neighborhood, and as a sphere-bundle it therefore comes with a 2-valued
section. Fix a point x in ¥ and consider the fiber D, over x, written as the union of 2
disks Dt and D~ whose centers are points x™ and x~ given by this 2-valued section at the
point x. The bundle P, on D, can be described canonically up to homotopy as arising
from a clutching function on the equatorial circle:

y : (D" ND7) - Hom(Pa|,, Pal+).

The target space here is an isometric copy of SO(3). The loop ¥ belongs to the non-trivial
homotopy class by our assumption about wy. The space of loops Map(S', SO(3)) in the
non-zero homotopy class contains inside it the simple closed geodesics; and the inclusion
of the space of these geodesics is an isomorphism on 7; and m, and surjective map on
73, as follows from a standard application of the Morse theory for geodesics. Since ¥ is
2-dimensional, the classification of bundles P, is therefore the same as the classification
of bundles with the additional data of being constructed by clutching functions that are
geodesics on each circle fiber DY N D™, On the other hand, describing P on D by such
clutching functions is equivalent to giving a reduction of P, to an O(2) bundle Q) arising
in the way described in Definition 2.1. O

2.4. Instanton and monopole numbers

Consider again for a moment the case that A is trivial and trivialized, so that we
have a standard copy X, of X inside X,. Inside X} 1s a preferred copy, X, of the sur-
face . The orientation bundle of QA and the orientation bundle of ¥, are canonically
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identified along > . In this situation we can define two characteristic numbers,

1
k= _Z<pl (Pa), [X4])

1
[ = _§<6(QA)’ [Z41).

(Here the Euler class e(Q4) is regarded as taking values in the second cohomology of X
with coefficients twisted by the orientation bundle.) We call these the mstanton number and
the monopole number respectively: in the case that X is orientable, these definitions coincide
with those from the authors earlier papers [18, 21]. Since the O(2) bundle QA has degree
—1 on the fibers of the 2-sphere bundle D, a short calculation allows us to express [ also
in terms of the Pontryagin class of the bundle P,:

1 1
) /= p(P)ID]+ 2 - 3.

(The term X - X is the “self-intersection” number of 2. Recall that this is a well-defined
integer, even when X is non-orientable, as long as X is oriented.) When A is non-trivial,
we cannot define either £ or / in this way. We can always evaluate the Pontryagin class on
[XA] however.

Recall that for an SU(2) bundle on a closed 4-manifold X, the characteristic num-
ber ¢ (P)[X] can be computed by the Chern-Weil formula

# ; tr(Fa A Fy)

where A is any SU(2) connection and the trace is the usual trace on 2-by-2 complex
matrices. For a PSU(2) bundle, the same formula computes —(1/4)p, (P)[X]. (Here we
must identify the Lie algebra of PSU(2) with that of SU(2) and define the trace form
accordingly:)

Consider now a model singular connection A, as defined in Section 2.2, corre-
sponding to singular bundle data Py — X . We wish to interpret the Chern-Weil integral
in terms of the Pontryagin class of Po. We have:

Proposition 2.7. — For a model singular connection A corresponding to singular bundle data
Pr — XA, we have

1 1
— tr(Fa A Fi) = ——5(PA)[X —> -3,
872 Js r(Fa A) 4101( MIXa]+ 6

where [ Xa] € Hy(Xa; Q) 15 again the fundamental class that is invariant under the involution t and
has . [XA] = [X].
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We shall write « for this Chern-Weil integral:
1
5 A)=— tr(Fa A Fy).
(9) K (A) 87_[2/};\ZF(A A)

Proof of the proposition. — A formula for « in terms of characteristic classes was
proved in [18] under the additional conditions that > was orientable and A was trivial.
In that case, after choosing a trivialization of A, the formula from [18] was expressed in
terms of the instanton and monopole numbers, £ and /, as

1 1
K(A)=k+-l——=% -%.
W)=kt ol- 1
(In [18] the formula was written more generally for a singular connection with a
holonomy parameter . The formula above is the special case @ = 1/4.) Using the ex-
pression (4) for the monopole number, this formula becomes

1 1 1
kK(A) == P)IX ]+ o (P)ID]+ -2 2,

which coincides with the formula in the proposition, because [XA] = [X] — (1/2)[D].
Thus the formula in the proposition coincides with the formula from [18] in this special
case. The proof in [18] is essentially a local calculation, so the result in the general case
is the same. U

2.5. The determinant-1 gauge group

If P— X is an SO(3) bundle then there is a bundle G(P) — X with fiber the
group SU(2), associated to P via the adjoint action of SO(3) on SU(2). We refer to the
sections of G(P) — X as determinant-1 gauge transformation, and we write G (P) for the space
of all such sections, the determinant-1 gauge group. The gauge group G (P) acts on the bundle
P by automorphisms, but the map

G(P) — Aut(P)

is not an isomorphism: its kernel is the two-element group {1}, and its cokernel can be
identified with H'(X; Z/2).

Suppose we are now given singular bundle data over the non-Hausdorff'space X,
represented in particular by an SO(3) bundle P, — X . We can consider the group of
determinant-1 gauge transformations, G(P,), in this context. Up to this point, we have
not been specific, but let us now consider simply continuous sections of G(P,) and denote
the corresponding group as G'P.

To understand G'P, consider a 4-dimensional ball neighborhood U of a point in
Y. A section g of the restriction of G(P,) to U is simply a map U — SU(2), in an
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appropriate trivialization. Let U’ be the image of U under the involution ¢ on X, so
that U N U = U\X4. The section g on U determines a section g’ of the same bundle
on U\ X 4. In order for g to extend to a section of G(PA) on UU U’ it is necessary that
g extend across U' N T,. In a trivialization, g’ is an SU(2)-valued function on B*\B?
obtained by applying a discontinuous gauge transformation to the function g : B* —
SU(2). It has the local form

2 (x) = ad(u(6))g(x)

where 6 is an angular coordinate in the normal plane to B> C B and « is the one-
parameter subgroup of SU(2) that respects the reduction to an O(2) bundle Q on U.
In order for g to extend continuously over B?, it is necessary and sufficient that g(x)
commutes with the one-parameter subgroup u(6) when x € B?: that is, g(x) for x € UN
¥, should itself lie in the S' subgroup that preserves the subbundle Q, as well as its
orientation.

To summarize, the bundle of groups G(P,) — X, has a distinguished subbundle
over Xa,

Ha CG(Pp) — Za

whose fiber is the group S'; and the continuous sections of G(P,) take values in this
subbundle along ¥ 5. The local model is an SU(2)-valued function on B* constrained to
take values in S' on B> C B*.

The bundle Hy — X2, is naturally pulled back from 2. Indeed, we can describe
the situation in slightly different terms, without mentioning A. We have an SO(3) bundle
P — X\ X and a reduction of P to an O(2) bundle Q) on v\ X. The bundle G(P) — X\ X
has a distinguished subbundle H over v\ X, namely the bundle whose fiber is the group
S! € SU(2) which preserves Q and its orientation. This subbundle has structure group
£1 and is associated to the orientation bundle of Q). This local system with structure
group £1 on v\ X is pulled back from X itself, so H extends canonically over . Thus,
although the bundle G(P) on X\ X does not extend, its subbundle H does. There is a
topological space G — X obtained as an identification space of G(P) over X\ X and H
over v:

G=(HUG®P)/~.

The fibers of G over X are copies of S' over £ and copies of SU(2) over X\ X. The
group G'? is the space of continuous sections of G — X.

We now wish to understand the component group, 7,(G'?). To begin, note that
we have a restriction map

gtop N H

where H is the space of sections of H — X.
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Lemma 2.8. — The group of components 1wy (H) s isomorphic to Hy (X5 Z ), where Z
is the local system with fiber Z associated to the double-cover A. The map 7wy(G'?) — mwo(H) is
surjective.

Progf- — Over X there is a short exact sequence of sheaves (essentially the real
exponential exact sequence, twisted by the orientation bundle of Q)):

0—>Zy— C'(Rg) - C(H) — 0.

From the resulting long exact sequence, one obtains an isomorphism between m,(H)
and H'(X; Z,), which is isomorphic to H,(X; Z,) by Poincaré duality. (Recall that the
difference between A and the orientation bundle of Q) is the orientation bundle of X.)
Geometrically, this isomorphism is realized by taking a section of H in a given homotopy
class, perturbing it to be transverse to the constant section —1, and then taking the inverse
image of —1. This gives a smooth 1-manifold in ¥ whose normal bundle is identified
with the orientation bundle of H, and whose tangent bundle is therefore identified with
the orientation bundle of A. This 1-manifold, C, represents the element of H,(X; Z,)
corresponding to the given element of 77y (H).

To prove surjectivity, we consider a class in H, (2; Z ) represented by a 1-manifold
C in ¥ whose normal bundle is identified with Rq, and we seek to extend the corre-
sponding section # of H — X to a section g of G — X. We can take % to be supported
in a 2-dimensional tubular neighborhood V, of C, and we seek a g that is supported in
a 4-dimensional tubular neighborhood V; of C. Let V, C V, be smaller 4-dimensional
tubular neighborhood. The section /4 determines, by extension, a section # of G on V/,
and we need to show that #/ lav;, 1s homotopic to the section 1. The fiber of 9V, over a
point x € C is a 2-sphere, and on this 2-sphere /" is equal to —1 on an equatorial circle E
(the circle fiber of the bundle dv — X over x). To specify a standard homotopy from #
to 1 on this 2-sphere it is sufficient to specify a non-vanishing section of Q) over E. To
specify a homotopy on the whole of 9V, we therefore seek a non-vanishing section of the
2-plane bundle Q on the circle bundle T = dv_C — C. This T is a union of tori or a
Klein bottles, and on each component the orientation bundle of Q) is identified with the
orientation bundle of T. The obstruction to there being a section is therefore a collection
of integers £, one for each component. Passing the A-double cover, we find our bundle Q)
extending from the circle bundle to the disk bundle, as the 2-plane bundle QA — valc.
The integer obstructions £ therefore satisty 2k = 0. So £ = 0 and the homotopy exists. [J

Next we look at the kernel of the restriction map G'? — H, which we denote
temporarily by /C, in the exact sequence

1> K— g - H.

Lemma 2.9. — The group of components, 1w, (KC), admits a surjective map
mo(K) = Hi(X\X; Z)
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whose kernel is either trivial or Z/2. The latter occurs precisely when wy(P) = wo(X\X) n
H2(X\X;Z/2).

Progf- — 'This is standard [1]. A representative g for an element of 7,(K) is a
section of G that is 1 on 2. The corresponding element of H; (X \ X; Z) is represented
by g7'(—1), where g 2~ g is a section transverse to — 1. The kernel is generated by a gauge
transformation that is supported in a 4-ball and represents the non-trivial element of
74(SU(2)). This element survives in 77 (K) precisely when the condition on ws holds. [J

2.6. Analysis of singular connections

Having discussed the topology of singular connections, we quickly review some of
the analytic constructions of [21] which in turn use the work in [18]. Fix a closed pair
(X, ¥) and singular bundle data P on (X, ¥), and construct a model singular connection
A; on P — X\ X. (See Section 2.2.) We wish to define a Banach space of connections
modeled on A;. In [18] two approaches to this problem were used, side by side. The
first approach used spaces of connections modeled on I}, while the second approach
used stronger norms. The second approach required us to equip X with a metric with an
orbifold singularity along X rather than a smooth metric.

It 1s the second of the two approaches that is most convenient in the present con-
text. Because we are only concerned with the case that the holonomy parameter o is 1/4,
we can somewhat simplify the treatment: in [18], the authors to used metrics g” on X with
cone angle 27t /v along X, with v a (possibly large) natural number. In the present context
we can simply take v = 2, equipping X with a metric with cone angle 7 along X.

Equipped with such a metric, X can be regarded as an orbifold with point-groups
Z/2 at all points of . We will write X for X when regarded as an orbifold in this way,
and we write g for an orbifold Riemannian metric. The holonomy of A; on small loops
linking ¥ in X \ X is asymptotically of order 2; so in local branched double-covers of
neighborhoods of points of X, the holonomy is asymptotically trivial. We can therefore
take it that P extends to an orbifold bundle P — X and A extends to a smooth orbifold
connection Al in this orbifold SO(3)-bundle. (Note that if we wished to locally extend
an SU(2) bundle rather than an SO(3) bundle in this context, we should have required
a 4-fold branched cover and we would have been led to use a cone angle of /2, which
was the approach in [18].)

Once we have the metric g and our model connection Ay, we can define Sobolev

spaces using the covariant derivatives Vg on the bundles A?(T*X) ® gp, where the Levi-

Civita connection is used in T*X. The Sobolev space I:,% X; AP ® gp) 1s the completion
of space of smooth orbifold sections with respect to the norm

k
2 2
a2, =3 / V5. al’dvol;
X\

kA .
'1 =0
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We fix £ > 3 and we consider a space of connections on P — X\ X defined as
(6) CiX, 2, P)={A, +a|ae L}(X)}.

As in [18, Section 3], the definition of this space of connections can be reformulated to
make clear that it depends only on the singular bundle data P, and does not otherwise
depend on A;. The reader can look there for a full discussion.

This space of connections admits an action by the gauge group

G (X, X, P)

which is the completion in the t,% .1 topology of the group § (P) of smooth, determinant-1
gauge transformations of the orbifold bundle. The fact that this is a Banach Lie group act-
ing smoothly on C;(X, X, P) is a consequence of multiplication theorems just as in [18].
Note that the center 1 in SU(2) acts trivially on C; via constant gauge transformations.
Following the usual gauge theory nomenclature we call a connection whose stabilizer is
exactly 1 urreducible and otherwise we call it reducible. The homotopy-type of the gauge
group G;41 (X, X, P) coincides with that of G*P, the group of continuous, determinant-1
gauge transformations considered earlier.

Here is the Fredholm package for the present situation. Let A € C,(X, X, P) be a
singular connection on (X, ¥) equipped with the metric g, and let ;" be the linearized
anti-self-duality operator acting on gp-valued 1-forms, defined using the metric g. Let D
be the operator

@) D=df &—d;
acting on the spaces
LXK @A) - L (X gp ® (AT @ A").
Then in the orbifold setting D is a Fredholm operator. (See for example [15] and compare

with [18, Proposition 4.17].)
We now wish to define a moduli space of anti-self-dual connections as

MX, 2,P) ={A € C; | F{ =0}/Gps1.

Following [18], there is a Kuranishi model for the neighborhood of a connection [A] in
M(X, 2, P) described by a Fredholm complex. The Kuranishi theory then tells us, in
particular, that if A is irreducible and the operator dy is surjective, then a neighborhood
of [A] in M(X, X, P) is a smooth manifold, and its dimension is equal to the index of D.



116 P. B. KRONHEIMER, T. S. MROWKA

2.7. Examples of moduli spaces

The quotient of CP’ by the action of complex conjugation can be identified with
S*, containing a copy of RP? as branch locus. The self-intersection number of this RP? in
S*is +2. The palr (S*, RP?) obtains an orbifold metric from the standard Riemannian
metric on GP’. We shall describe the corresponding moduli spaces M(S*, RP?, P) for
various choices of singular bundle data P.

On CP’ with the standard Riemannian metric, there is a unique anti-self-dual
SO(3) connection with k = 1/4. This connection Agp? is reducible and has non-zero
wy: 1t splits as R @ L, where L is an oriented 2- plane bundle with e(L)[CPl] = 1. (See
[7] for example.) We can view L as the tautological hne bundle on CP and as such

we see that the action of complex conjugation on CP’ lifts to an 1nvolut10n on L that is
orientation-reversing on the fibers. This involution preserves the connection. Extending
the involution to act as —1 on the R summand, we obtain an involution on the SO(3)
bundle, preserving the connection. The quotient by this involution is an anti-self-dual
connection A on S*\ RP? for the orbifold metric. It has ¥ = 1/8. This orbifold connec-
tion corresponds to singular bundle data P on (S*, RP?) with A trivial. The connection
is irreducible, and it is regular (because ™ is surjective when coupled to A g2 upstairs).
This anti-self-dual connection is unique, in the following strong sense, amongst
solutions with A trivial and « = 1/8. To explain this, suppose that [A] € M(S*, RP’, P)
and [A’] € M(S*, RP%, P) are two solutions with k = 1 /8, and that trivializations of the
corresponding local systems A and A’ are given. When lifted to C_PQ, both solutions must
give the same SO(3) connection A g2 up to gauge transformation, in the bundle R @ L.

There are two different ways to lift the involution to L. on C_PQ, differing in overall sign,
but these two involutions on L are intertwined by multiplication by ¢ on L. It follows
that, as SO(3)-bundles with connection on S* \ RP?, the pairs (P, A) and (P', A’) are
isomorphic. Such an isomorphism of bundles with connection extends canonically to an
isomorphism ¥ from P to P'. A priori, ¥ may not preserve the given trivializations of A
and A’. However, the connection A on P has structure group which reduces to O(2), so
it has a Z/2 stabilizer in the SO(3) gauge group on S* \ RP”. The non-trivial element of
this stabilizer is an automorphism of P that extends to an automorphism of P, covering
the non-trivial involution ¢ on XA. So ¥ can always be chosen to preserve the chosen
trivializations.

When A is trivialized, singular bundle data P is classified by the evaluation of
p1(Pa) on [D] and on [X ] in the notation of Section 2.4, or equivalently by its instanton
and monopole numbers £ and /. The uniqueness of [A] means that the corresponding
singular bundle data P must be invariant under the involution ¢, which in turn means that
p1(PA)[D] must be zero. Using the formulae for £, [ and «, we see that P has £ =0 and
[ =1/2; or equivalently, p;(PA) = 0. We summarize this discussion with a proposition.
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Proposition 2.10. — Let (S*, RP?) be as above, so that the branched double-cover is C._PQ. Fix
a trivial and trivialized double-cover A of RP?, and let Sk be the corresponding space. Then, amongst
singular bundle data with k = 1/8, there is exactly one Pn — S} with a non-empty moduli space,
namely the one with p;(Pa) = 0 in H*(SY) = Z @ Z. The corresponding moduli space is a single
point, corresponding to an irreducible, regular solution.

On the same pair (S*, RP?), there is also a solution in a moduli space correspond-
ing to singular bundle data P with A non-trivial. This solution can be described in a

similar manner to the previous one, but starting with #rvial SO(3) bundle on C_PQ, acted
on by complex conjugation, lifted as an involution on the bundle as an element of order
2 in SO(3). The resulting solution on (S*, RP?) has k = 0 and A non-trivial. Knowing
that k = 0 is enough to pin down P, — S} up to isomorphism in this case, because
HA‘(S‘Z) is now Z. This solution [B] is reducible. It is regular, for similar reasons as arise
in the previous case. The index of D in this case is therefore —1.

One can also consider the quotient of CP?, rather then C_PQ, with respect to the
same involution, which leads to a pair (S, RP%) with RP? -RP(Q) = —2. There 1s an iso-
lated anti-self-dual PSU(2) connection on CP?, arising from the U(2) connection given
by the Levi-Civita derivative in TCP?. This gives rise to a solution on (S*, RP?) with A
trivial and k¥ = 3/8. As solutions with A trivialized (rather than just trivial), this solution
gives rise to two different solutions, with (&, [) = (0, 1/2) and (k, ) = (1, —3/2), as the
reader can verify. The operator D is again invertible for these two solutions. The flat con-
nection [B] on CP? \RP2 provides another solution, with k = 0 and A non-trivial. This
solution is reducible and the operator 43 now has 2-dimensional cokernel, so that D has
index —3.

2.8. The dimension formula

We next compute the index of the operator D for a connection A in C(X, X, P).
The index of D will coincide with the dimension of the moduli space M(X, Z, P) in the
neighborhood of any irreducible, regular solution.

Lemma 2.11. — The index of D is given by
3 1
8k (A) — E(X(X) +0(X)) + x(2)+ 5(2 53
where K s again the action (5).

Proof: — Tor the case of orientable surfaces with A trivial, this formula reduces to
the formula proved in [18], where it appears as

8) 8k+4l—g(X(X)+a(X))+x(E).
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Just as in [18], the general case can be proved by repeatedly applying excision and the
homotopy invariance of the index, to reduce the problem to a few model cases. In addi-
tion to the model cases from the proofin [18], it is now necessary to treat one model case
in which w;(A)? is non-zero on X. Such an example is provided by the flat connection
[B] on (S*, RP?) from the previous subsection. In this case, k is 0 and the formula in the
lemma above predicts that the index of D should be —3. This is indeed the index of D in
this case, as we have already seen. 0J

2.9. Onentability of moduli spaces

We continue to consider the moduli space M (X, X, P) associated to a closed pair
(X, ) equipped with an orbifold metric and singular bundle data P. The irreducible,
regular solutions form a subset of M(X, 2, P) that is a smooth manifold of the dimension
given by Lemma 2.11, and our next objective is to show that this manifold is orientable.
As usual, the orientability of the moduli space is better expressed as the triviality of the
real determinant line of the family of operators D over the space B} (X, Z,P) of all
irreducible connections modulo the determinant-1 gauge group.

Proposition 2.12. — The real line bundle detD of the family of operators D over
B (X, X, P) is trivial.

Proof. — The proof follows that of the corresponding result in [19], which in turn
is based on [6]. We must show that the determinant line is orientable along all closed
loops in B} (X, X, P). The fundamental group of B} (X, X, P) is isomorphic to the group
of components of G, (X, £, P)/{x1}. The group 73(G;+1(X, X, P)) is the same as
70(G'P), for which explicit generators can be extracted from Lemmas 2.8 and 2.9. These
generators correspond to loops in X\ X, loops in £ along which A is trivial, and a possi-
ble additional Z/2. Of these, the only type of generator that is new in the present paper
is a loop in ¥ along which A is trivial but ¥ is non-orientable. (The orientable case is
essentially dealt with in [19].)

So let y be such a loop in ¥ along which A is trivialized. There is an element g
in 779(G;41) which maps to the class [y] in H;(X;Z,) under the map in Lemma 2.8.
We wish to describe loop y* in B} that represents a corresponding element in 7 (B;).
As in [19, Appendix 1(i)], we construct y* by gluing in a monopole and “dragging it
around y”. To do this, we first let P’ be singular bundle data such that P is obtained from
P’ by adding a monopole. We fix a connection A" in P'. We let ] be a standard solution on
(S*, S%) with monopole number 1 and instanton number 0, carried by singular bundle
data with A trivialized. For each x in y, we form a connected sum of pairs,

(X, Z)#.(S4,8%)

carrying a connection A(x) = A'#J. Even though ¥ is non-orientable along A, a closed
loop in By(X, T, P) can be constructed this way, because the solution on (S*, S?) admits
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a symmetry which reverses the orientation of S* while preserving the trivialization of A.
This is the required loop y*. If we write 84(,) and 84/ for the determinant lines of D for
the two connections, then (much as in [19]) we have the relation

I =0x @ det(T, X ®R DS Rg)

where the first R can be interpreted as the scale parameter in the gluing and the factor
R, is the real orientation bundle of Q, which arises as the tangent space to the S' gluing
parameter. Since the product of the orientation bundles of ¥ and Q) is trivial along y
(being the orientation bundle of A), we see that § is trivial along the loop y*. U

The factor det(T, X & R® Rg) above can be interpreted as the orientation line on
the moduli space of framed singular instantons on the orbifold (S*, S?) (or in other words,
the moduli space of finite-action solutions on (R*, R?) modulo gauge transformations
that are asymptotic to 1 at infinity). This is a complex space, and therefore has a preferred
orientation, for any choice of instanton and monopole charges. In the situation that arises
in the proof of the previous proposition, there is therefore a preferred way to orient 8,
given an orientation of §,-. To make use of this, we consider the following setup. Let P be
singular bundle data, given on (X, X), and let us consider the set of pairs (P, g'), where
P’ is another choice of singular bundle data and

g Plxaw) = Plxaw)

is an isomorphism defined on the complement of a finite set x'. We say that (P, ¢') is
isomorphic to (P”, g”) if there is an isomorphism of singular bundle data, #: P’ — P”,
such that the composite g” o (¢')~! can be lifted to a determinant-1 gauge transformation
on its domain of definition, X, \ (x' Ux").

Definition 2.13. — We refer to such a parr (P, g") as a P-marked bundle.

The classification of the isomorphism classes of P-marked bundles on (X, X)
can be deduced from the material of Section 2.3. Every P-marked bundle can be ob-
tained from P by “adding instantons and monopoles”. Furthermore, as in (a) and (b)
on p. 108, adding a monopole and an anti-monopole to the same orientable compo-
nent of X is equivalent to adding an instanton, while adding two monopoles to the same
non-orientable component is also the same as adding an instanton. There are no other
relations: in particular, because of the determinant-1 condition in our definition of the
equivalence relation, there is no counterpart here of the relation ¢ from p. 108. We now
have, as in [18]:

Proposition 2.14. — Using the complex orientations of the framed moduli spaces on (S*, S*), an
orientation_for the determinant line of D over B(X, X, P) determines an orientation of the determinant
line also over B(X, X, P") for all P-marked bundles (P, g"). These orientations are compatible with
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equivalence of P-marked bundles, in that if b : P — P is an equivalence (as above), then the induced
map on the corresponding determinant line is orientation-preserving.

Remark. — The reason for the slightly complex setup in the above proposition is
that we do not know in complete generality whether gauge transformations that do not
belong to the determinant-1 gauge group give rise to orientation-preserving maps on the
moduli spaces M(X, X, P). We will later obtain some partial results in this direction, in
Section 5.1; but those results apply, as they stand, only to the case that X is orientable.

3. Singular instantons and Floer homology for knots

In this section we review how to adapt the gauge theory for singular connections
on pairs (X, X) to the three-dimensional case of a link K in a 3-manifold Y, as well as the
case of a 4-manifold with cylindrical ends. This is all adapted from [21]: as in Section 2,
the new ingredient is that we are no longer assuming that our SO(3) bundle P on Y\K
extends over K.

3.1. Swngular connections in the 3-dimensional case

We fix a closed, oriented, connected three manifold Y containing a knot or link K.
The definition of singular bundle data from Definition 2.1 adapts in a straightforward way
to this 3-dimensional case: such data consists of a double-cover Ky — K, an SO(3)
bundle P, on the corresponding non-Hausdorff space Y, and a reduction of structure
group to O(2) in a neighborhood of Ky C Y, taking a standard form locally along K.
Note that K is always orientable, but has not been oriented. A choice of orientation for
K will fix an isomorphism between the local system A and the orientation bundle of
the O(2) reduction Q) in the neighborhood of K. For a given A, we can also form the
Hausdorff space Y%, which contains a copy of 2-sphere bundle over K (non-orientable if
A is non-trivial). The SO(3)-bundle PA has wy non-zero on the S? fibers. Such wys form
an affine copy of H*(Y; Z/2) in H?(Y,; Z/2), and they classify singular bundle data for
the given A.

Equipping Y with an orbifold structure along K with cone angle 7 /2 and a com-
patible orbifold Riemannian metric g, we can regard singular bundle data P as determin-
ing an orbifold bundle P — Y, as in the 4-dimensional case. Thus we construct Sobolev
spaces

L2(Y; g5 ® AY)

as before, leading to spaces of SO(3) connections C;(Y, K, P) and determinant-1 gauge
transformations G, (Y, K, P). The space of connections C;(Y, K, P) is an affine space,
and on the tangent space

TeC(Y, K, P) = 12(Y; g5 ® T*Y)
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we define an L? inner product (independent of B) by

9) (b, 0')12 = / —tr(xb A D).
Y

Here tr denotes the Killing form on su(2) and the Hodge star is the one defined by the
singular metric g. We have the Chern-Simons functional on C;(Y, K, P) characterized by

(grad CS)p = *F.

Critical points of CS are the flat connections in C,(Y, K, P). We denote the set of gauge
equivalence classes of critical points by € = €(Y, K, P).

3.2. The components of the gauge group on a three manifold

We can analyze the component group 74(G;. (Y, K, P)) much as we did in the
4-dimensional case. The group G;1 (Y, K, P) is homotopy equivalent to G'?, the con-
tinuous gauge transformations of P, respecting the reduction, and we have a short exact
sequence,

0—>Z— m1y(Gr1 (Y,K,P)) > Hy(K; Z,) — 0.

(See Lemma 2.8.) The Z in the kernel has a generator g, represented by a gauge transfor-
mation supported in a ball disjoint from K. The group Hy(K; Z,) arises as 7 (H), where
H is the group of sections of the bundle Hy — K with fiber S'. The group Hy(K; Z,)
1s a direct sum of one copy of Z for each component of K on which A is trivial and one
copy of Z/2 for each component on which A is non-trivial.

The above sequence is not split in general. We can express the component group
70(Gi+1(Y, K, P)) as having generators g (in the kernel) and one generator #; for each
component K; of K, subject to the relations

2h; =4

whenever Ak, is non-trivial.
The Chern-Simons functional is invariant under the identity component of the
gauge group. Under the generators g; and #; it behaves as follows:
CS(g1(A)) = CS(A) — 4n?
CS(h(A)) = CS(A) — 27°.



122 P B. KRONHEIMER, T. S. MROWKA
3.3. Reducible connections and the non-integral condition

For the construction of Floer homology it is important to understand whether there
are reducible connections in C,(Y, K, P), or at least whether the critical points of CS are
irreducible.

This is discussed in [21] for the case that P extends to Y (or equivalently, the case
that A is trivial). See in particular the “non-integral condition” of [21, Definition 3.28].
For this paper, we make the following adaptation of the definition, whose consequences
are summarized in the following proposition.

Defination 3.1. — Let singular bundle data P on (Y, K) be given. We say that an embedded
closed orented surface ¥ s a non-integral surface if either

— X s disjoint_from K and wq(P) is non-zero on X5 or
— X 15 transverse to K and K - 2 15 odd.

We say that P satisfies the non-integral condition if there is a non-integral surface ¥ in'Y.

Proposition 3.2. — If singular bundle data P on (Y, K) satisfies the non-integral condition,
then the Chern-Simons functional on C,(Y, K, P) has no reducible critical points. Furthermore, if A s
non-trivial on any component of K, then a stronger conclusion holds: the configuration space C,(Y, K, P)
contains no reducible connections at all.

Proof: — Yor the first part, the point is that there are already no reducible flat
connections in the restriction of P to X: since A becomes trivial when restricting to the
surface, there is nothing new in this statement beyond the familiar case where P extends
across K.

If A is non-trivial on a component K" of K, then if T" is a torus which is the
boundary of a small tubular neighborhood of K" we have

(wy(P), [T']) # 0.

Since 1" is disjoint from K, we see that 1" is a non-integral surface, and so the non-
integral condition is automatically satisfied. The asymptotic holonomy group of a con-
nection in Cx(Y, K, P) in the neighborhood of K’ lies in O(2) and contains both (a) an
element of SO(2) C O(2) of order 2 (the meridional holonomy), and (b) an element of
0O(2) \ SO(2), namely the holonomy along a longitude. Such a connection therefore
cannot be reducible, irrespective of whether it is flat or not. 0J

3.4. Perturbations

We now introduce standard perturbations of the Chern-Simons functional to
achieve suitable transversality properties for the both the set of critical points and the
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moduli spaces of trajectories for the formal gradient flow. Section 3.2 of [21] explains
how to do this, following work of Taubes [33] and Donaldson; and the approach de-
scribed there needs almost no modification in the present context.

The basic function used in constructing perturbations is obtained as follows.
Choose a lift of the bundle P — Y \ K to a U(2) bundle P—>Y \ K, and fix a con-
nection 6 on det P. Each B in Ci(Y, K, P) then gives rise to a connection BinP inducing
the connection 6 in det P. Take an immersion ¢ : S' x D? to Y\K, and choose a base
point p € S'. For each x € D? the holonomy of a connection B about S' x x starting at
(p, x) gives an element Holx(f%) € U(2). Taking a class function 4 : U(2) — R, we obtain

a gauge-invariant function
H,:C.(Y,K,P)— R

as the composite H,(B) = / o Hol,(B). For analytic purposes it is useful to mollify this
function by introducing

Jo(B) = / H.(B)u
D2

where  is choice of volume form on D? which we take to be supported in the interior of
D? and have integral 1.

More generally taking a collection of such immersions g = (¢, .. ., ¢;) so that they
all agree on p x D?, the holonomy about the / loops determined by x € D? gives a map
Hol, : C; — U(2)". Now taking a conjugation invariant function 4 : U(2)’ — R we obtain
again a gauge invariant function H, = o Hol,: C; — R. Mollifying this we obtain

Jq:CG:(Y,K,P) = R

Ja(B) =/ H.(B)u.
D2

These are smooth gauge invariant functions on C and are called ¢ylinder functions.

Our typical perturbation / will be an infinite linear combination of such cylinder
functions. In [21] it is explained how to construct an infinite collection ¢’ of immersions
and a separable Banach space P of sequences m = {r;}, with norm

Illp =) Cilmi|
i
such that for each 7 € P, the sum

ﬁ, ZZJT[]‘;]:'

is convergent and defines a smooth, bounded function f; on C;. Furthermore, the formal
L? gradient of £, defines a smooth vector field on the Banach space C;, which we denote
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by V. The analytic properties that we require for V, (all of which can be achieved by a
suitable choice of P) are summarized in [21, Proposition 3.7].

We refer to a function f; of this sort as a holonomy perturbation. Given such a function,
we then consider the perturbed Chern-Simons functional CS + f;. The set of gauge
equivalence classes of critical points for the perturbed functional is denoted

Q:JT (Ya Ka P, p) C Bk(Y’ K7 P),

or simply as €,. Regarding the utility of these holonomy perturbations, P we have [21,
Proposition 3.12]:

Proposition 3.3. — There is a residual subset of the Banach space P such that for all v in
this subset, all the irreducible critical points of the perturbed functional CS + f in C*(Y, K, P, p) are
non-degenerate in the directions transverse to the gauge orbits.

This says nothing yet about the reducible critical points. We will be working eventu-
ally with configurations (Y, K, P) satisfying the non-integral condition of Definition 3.1.
In case the bundle does not extend there can be no reducible connections at all (by the
second part of Proposition 3.2), but in the case where P does extend, there may be re-
ducible critical points if the perturbation is large. However, for small perturbations, there
are none:

Lemma 3.4 (Lemma 3.11 of [21]). — Suppose (Y, K, P) satisfies the non-integral condi-
tion. Then there exists € > O such that for all w with |7 ||p < €, the cnitical points of CS + f n
C.(Y, K, P) are all irreducible.

This lemma is corollary of the compactness properties of the perturbed critical set:
in particular, the fact that the projection

c,—>P

from the parametrized critical-point set €, C P x Bi(Y, K, P) is a proper map. This
properness also ensures that the €, is finite whenever all the critical points of the per-
turbed functional are non-degenerate.

3.5. Trajectories for the perturbed gradient flow

Given a holonomy perturbation f; for the Chern-Simons functional on the space
C,(Y,K,P), we get a perturbation of the anti-self-duality equations on the cylinder. The
“cylinder” here is the product pair,

(Z,S) =R x (Y, K)
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viewed as a 4-manifold with an embedded surface. Since Y is equipped with a singular
Riemannian metric to become an orbifold Y, so also Z obtains a product orbifold struc-
ture: it becomes an orbifold Z with singularity along S, just as in our discussion from
Section 2.6 for a closed pair (X, X).

To write down the perturbed equations, let the 4-dimensional connection be ex-
pressed as

A =B+,

with B a /-dependent (orbifold) connection on (Y, K) and ¢ a ¢-dependent section of gj.
We write

Va(A) =P, (dt AV (B))

where P, the projection onto the self-dual 2-forms, and V, (B) is viewed as a gp-valued
l-form on R X Y which evaluates to zero on multiples of d/dt. The 4-dimensional self-
duality equations on R x Y, perturbed by the holonomy perturbation V,, are the equa-
tions

(10) FL+ V. (A) =0.

These equations are invariant under the 4-dimensional gauge group. Solutions to the
downward gradient flow equations for the perturbed Chern-Simons functional corre-
spond to solutions of these equations which are in temporal gauge (i.e. have ¢ = 0 in the
above decomposition of A). The detailed mapping properties of V. and its differential
are given in Proposition 3.15 of [21].

Let 7 be chosen so that all critical points in €, are irreducible and non-degenerate.
Let B, and By be critical points in C,(Y, K, P), and let B, By € €, be their gauge-
equivalence classes. Let A, be a connection on R x Y which agrees with the pull-back of
B, and By for large negative and large positive ¢ respectively. The connection A, deter-
mines a path y : R — Bi(Y, K, P), from B, to B, which is constant outside a compact
set. The relative homotopy class

zem (B, Bi, Bo)

of the path y depends on the choice of B, and By within their gauge orbit. Given A, we
can construct a space of connections

C/C,y(za S’ P! Bls BO)
as the affine space

(AJA=A, el (L TZ®gp) ).
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There is a corresponding gauge group, the space of sections of the bundle G(P) — Z\S
defined by

Gt (Z.S.P) = {g] Vag..... Vige L} (2\S)).
We have the quotient space
Bk,Z(Z7 S’ P; IBI’ IBO) = Ck,]/(z’ 89 P; B17 BO)/gk+l(Za Sv P)‘

Here z again denotes the homotopy class of y in 7, (B (Y, K, P); B1, Bo).

We can now construct the moduli space of solutions to the perturbed anti-self-
duality equations (the w-ASD connections) as a subspace of the above space of connec-
tions modulo gauge:

M.(B1, By) = {[A] € By..(Z. S, P; B1. By) | FX + Va2 (A) =0}.

This space is homeomorphic to the space of trajectories of the formal downward
gradient-flow equations for CS + f; running from B; to B, in the relative homotopy
class z. Taking the union over all z, we write

M(B1, Bo) = M.(B1. Bo).-

The action of R by translations on R x Y induces an action on M(8,, By). The action is
free except in the case of M(f;, B1) and constant trajectory. The quotient of the space of
non-constant solutions by this action of R is denoted M(,B 1, Bo) and typical elements are
denoted [A].

The linearization of the w-ASD condition at a connection A in C; , (B;, By) is the
map

df + DV, : f‘i’A(Z; A ®gp) = 12 (Z; AT ®gp).
When B, and B, are irreducible and non-degenerate, we have a good Fredholm theory

for this linearization together with gauge fixing. For A as above, we write (as in (7), but
now with the perturbation)

Da=(d{ +DV,) ® —&}
which we view as an operator

LAZ: A @ gp) > L (Zi (AT @A) @ gyp)
Viewed this was, D, is a Fredholm operator. When D, is surjective we say that A is a
regular solution, and in this case M,(B, Bo) is a smooth manifold near the gauge equiv-

alence class of [A], of dimension equal to the index of Ds. The index of the operator,
which can be interpreted as a spectral flow, will be denoted by

gr.(B1, Po)-
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We will need the moduli spaces of fixed relative grading

M@ Bo)a= | M.(Bi. Bo).

zlgr.=d

For the four-dimensional equations we have the following transversality result.

Proposition 3.5 ([21, Proposition 3.18]). — Suppose that 1 is a perturbation such that all the
eritical points in €, are non-degenerate and have stabilizer £1. Then there exists w € P such that:

(@) fx =Jx, in a neghborhood of all the critical points of CS + f,;
(b) the set of critical points for these two perturbations are the same, so that €, = €, ;
(c) Jor all critical points By and By i &, and all paths z, the moduli spaces M. (B, Bo) for

the perturbation 7t are regular.

From this point on, we will always suppose that our perturbation has been chosen
in this way. For reference, we state:

Hypothesis 3.6. — We assume that Y s a connected, oriented, closed 3-manifold, that K s
a link in Y (possibly emply), and that P is singular bundle data satisfying the non-integral condition.
We suppose that an orbifold metric g and perturbation & € P are chosen so that €, consists only of
non-degenerate, irreductble critical points, and all the moduli spaces M_(B1, Bo) are regular.

3.6. Orientations and Floer homology

The Fredholm operators Dy form a family over the space B, .(B1, Bo) whose de-
terminant line det(D,) is orientable. This follows from the corresponding result for the
closed pair (X, X) =S' x (Y, K) (Proposition 2.12) by an application of excision. It fol-
lows that the (regular) moduli space M. (B, By) 1s an orientable manifold. Moreover, given
two different paths z and 2’ between the same critical points, if we choose an orientation
for the determinant line over B; (B, o), then it canonically orients the determinant
line over B; (B, By) also: this follows from the corresponding result for closed manifolds
(Proposition 2.14), because any two paths are related by the addition of instantons and
monopoles. We may therefore define

A(Bi, Bo)

as the two-element set of orientations of det(Dy,) over B, .(B1, Bo), with the understand-
ing that this is independent of z.

If B; and By are arbitrary connections in B;(Y, K, P) rather than critical points,
then we can still define A(B;, By) in essentially the same way. The only point to take care
of is that, if the Hessian of the perturbed functional is singular at either B, or By, then
the corresponding operator Dy is not Fredholm on the usual Sobolev spaces. As in [21],
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we adopt the convention that D, is considered as a Fredholm operator acting on the
weighted Sobolev spaces

(11) N

for a small positive weight €; and we then define A(B,, By) for any B; using this conven-
tion.
In particular, we can choose any basepoint 6 in B,(Y, K, P) and define

(12) A(B) = A0, B)

for any critical point 8. Without further input, there is no a priori way to rid this definition
of its dependence on 6. In the case considered in [21], when K was oriented and A was
trivial, we had a preferred choice of 8 arising from a reducible connection. When A is
non-trivial however, the space B;(Y, K, P) contains no reducibles, so an arbitrary choice
of 0 1s involved.

Having defined A(f) in this way, we have canonical identifications

ABr, Bo) = A(BDA(Bo),

where the product on the right is the usual product of 2-element sets (defined, for
example, as the set of bijections from A(B;) to A(By)). What this implies is that a
choice of orientation for a component of the moduli space M. (8, By) (or equivalently, a
choice of trivializations of the determinant on By (81, By)) determines an identification
A(B1) = A(By). In particular, each one-dimensional connected component

[A] C M(B1, Bo)1,

being just a copy of R canonically oriented by the action of translations, determines an
isomorphism A(B)) — A(By). As in [20, 21], we denote by ZA(B) the infinite cyclic
group whose two generators are the two elements of A(B), and we denote by

€[A]: ZA(B)) — ZA(By)

the resulting isomorphism of groups.

We now have everything we need to define Floer homology groups. Let (Y, K) be
an unoriented link in a closed, oriented, connected 3-manifold Y, and let P be singular
bundle data satisfying the non-integral condition, Definition 3.1. Let a metric g and per-
turbation 7 be chosen satisfying Hypothesis 3.6. Finally, let a basepoint 6 in B,(Y, K, P)
be chosen. Then we define the chain complex (C.(Y, K, P), 9) of free abelian groups by
setting

(13) C.(Y, K, P)= P ZAB),

BeCx



KHOVANOV HOMOLOGY IS AN UNKNOT-DETECTOR 129

(14) a= Y > €Al

(B1,£0,2) [A]CM(B1,Bo)

where the first sum runs over all triples with gr_ (81, 8p) = 1. That this is a finite sum
follows from the compactness theorem, Corollary 3.25 of [21]. As emphasized in [21],
the compactness result here depends crucially on that fact that our choice of holonomy
for our singular connections satisfies a “monotone” condition: that is, the formula for the
dimension of moduli spaces in Lemma 2.11 involves the topology of the bundle P only
though the action «.

Definition 3.7. — For (Y, K) as above, with singular bundle data P satisfying the non-integral
condition, Definition 3.1, and choice of g, T and 0 as above, we define the instanton Floer homology

group
I(Y,K,P)
to be the homology of the complex (C(Y, K, P), 9).

As usual, we have presented the definition of I(Y, K, P) as depending on some
auxiliary choices. The standard type of cobordism argument (using the material from the
following subsection) shows that I(Y, K, P) is independent of the choice of g, w and 6.
There is a slight difference from the usual presentation of (for example) [21] however,
which stems from our lack of a canonical choice of basepoint 8. The result of this is that,
if (g,7,0) and (¢, ', 0") are two choices for the auxiliary data, then the isomorphism
between the corresponding homology groups I(Y, K, P) and I'(Y, K, P) is well-defined
only up to an overall choice of sign.

3.7. Cobordisms and manyfolds with cylindrical ends

Let (W, S) be a cobordism of pairs, from (Y, K,) to (Yo, Ky). We assume that W
is connected and oriented, but S need not be orientable. Let P be singular bundle data on

(W, S), and let P; be its restriction to (Y;, K;). We shall recall the standard constructions
whereby (W, S, P) induces a map on the Floer homology groups,
IW, S, P) : I(Y,, K, Py) — I(Yo, Ko, Py),

which is well-defined up to an overall sign.
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To set this up, we assume that auxiliary data is given,

a; = @uﬂl,@l)
a) = @0, 7o, 00),
on (Y, K;,P;) and (Yo, Ky, Py) respectively, and that our standing assumptions hold

(Hypothesis 3.6). We equip the interior of W with an orbifold metric g (with orbifold
singularity along S) having two cylindrical ends

(15)

(—00, 0] x Y,

[0, 00) x Y,
where the metric g is given by

ar + g

ar* + g

respectively. To do this, we consider an open collar neighborhood [0, 1) x 3?1 of \?1 , with
coordinate 7 for the first factor, and we set ¢ = In(r). Symmetrically, we take an open
collar (—1, 0] x 3?0 at the other end, and set t = —In(—7) there.

Now we make the following choices (an adaptation, for the case of manifolds with
boundary, of the definition of P-marked bundle from Definition 2.13. We choose singular
bundle data P’ on (W, S) differing from P by the addition of instantons and monopoles,
so that P and P’ are identified outside a finite set by a preferred map ¢ : P’ — P. We
choose gauge representatives B} and B, for B, and By, as connections in P, and P,
respectively. And we choose an orbifold connection A, in P’ that coincides with the pull-
back of B} and By, in the collar neighborhoods of the two ends. We can then construct as
usual an affine space of connections

C(P',A)
consisting of all A with
A=A LA (W A' ®gp)

where the Sobolev space is defined using the cylindrical-end metric g. As in the case of
closed manifolds (Definition 2.13), we say that choices (P’, B}, B;) and (P”, B}, Bj)) are
isomorphic if there is a determinant-1 gauge transformation P* — P” pulling back B
to Bl. (The notion of “determinant 1” has meaning here, because both P’ and P” are
identified with P outside a finite set.) We denote by z a typical isomorphism-classes of
choices:

z=[P, B}, Byl
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The quotient of C;(P’, A,) by the determinant-1 gauge group G4 (P, A,) depends only

on z, and we write
B.(W,S,P; B1, Bo) = Ci(P', A) [ Gri (P, A,).

Remark. — The discussion here is not quite standard. If S has no closed compo-
nents, then every isomorphism class z has a representative [P, By, B;] in which the sin-
gular bundle data is P. If S has closed components however, then we must allow P’ # P
in order to allow differing monopole charges on the closed components. In the case of a
cylinder (W, S) =1x (Y, K), the set of z’s coincides with the previous space of homotopy-
classes of paths from B, to By.

The perturbed version of the ASD equations that we shall use 1s defined as follow
7; be the chosen holonomy perturbations on the Y,;. We consider a perturbation of the

4-dimensional equations on W
(16) Fi+V(A) =0

where Vis a holonomy-perturbation supported on the cylindrical ends. To define this on
the cylindrical end [0, 00) X Yy, we take the given 7, from the auxiliary data a; and an
additional term 7r;. We then set

(17) V) = o)V, (A) + Y (OV (A),

where ¢ (¢) is a cut-off function equal to 1 on [1, 00) and equal to 0 near ¢ = 0, while ¥ (¢)
is a bump-function supported in [0, 1]. The perturbation is defined similarly on the other
end, using 7; and an additional 7. This sort of perturbation is used in [20, Section 24|
and again in [21]. We write

Mz(W7 S’ P» :817 IBO) C Bk,z(w7 S7 Pa 1317 IBO)

for the moduli space of solutions to the perturbed anti-self-duality equations. Note that
7/ contributes a perturbation that is compactly supported in the cobordism. We refer to
these additional terms as secondary perturbations.

Just as in the cylindrical case, we can combine the linearization of the left hand side
of (16) with gauge fixing to obtain a Fredholm operator D,. We say that the moduli space
is regular if D, is surjective at all solutions. Regular moduli spaces are smooth manifolds,
of dimension equal to the index of D, and we write as

gr.(W, S, P; B1, Bo).

We again set

MW, S, P; 81, Bo)a = | M.(W, S, P; B, o).

gr/::d
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The arguments use to prove Proposition 24.4.7 of [20] can be used to prove the following
genericity result.

Proposition 3.8. — Let 11, 0o be perturbations satisfying Hypothesis 3.6. Let (W, S, P) be
guen, together with a cylindrical-end metric g as above. Then there are secondary perturbations 7|, 7

so that for all By, By and z, all the moduli spaces M.(W, S, P; By, Bo) of solutions to the perturbed
equations (16) are regular.

3.8. Maps from cobordisms

The moduli spaces M. (W, S, P; B, By) are orientable, because the determinant
line det(Dy) over B.(W, S, P; B, By) is trivial. Furthermore, when we orient det(Dy) for
one particular [A] in B.(W, S, P; B, B), then this canonically determines an orientation
for the moduli spaces M (W, S, P; B, By) for all other 7.

To see what is involved in specifying an orientation for the moduli spaces, let us
recall first that we have chosen basepoints 6; in B(Y;, K;; P;) for i =0, 1, as part of the
auxiliary data a,;. We have defined A (f;) to be A(6;, B;). Choose gauge representatives ©;
for the connections 6;, an let Ay be a connection on (W, S, P) which is equal to the pull-
back of ®; on the two cylindrical ends. The operator D, is Fredholm on the weighted
Sobolev spaces (11) for small €, and we define

AW, S, P)

to be the two-element set of orientations of det(Dy, ). (This set is dependent on 8, and 6,
though our notation hides this.) In this context, we make the a definition:

Definition 3.9. — Let (Y, K\, P)) and (Yo, Ko, Py) be manifolds with singular bundle
data, and let (W, S, P) be a cobordism_from the first to the second. Let auxiliary data a,, ay be given
on the two ends, as above. We define an I-orientation of (W, S, P) to be a choice of element from
AW, S, P), or equivalently, an orientation of the determinant line det(Da,).

The definition of A(W, S, P) is constructed so that the two-element set of orienta-
tions of the determinant line over B.(W, S, P; B, Bo) is isomorphic to the product

ABDAB)AW, S, P).

Thus, once an I-orientation of (W,S,P) 1s given, a choice of orientation for a
component of any moduli space M.(W,S,P; B, By) determines an isomorphism
ZA(B)) — ZA(By). In particular each point [A] in a zero-dimensional moduli space
My(W, S, P; B1, By) determines such an isomorphism,

€([AD) : ZA(B1) — ZA(By).
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In this way, given a choice of an I-orientation of (W, S, P), we obtain a homomor-
phism

(18) m=Yy_ > e(A],

B1.Bo [A]EM(W,S,P; 81, B0)o

which by the usual arguments is a chain map
m: C*(Yl, Kla Pl) - C*(YO7 K01 P())'

The induced map in homology depends only on (W, S, P), the original auxiliary data a,
and a,; on the two ends, and the I-orientation, not on the choice of the secondary pertur-
bations 77/ or on the choice of Riemannian metric g on the interior of W. Furthermore, if

(W, S, P) 1s expressed as the union of two cobordisms (W', S, P') and (W”, S”, P”), then
the chain map m is chain-homotopic to the composite,

m>~m"om'.

By the standard approach, taking (W, S, P) to be a cylinder, we deduce that I(Y, Ko, Py)
is independent of the choice of auxiliary data ay,. More precisely, if ay and a, are two
choices of auxiliary data for (Y, K, P), then there is a canonical pair of isomorphisms
{m, —m,} differing only in sign,

+m, : 1(Y, K, P),, > I(Y,K,P),,.

Thus I(Y, K, P) is a topological invariant of (Y, K, P). Note that we have no a priori way
of choosing I-orientations to resolve the signs in the last formulae: the dependence on the
auxiliary data a; means that cylindrical cobordisms do not have canonical I-orientations.

3.9. Famulies of metrics and compactness

The proof from [21] that the chain-homotopy class of the map m above is indepen-
dent of the choice of 7/ and the metric on the interior of W follows standard lines and
exploits a parametrized moduli space, over a family of Riemannian metrics and pertur-
bations. For our later applications, we will need to consider parameterized moduli spaces
where the metric is allowed to vary in certain more general, controlled non-compact
families.

Let (Y, K, P)) and (Yo, Ko, Py) be given and let a; and a; be auxiliary data as
in (13), so that the transversality conditions of Proposition 3.5 hold. Let (W, S, P) be
a cobordism between these, equipped with singular bundle data P restricting to the P,
at the ends. By a family of metrics parametrized by a smooth manifold G we mean a

smooth orbifold section of Sym? (T*W) x G — W x G which restricts to each W x {g} as
a Riemannian metric denoted g. These metrics will always have an orbifold singularity
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along S. Choose a family of secondary perturbations 7/ &> supported in the collars of the
two boundary components as before, but now dependent on the parameter g € G. We
have then a corresponding perturbing term \Afg for the anti-self-duality equations on W.
For any pair of critical points (81, By) € €, (Y1) x €, (Y3), we can now form a moduli
space

Mz,G(W’ S9 P’ 1319 180) C Bz(wa Sv P’ 1817 ﬂO) X G
of pairs ([A], g) and where [A] solves the equation
(19) F¥ 4 V,(A) =0.

Here +, denote the projection onto g-self-dual two forms. A solution ([A], g) is called to
Equation (19) is called regular if the differential of the map

(A, 9) > F* 4V, (A)

is surjective. The arguments use to prove Proposition 24.4.10 of [20] can be used to prove
the following genericity result.

Proposition 3.10. — Let 7t; be perturbations satisfying the conclusions of Proposition 3.5 and
let G be a_family of metrics as above. There is a family of secondary perturbations 7/, for i =0, 1,
parameterized by g € G so that for all B; € €, and all paths z, the moduli space

Mz,G(W, Ss P; ﬂla IBO)

consists of regular solutions.

In the situation of the proposition, the moduli space M, (W, S, P; B, By) 13
smooth of dimension gr.(Bi, Bo) + dim G. We use Mq(W, S, P; B, By), to denote its
d-dimensional components. To orient the moduli space, we orient both the determinant
line bundle det(D) on B.(W, S, P; B, By) and the parameterizing manifold G, using a
fiber-first convention.

Consider now the case that G is a compact, oriented manifold with oriented
boundary dG. We omit (W, S, P) from our notation for brevity, and denote the mod-
uli space by Mg (81, Bo). Let us suppose (as we may) that the secondary perturbations are
chosen so that both M (81, By) and Myc (B, Bo) are regular. The first moduli space will
then be a (non-compact) manifold with boundary, for we have

a1\/1(} (:81 ’ IBO)d = MBG(,Bla ,BO)d—b

But this will not be an equality of orented manifolds. Our fiber-first convention for orient-
ing Mg and the standard outward-normal-first convention for the boundary orientations
interact here to give

(20) IMG (B, Bo)a = (— D)™ My (Bi, Bo)a—1-
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When an orientation of G and an element of A(W, S, P) are chosen, the count of
the solutions [A] in M (81, Bo)o defines a group homomorphism

mg : CG(Y1, K|, P)) — C(Yy, Ky, Pp).

Similarly My (B1, Bo)o defines a group homomorphism m;yi. These two are related by
the following chain-homotopy formula:

maG + (—1)"™%mg 0 d = 3 o mg.

(See [20, Proof of Proposition 25.3.8], though there is a sign error in [20] at this point.)

The proof of this formula is to count the endpoints in the 1-dimensional moduli spaces
Mg (B, a), on (W, S, P).

Remarks. — Although we will not have use for greater generality here, it is a straight-
forward matter here to extend this construction by allowing G to parametrize not just a
family of metrics on a fixed cobordism (W, S), but a smooth family of cobordisms (a fi-
bration over G) with fixed trivializations of the family at the two ends Y, and Y. There is
an obvious notion of an I-orientation for such a family (whose existence needs to be a hy-
pothesis), and one then has a formula just like the one above for a compact family G with
boundary. One can also consider the case that G is a simplex in a simplicial complex A.
In that case, given a choice of perturbations making the moduli spaces transverse over
every simplex, and a coherent choice of I-orientations of the fibers, the above formula
can be interpreted as saying that we have a chain map

m: CG(A) ® C(Y,, Ky, Py) — C(Yo, Ko, Py)

where C(A) 1s the simplicial chain complex (and the usual convention for the signs of the
differential on a product complex apply). If the local system defined by the I-orientations
of the fibers is non-trivial, then there is a similar chain map, but we must then use the
chain complex C(A; &) with the appropriate local coefficients &.

Next we wish to generalize some of the stretching arguments that are used (for
example) in proving the composition law for the chain-maps m induced by cobordisms.
For this purpose we introduce the notion of a broken Riemannian metric on a cobor-
dism (W, S) from (Y, K;) to (Yo, Ky). A cut of (W, S) is an orientable codimension-1
submanifold Y, C int(W) so that the intersection Y, NS = K, is transverse. A cylindrical-
end metric g on (W, S) is broken along a cut Y, if it is a complete Riemannian metric on
(intW)\Y, and there is a normal coordinate collar neighborhood (—¢, €) x Y, with nor-
mal coordinate 7, € (—¢, €) so that

§= (drc/rr:)2 +-§Yc
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where gy is a metric on Y, with orbifold singularity along K,. Note that Y, may be
disconnected, may have parallel components, and may have components parallel to the
boundary. The manifold (intW)\Y, equipped with this metric has two extra cylindrical
ends (each perhaps with several components), namely the ends

(_Gv 0) X Yc

21
(21) (0,¢) X Y,.

We will assume that each component of (Y, K., P|y,) satisfies the non-integral condition.

Given perturbations m; for the (Y;, K;) (for : =0, 1) and 7, for (Y,, K,) and sec-
ondary perturbations 77/ and 7/ | and 7, _, we can write down perturbed ASD-equations
on int(W)\Y, as in (16). The perturbation V is defined as in (17), using the perturbation
7, together with the secondary perturbations 7/ _, 7/, on the two ends (21) respectively.

Given a pair of configurations 8; in B(Y;, K;,P;), for t=1,0, and a cut Y,, a cut
path from B, to By along (W, S, P) is a continuous connection A in a P’ — (W, S) in
singular bundle data P’ equivalent to P, such that A is smooth on int(W)\Y, and its
restriction to (Y;, K;) belongs to the gauge equivalence class B;. A cut trgjectory from B,
to By along (W, S, P) is a cut path from B, to By along (W, S, P) whose restriction to
int(W)\Y, is a solution to the perturbed ASD equation (16).

Given a cut Y, of (W, S) we can construct a family of Riemannian metrics on
int(W) which degenerates to a broken Riemannian metric. To do this, we start with a
Riemannian metric g, on W (with orbifold singularity along S) which contains a collar
neighborhood of Y, on which the metric is a product

di’Q + (éYL
where 7 € [—1, 1] denotes the signed distance from Y,. Let
f:R—>R

be a family of functions parametrized by s € [0, 0o] that smooths out the function which
is given by

1+1/s
724 1/s?

for r € [-1, 1] and 1 otherwise. Note that the above expression is 1 on the boundary
r= =1 as well as when s = 0. Also note that lim,,, », f;(r) = 1/r*. For each component of

N
n:Un
i=1
we introduce a parameter s; and modify the metric by

[(dr? + gy
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When s5; = 00 the metric is broken along the Y’. In the way we get a family of Riemannian
metrics parametrized by [0, 00)N which compactifies naturally to a family of broken met-
rics parameterized by [0, oo™, In the neighborhood of {o0}Y, each metric is broken along
some subset of the components of Y,. We can further elaborate this construction slightly
by allowing the original metric also to vary in a family G;, while remaining unchanged
in the collar neighborhood of Y., so that we have a family of metrics parametrized by

(22) [0, 0o]N x G,

for some G;. Given the cut Y,, we say that a family of singular metrics on (W, S) is a
“model family” for the cut Y, if it is a family of this form.

To describe suitable perturbations for the equations over such a model family of
singular metrics, we choose again a generic perturbation 7, for Y, and write its compo-
nent belonging to Yi as JTZ. When the coordinate s; € [0, 00] is large, the metric contains
a cylindrical region isometric to a product

[T, T;] x Yi

where T; — 00 as 5; — 00. We require that for large s;, the perturbation on this cylinder
has the form

Vai + - OV iy + ¥ OV iy

where the functions ¥, and ¥_ are bump-functions supported near t = —T; and ¢t ="T;
respectively. Here (JTZ, 4)" are secondary perturbations which are allowed to vary with the
extra parameters G.

We can now consider a general family of metrics which degenerates like the model
family at the boundary. Thus we consider a manifold with corners, G, parameterizing a
family of broken Riemannian metrics ¢ on W (with orbifold singularity along S), and we
ask that in the neighborhood of each point of every codimension-z facet, there should be
a cut Y, with exactly » components, so that in the neighborhood of this point the family
is equal to a neighborhood of

{oo}" x G

in some model family for the cut Y,. (Note that the cut Y, will vary) Whenever we talk of
a “family of broken metrics”, we shall mean that the family has this model structure at the
boundary. When considering perturbations, we shall need to have fixed perturbations 7’
for every component of every cut, and also secondary perturbations which have the form
described above, in the neighborhood of each point of the boundary. We suppose that
these are chosen so that the parametrized moduli spaces over all strata of the boundary
are regular.
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Suppose now that we are given a family of broken metrics of this sort, parametrized
by a compact manifold-with-corners G. Over the interior int(G), we have a smooth fam-
ily of metrics and hence a parametrized moduli space

Mz,int(G) (,Bl ) ﬂO)

on the cobordism (W, S, P). This moduli space has a natural completion involving cut
paths (in the above sense) on (W, S), as well as broken trajectories on the cylinders over
(Y, KY) for each component Y. C Y,. We denote the completion by

M (B1. Bo) D M. iwe) (Bi. Bo).-

The completion is a space stratified by manifolds, whose top stratum is
M. inec)(B1, Bo). The codimension-1 strata are of three sorts.

(a) First, there are the cut paths on (W, S, P) from B, to By, cut along some con-
nected Y,. These form a codimension-1 stratum of the compactification lying
over a codimension-1 face of G (the case N =1 in (22)).

(b) Second there are the strata corresponding to a trajectory sliding off the incom-
ing end of the cobordism, having the form

le (/31’ al) X Mz—zl,G(als ,30)

where the first factor is a moduli space of trajectories on Y, and «; is a critical
point.

(c) Third there is the symmetrical case of a trajectory sliding off the outgoing end
of the cobordism:

Mz—zn,G(ﬂlv O[O) X Mzo (O[O’ ;80)

In the neighborhood of a point in any one of these codimension-1 strata, the compactifi-
cation MZG (B1, o) has the structure of a C° manifold with boundary.

The completion M7 (81, Bo) is not in general compact, because of bubbling off of
instantons and monopoles. However it will be compact when it has dimension less than 4.

An [-orientation for (W, S, P), together with a choice of element from A(f;) and
A(Bo), gives rise not only to an orientation of the moduli space M. (W, SP; B, By) for a
fixed smooth metric g, but also to an orientation of the moduli spaces of cut paths, for
any cut Y,, by a straightforward generalization of the composition law for I-orientations.
Thus, given such an I-orientation and an orientation of G, we obtain oriented moduli
spaces over both G and over the codimension-1 strata of 0G.

Just as in the case of a smooth family of metrics parametrized by a compact man-
ifold with boundary, a family of broken Riemannian metrics parametrized by an ori-
ented manifold-with-corners G, together with an I-orientation of (W, S, P), gives rise to
a chain-homotopy formula,

myG + (—l)dimeG od=20do mg.
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Again, the proofis obtained by considering the endpoints of 1-dimensional moduli spaces
over G: the three terms correspond to the three different types of codimension-1 strata.
The map mg is defined as above by counting solutions in zero-dimensional moduli spaces
over G; and myg 1s a sum of similar terms, one for each codimension-1 face of G (with
the outward-normal first convention).

The case of most interest to us is when each face of G corresponds to a cut Y, whose
single connected component separates Y, from Y, so separating W into two cobordisms:
W from Y, to Y,, and W” from Y, to Y. (The cuts Y, corresponding to different faces
of G may intersect.) Let us suppose that G has / codimension-1 faces, Gy, ..., Gy, all of
this form. Each face corresponds to a cut which expresses W as a union,

W=WuUw/, j=1,...,L
In the neighborhood of such a point of G;, G has the structure
(0, 0] x G;.
Let us suppose also that G; has the form of a product,
G =G x G,
where the two factors parametrize families of metrics on W: and WY Let us also equip

W/ and W' with I-orientations so that the composite I-orientation is that of W. We can

write the chain-homotopy formula now as

(Z mG].) + (=D ™. 00 =9 omg,
J

where we are still orienting G; as part of the boundary of G. On the other hand, we can
interpret mg; (which counts cut paths on W) as the composite of the two maps obtained
from the cobordisms \/Vj/ and \Nj/f . When we do so, there is an additional sign, because of
our convention that puts the G factors last: we have

dim G dim G’ /
j im! o m.

me; = (=1) i MY

where m: and m! are the maps induced by the two cobordisms with their respective fami-

lies of metrics. Thus the chain-homotopy formula can be written

<23> (Z(_l)dimG}/dim(};ﬁ'lj/'/ ° mj/) + (_l)dimeG 09 =2domg.
J

4. Topological constructions

In this section, we shall consider how to “package” the constructions of Section 3,
so as to have a functor on a cobordism category whose definition can be phrased in terms
of more familiar topological notions.
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4.1. Categories of 3-manifolds, bundles and cobordisms

When viewing Floer homology as a “functor” from a category of 3-manifolds and
cobordisms to the category of groups, one needs to take care in the definition of a “cobor-
dism”. Thus, by a cobordism from a 3-manifold Y, to Y, we should mean a 4-manifold
W whose boundary dW comes equipped with a diffeomorphism ¢ : 9W — Y, U Y,. If
the manifolds Y; are oriented (as our 3-manifolds always are), then (W, ¢) is an oriented
cobordism if ¢ 1is orientation-reversing over Y; and orientation-preserving over Y. Two
oriented cobordisms (W, ¢) and (W', ¢) between the same 3-manifolds are isomorphic
if there is an orientation-preserving diffeomorphism W — W’ intertwining ¢ with ¢'.
Closed, oriented 3-manifolds form the objects of a category in which the morphisms are
isomorphism classes or oriented cobordisms. We can elaborate this idea a little, to include
SO(3)-bundles over our 3-manifolds, defining a category B as follows.

An object of the category B consists of the following data:

— a closed, connected, oriented 3-manifold Y;
— an SO(3)-bundle P — Y satistying the non-integral condition (so that wy(P) has
odd evaluation on some oriented surface).

A morphism from (Y, Py) to (Yo, Py) is an equivalence class of data of the following sort:

— an oriented cobordism W from Y, to Yy;

— a bundle P on W;

— an isomorphism of the bundle P|3w with P, U Py, covering the given diffeomor-
phism of the underlying manifolds.

Here we say that (W, P) and (W', P') are equivalent (and are the same morphism in this
category) if there is a diffeomorphism

YiW—->W

intertwining the given diffeomorphism of dW and W’ with —Y, U Y}, together with a
bundle isomorphism on the complement of a finite set x,

. /
"IJ . Pl\‘\'\x — PV\”\I//(JC)’

covering the map ¥ and intertwining the given bundle maps at the boundary.

The category B is essentially the category for which Floer constructed his instan-
ton homology groups: we can regard instanton homology as a projective functor 1 from B to
groups. Here, the word “projective” means that we regard the morphism I(W, P) corre-
sponding to a cobordism as being defined only up to an overall sign. Alternatively said,
the target category is the category P-GROUP of abelian groups in which the morphisms are
taken to be unordered pairs {4, —A} of group homomorphisms, so that I is a functor

I: B — P-GROUP.



KHOVANOV HOMOLOGY IS AN UNKNOT-DETECTOR 141

On a 3-manifold Y a bundle P is determined by its Stiefel-Whitney class; but know-
ing the bundle only up to isomorphism is not sufficient to specify an actual object in B,
nor can we make any useful category whose objects are such isomorphism classes of bun-
dles. However, if instead of just specifying the Stiefel-Whitney class we specify a particular
geometric representative for this class, then we will again have a sensible category with
which to work, as we now explain.

Consider first the following situation. Let w be a finite, 2-dimensional simplicial
complex and let V be a 2-disk bundle over w (not necessarily orientable). Let T C V
be the circle bundle and V/T the Thom space. There is a distinguished class 7 in
H?(V,T; Z/2), the Thom class. If (P, ¢) is an SO(3) bundle on V with a trivialization ¢
on S, then it has a well-defined relative Stiefel-Whitney class in H2(V, T; Z/2). We can
therefore seek a pair (P, ¢) whose relative Stiefel-Whitney class is the Thom class. By the
usual arguments of obstruction theory applied to the cells of V/'T, one sees that such a
(P, ¢) exists, and that its isomorphism class is unique up to the action of adding instantons
to the 4-cells of V. Furthermore, if (P’, ¢’) is already given over some subcomplex o’ C w,
then it can be extended over all of w. If w is a closed surface, perhaps non-orientable, in
a 4-manifold X, then we can apply the observation of this paragraph to argue (as in the
proof of the theorem of Dold and Whitney [5]) that there exists bundle P — X with a
trivialization outside a tubular neighborhood of w, whose relative Stiefel-Whitney class is
dual to w.

This leads us to consider a category in which an object is a closed, connected, ori-
ented 3-manifold Y together with an embedded, unoriented 1-manifold @ C Y (thought
of as a dual representative for wy of some bundle). A morphism in this category, from
(Yo, wp) to (Y, ;) 1s simply a cobordism of pairs (W, w), with W an oriented cobor-
dism, and @ unoriented. Morphisms are composed in the obvious way. We call this cate-
gory w.

It is tempting to suppose that there is a functor from w to B, which should assign
to an object (Y, w) a pair (Y, P) where P is a bundle with wy(P) dual to w. As it stands,
however, P is unique only up to isomorphism. To remedy this, we analyze the choice
involved. Given an object (Y, w) in w, let us choose a tubular neighborhood V for w
and choose a bundle (P, ¢), with a trivialization ¢, outside V, whose relative w, is the
Thom class. If (Py, ¢,) 1s another such choice, then the objects (Y, P;) and (Y, Py) are
connected by a uniquely-determined morphism in B. Indeed, in the cylindrical cobordism
[0, 1] x Y, we have a product embedded surface [0, 1] X @, and there is an SO(3) bundle
P with trivialization outside the tubular neighborhood of [0, 1] X @, which extends the
given data at the two ends of the cobordism. The resulting bundle is unique up to the
addition of instantons, so it gives a well-defined morphism—in fact an isomorphism—
in B.

In this way, from an object (Y, @) in w, we obtain not an object in B, but a commu-
tative diagram in B, consisting of all possible bundles P; arising this way and the canonical
morphisms between them. Applying the projective functor I, we nevertheless obtain from
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this a well-defined projective functor,
I':w— p-GrOUP.

We shall write I(Y) for the instanton homology of (Y, @) in this context.

4.2. Introducing links: singular bundles

The discussion from the previous subsection can be carried over to the more gen-
eral situation in which we have a knot or link K C Y, rather than a 3-manifold Y alone.
We can define a category BLINK in which objects are pairs (Y, K) carrying singular bundle
data P. Thus Y is again a closed, oriented, connected 3-manifold, K is an unoriented link
in Y, and we are given singular bundle data P in the form of a double-cover Ky — K,
an SO(3) bundle P, — K, and an O(2) reduction in the neighborhood of K. The
singular bundle data is required to satisfy the non-integral condition from Definition 3.1.
A morphism in this category, from (Y, K, P)) to (Y, Ky, Py) is a cobordism of pairs,
(W, S), with W an oriented cobordism from Y, to Y, and S and unoriented cobordism
from K, to K, equipped with singular bundle data P and an identification of all this data
with the given data at the two ends of the cobordism. Two such cobordisms with singular
bundle data are regarded as being the same morphism if they are equivalent, in the same
sense that we described for B. Just as in the case of B, singular instanton homology defines
a functor,

] : BLINK — P-GROUP.

This is essentially the content of Section 3.8.

In addition to BLINK, we would like to have a version WINK analogous to w above, in
which we replace the bundle data P with a codimension-2 locus w representing the dual
of wsy. To begin again with the closed case, suppose that we are given a 4-manifold X, an
embedded surface ¥ and a surface-with-boundary, (@, dw) C (X, X). We require that
@ N X is a collection of circles and points: the circles are dw, along which w should meet
> normally; and the points are transverse intersections of w and ¥ in X. From the circles

dw C ¥ we construct a double-cover X, by starting with a trivialized double-cover of
X \ow, say

(X\ow) x {1, —1},

and then identifying across the cut with an interchange of the two sheets. Thus w;(A) is
dual to [dw] in H'(Z; Z/2).

Because A is trivialized, by construction, on X\dw, we have distinguished copies
of ¥\ 0w inside the non-Hausdorff space X,. Let

¥ cX,
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X

FiG. 1. — The codimension-2 subcomplex o/, illustrated in a lower-dimensional picture

be the closure of the copy (X\dw) x {—1} in X. This is a surface whose boundary is
two copies of dw. Let w, denote the two-dimensional complex

o, =1 N w)UX_

in X,. Figure 1 shows the inverse image ! of w; in the Hausdorff space X/, in a

schematic lower-dimensional picture. A regular neighborhood of ! in the complex X%
is a disk bundle over ', so there is a well-defined dual class, as in our previous discussion.
There is therefore a bundle P, on X/ | with a trivialization outside a regular neighbor-
hood of @!, whose wy is the Thom class. In this way, the original surface  determines a
bundle Py — X, uniquely up to the addition of instantons and monopoles. This P, in
turn determines singular bundle data P on X, up to isomorphism and the addition of
instantons and monopoles.
We now set up the category wiNK in which objects are triples (Y, K, ), where:

— Y is a closed, oriented, connected 3-manifold;

— K is an unoriented link in Y;

— w is an embedded 1-manifold with @ N K = dw, meeting K normally at its
endpoints.

The singular bundle data corresponding to the triples (Y, K, @) are required to satisfy the
non-integral condition, Definition 3.1. The morphisms from (Y, K, w;) to (Yo, K¢, @)
are isomorphism classes of triples (W, S, ), where

— (W, S) is a cobordism of pairs, with W an oriented cobordism;
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— o C W is a 2-manifold with corners, whose boundary is the union of w;, wy,
and some arcs in S, along which @ normal to S. The intersection w NS is also
allowed to contain finitely many points where the intersection is transverse.

Just as with w, an object (Y, K, @) in WINK gives rise to a commutative diagram of objects
(Y, K, P) in BLINK. Singular instanton homology therefore defines a functor,

I : WINK — P-GROUP

as in the previous arguments. We denote this by I?(Y, K). Thus a morphism from
Y1, Ky, o) to (Yo, Ko, @) represented by a cobordism (W, S, w) gives rise to a group
homomorphism (well-defined up to an overall sign),

I?(W, ) : I”' (Y, K)) = I (Y, Ky).

Most often, the particular choice of w is clear from the context, and we will often write
simply a generic “w” in place of the specific w,, wy, etc.

4.3. Constructions for classical knots

If K is a classical knot or link in S*, or more generally a link in a homology
sphere Y, then the triple (Y, K, w) satisfies the non-integral condition if and only if some
component of K contains an odd number of endpoints of w. In particular, we cannot
apply the functor I to such a triple when @ is empty, so we do not directly obtain an
invariant of classical knots and links without some additional decoration.

As described in the introduction however, we can use a simple construction to
obtain an invariant of a link with a given basepoint. More precisely, we consider a link K in
an arbitrary 3-manifold Y, together with a basepoint x € K and a given normal vector v
to K at x. Given this data, we let L. be a circle at the boundary of a standard disk centered
at x in the tubular neighborhood of K, and we let w be a radius of the disk: a standard
arc joining x € K to a point in L, with tangent vector v at x. We write K* for the new link

K'=KLUL
and we define
(Y, K, x, v) = I(Y, KY).

See Figure 2. We shall usually omit x and v (particularly v) from our notation, and simply
write I*(Y, K) for this invariant.

The role of the normal vector v here is in making the construction functorial. We
can construct a category in which a morphism from (Y, Ky, x0, vo) to (Y, Kj, 51, v1) isa
quadruple, (W, S, y, v), where (W, S, y) is a cobordism of triples (so that y is 1-manifold
with boundary {xy, x;}) and v is a normal vector to S along ¥, coinciding with the given
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Fi1G. 2. — The link K (/gff) and the link K* (right) obtained from it by adding a meridional circle

Vo, V1 on the boundary. Only W is required to be oriented here, providing an oriented
cobordism between the 3-manifolds as usual. We call this category LINKx.

The construction that forms K* from K can be applied (in a self-evident manner)
to morphisms (W, S, y, v) in this category: one replaces S with a new cobordism

S"=SUT

where T is a normal circle bundle along y, sitting in the tubular neighborhood of S C W;
and one takes w to be the I-bundle over y with tangent direction V along y. Thus we
obtain a functor

f : LINK* — WINK.
Applying instanton homology gives us a projective functor,
I* : LINK¥ — P-GROUP.

Of course, when considering I*(Y, K) as a group only up to isomorphism, we can regard
it as an invariant of a link K C Y, with a marked component.
We have the following basic calculation:

Proposition 4.1. — For the unknot U C S*, we have I*(S*, U) = Z.

Proof. — The link K” is a Hopf link and w is an arc joining the components. The
set of critical points for the unperturbed Chern-Simons functional is the set of represen-
tations (up to conjugacy) of the fundamental group of S* \ (K* U w) in SU(2), subject the
constraint that the holonomy on the links of K* is conjugate to i and the holonomy on
the links of @ is —1. There is one such representation up to conjugation, and it represents
a non-degenerate critical point. So the complex that computes 1(S?, U) has just a single
generator. UJ
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BIE

Fic. 3. — The link K (/ff) and the link K* obtained as the union of K with a Hopf link located at a marked basepoint

To obtain an invariant of a link K C Y without need of a basepoint or marked
component, we can always replace K by K LI U, where U is a new unknotted circle
contained in a ball disjoint from K. We put the basepoint x on the new component U,
and we define

K= (KLU U)-.

To say this more directly, K¥ is the disjoint union of K and a Hopf link H contained in
a ball disjoint from K, as illustrated in Figure 3. It comes with an @ which is a standard
arc joining the two components of H. Thus we can define an invariant of links K without
basepoint by defining

IF(Y,K) =1°(Y, K% = I°(Y, K1 H)
To make the construction f functorial, we need to be given (Y, K) together with:

— abasepoint y € Y disjoint from K;
— a preferred 2-plane pin T,Y;
— avector v in p.

We can then form H by taking the first circle U to be a standard small circle in p, and then
applying the § construction to U, using v to define the framed basepoint on U. Thus I” is
a projective functor from a category whose objects are such marked pairs (Y, K, y, p, v).
The appropriate definition of the morphisms in this category can be modeled on the
example of LINK* above.

The constructions I* and I” are the “reduced” and “unreduced” variants of singular
instanton Floer homology. The I* variant can be applied to the empty link, and the
following proposition is a restatement of Proposition 4.1.

Proposition 4.2. — For the empty link ) in S*, we have T(S*, ) = Z.
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When dealing with I* for classical knots and links K, we will regard K as lying
in R® and take the base-point at infinity in S*. We will simply write I#(K) in this context.

4.4. Resolving the ambiguities in overall sign

Thus far, we have been content with having an overall sign ambiguity in the ho-
momorphisms on Floer homology groups which arise from cobordisms. We now turn to
consider what 1s involved in resolving these ambiguities.

We begin with the case of BLINK, in which a typical morphism from (Y, K;,P))
to (Yo, Ky, Py) is represented by a cobordism with singular bundle data, (W, S, P). We
already have a rather tautological way to deal with the sign issue in this case: we need to
enrich our category by including all the data we used to make the sign explicit. Thus, we
can define a category BLINK in which an object is a tuple

(YO, Ko, Py, ao),

where a is the auxiliary data consisting of a choice of Riemannian metric g, a choice
of perturbation 7, and a choice of basepoint 8. (See Equation (15) above.) A morphism
in BLINK, from (Y}, K|, Py, a;) to (Yo, Ko, Py, ag), consists of the previous data (W, S, P)
together with a choice of an I-orientation for (W, S, P) (Definition 3.9). With such a
definition, we have a functor (rather than a projective functor)

I : BLINK — GROUP.
We can make something a little more concrete out of this for the functor
I’ : LINK — P-GROUFP.
We would like to construct a category LINK* and a functor
I* : TINK* — GROUP.

To do this, we first define the objects of TINK* to be quadruples (Y, K, x, v), where K is
now an oriented link in Y and x and v are a basepoint and normal vector to K as before.
(The orientation is the only additional ingredient here.) Given this data, we can orient
the link K* by orienting the new component L so that it has linking number 1 with K
in the standard ball around the basepoint x. There is a standard cobordism of oriented
pairs, (Z, F), from (Y, K) to (Y, K?): the 4-manifold Z is a product [0, 1] x Y and the
surface F is obtained from the product surface [0, 1] x K by the addition of a standard
embedded 1-handle. Alternatively, (Z, F), is a boundary-connect-sum of pairs, with the
first summand being [0, 1] x (Y, K) and the second summand being (B*, A), where A is
a standard oriented annulus in B* bounding the oriented Hopf link in S*. The arc @ in
Y joining K to L in the direction of v is part of the boundary of a disk w; in Z whose
boundary consists of @ C Y together with a standard arc lying on F.
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Although (Y, K, #) may not satisfy the non-integral condition, we can nevertheless
form the space of connections B(Y, K) = B?(Y, K) as before: this is a space of SU(2)
connections on the link complement, with holonomy asymptotic to the conjugacy class
of the element

wo ().

We can now exploit that fact that there is (to within some inessential choices) a pre-
ferred basepoint 6 in B(Y, K) arising from a reducible connection, as in Section 3.6 of
[21]. Thus, the singular connection € is obtained from the trivial product connection in
SU(2) x Y by adding a standard singular term

i
,3(7)177

where B is a cut-off function on a tubular neighborhood of K and 7 is (as before) a global
angular 1-form, constructed this time using the given orientation of K. If B is a critical
point for the perturbed functional in B(Y, K¥), we let Ay 4 be any chosen connection in
B“%(Z,F; 0, B) (i.e. a connection on the cobordism, asymptotic to 8 and f on the two
ends). We then define

(23) A(B)

to be the two-element set of orientations for the determinant line det(Dj,, 5)-

To summarize, we have defined A"(B) much as we defined A(B) earlier in (12).
The differences are that we are now using the non-trivial cobordism (Z, F, w;) rather
than the product, and we are exploiting the presence of a distinguished reducible con-
nection on the other end of this cobordism, defined using the given orientation of K. We
can define a chain complex

CHY.K) =P ZA B).
B

and we can regard I*(Y, K) as being defined by the homology of this chain complex.

Consider next a morphism in LINK*, say (W, S, y,v) from (Y, K, x,v)) to
(Yo, Ko, 50, vp). We shall choose orientations for K, and Ky, as we did in the previous
paragraphs. We do not assume that the surface S is an oriented cobordism, but we do
require that it looks like one in a neighborhood of the path y: that is, we assume that if
u; 1s an oriented tangent vector to K; at x;, then there is an oriented tangent vector to S
along y, normal to y, which restricts to ; and %, at the two ends.

We have an associated morphism (W, S*, w) between (Y], K?, w;) and
(Yo, K{, @p). Let

B e B (Y1, K))
Bo € B (Yo, Ko)
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be critical points, let [Ag, 4,1 be a connection in B“(W, S%; B1, Bu), and consider the prob-
lem of orienting the determinant line

det(DAﬂl,ﬂo)'
Let (Z, F)) and (Z, Fy) be the standard cobordisms, described above,
(Z;, F) - (Y, Ky) — (Y, K?)-

There is an evident diffeomorphism, between two different composite cobordisms, from
(Y1, K)) 10 (Yo, K5):

(Zl9 Flv a)Zl) UY[ (W’ Suv C()) == (Wv Sa @) UY[) (ZU’ FO’ YO)
From this we obtain an isomorphism of determinant lines,
(26) det(DAel,m) ® det(DAﬂ],ﬂo) = det(DAHIﬂO) ® det(DAHO‘ﬂO).

Here 0; are the preferred reducible connections in B(Y;, K;) as above, and Ay g4, is a
connection joining them across the cobordism (W, S).
If we wish the cobordism (W, S, w) to give rise to a chain map

CH(Y1, K;) = CH(Yo, Ko)

with a well-defined overall sign, then we need to specify an isomorphism
det(Dy, ,.) — Hom(ZA(B)), (ZA*(By));

and by the definition of A* and the isomorphism (26), this means that we must orient
det(Dy,, 4,)-

Thus we are led to the following definition:

Defination 4.3. — Let (Y1, K)) and (Yo, Ky) be two pairs of oriented links in closed oriented
3-manyfolds, and let (W, S) be a cobordism of paurs, from (Y, K;) to (Yo, Ky), with W an oriented
cobordism, and S and unoriented cobordism (and possible non-orientable). Then an I*-orientation for
(W, S) will mean an orientation for the determinant line det(DAGl‘ " ), where 0; are the reducible singular
SU(2) connections on Y, described above and determined by the given orientations of the K.

In the special case that W is a product [0, 1] x Y, an I*-orientation for an embedded cobordism
S between oriented links will mean an 1*-orientation for the pair ([0, 1] x Y, S).

We are now in a position to define LINK*. Its objects are quadruples (Y, K;, x;, v;)
with K; an oriented link, and its morphisms are quintuples (W, S, y, v, A), where
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(W, S) is a cobordism of pairs, with W an oriented cobordism;

y 1s a path from x; to xp, with the property that S is an oriented cobordism
along y;

— v is a normal vector to S along y, restricting to vy, vy at the two ends; and

— A is a choice of I*-orientation for (W, S).

With this definition, we have a well-defined functor to groups.

Remarks. — Our definition of I*-orientation still rests on an analytic index, so some
comments are in order. First of all, the definition makes it apparent that there is a natural
composition law for I*-orientations of composite cobordisms. Second, if S is actually an
oriented cobordism from K to Ky, then an I*-orientation of (W, S) becomes equivalent to
a homology-orientation of the cobordism, as discussed in [20] and [21]. Indeed, the case
that S is oriented is precisely the case considered in [21], where homology-orientations of
the cobordisms are shown to fix the signs of the corresponding chain-maps. In particular,
if W is a product [0, 1] x Y, then an oriented cobordism S between oriented links in Y
has a canonical I*-orientation, and these canonical I*-orientations are preserved under
composition.

When using the unreduced functor I* for knots in R?, we have adopted the con-
vention of putting the extra Hopf'link “at infinity” in a standard position. With this setup,
we have a category

(27) Nk (R?)

whose objects are oriented links in R* and whose morphisms are I*-oriented cobordisms
in [0, 1] x R?.

4.5. Absolute Z]4 gradings

For a general (Y, K, P) and its corresponding configuration space B(Y, K, P), the
path-dependent relative grading, gr_(B1, By) € Z, descends to a path-independent relative
grading,

gr(Bi, Bo) € Z/4.

(This is because any two paths differ by the addition of instantons and monopoles, both
of which contribute multiples of 4 to the relative grading.) As a consequence, both I*(K)
and I*(K) are homology theories with an affine Z/4 grading. In the case of I* however
(and hence also for I¥), we can define an absolute Z /4 grading in a fairly straightforward
manner. Such an absolute Z/4 grading should assign to each g € €, (Y, K¥) an element

gr(B) e Z/4

(depending 7 and the metric, as well as on f).
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Proposition 4.4. — There is a unique way to define an absolute Z/4 grading, gr(B) € Z/4
Sor B € €. (Y, K¥) such that the following two conditions hold:

(a) the grading is normalized by having gr(Bo) = O for the unique critical point in the case of
the unknot in S® with w = 0

(b) f (W, S, y,v, L) isamorphism from (Y1, Ky, x1, v1) to (Yo, Ko, X0, Vo) in the category
LINK, and B, By are corresponding critical points, then

gr (W, S%, B1, Bo) = gr(B1) — gr(Bo) 4 L(W, S) (mod 4)

where

LW, S) = —x(S) + 5(37S) — by(3~S)
3 1
- §(X(W) +0(W)) + E(bl(Yo) — b (Y1)
Similarly, for I* there is a canonical Z]4 grading such that the generator for T*(¥) is in degree 0.

Progf: — The uniqueness is clear. For the question of existence, we return first to a
closed pair (X, ¥), with wy(P) =0 so that A is trivial. The dimension formula (8) tells
us in this case that the index of the linearized operator D satisfies

indexD =4/ — g(x (X) +0(X)) + x (%) (mod 4).

The instanton number £ is an integer, so the term 84 can be omitted; but the monopole
number / is potentially a half-integer and 2/ is congruent to x (¥) mod 2. So the formula
can be rewritten as

indexD = —;(X(X) + 0 (X)) — x(¥) (mod 4).

Given this formula, the existence of gr now follows from the additivity of the terms
involved. O

5. Two applications of Floer’s excision theorem

The proof of Proposition 1.4 rests on Floer’s excision theorem (slightly adapted to
our situation). The statement of the excision theorem generally involves 3-manifolds Y
that may have more than one component, or cobordisms with more than two boundary
components. Disconnected 3-manifolds do not create any difficulties when defining in-
stanton homology (see below for a brief review); but they do introduce a new problem
when we look at cobordisms and functoriality: this problem stems from the fact that the
stabilizer of an irreducible connection on a disconnected 3-manifold is no longer just £1,



152 P. B. KRONHEIMER, T. S. MROWKA

but is (£1)", where 7 is the number of components; and not all of these elements of the
stabilizer will necessarily extend to locally constant gauge transformations on the cobor-
dism. This results in extra factors of two when gluing. The way to resolve these problems
is to carefully enlarge the gauge group, by allowing some automorphisms of the SO(3)
bundle that do not lift to determinant-1 gauge transformations. Our first task in this sec-
tion is to outline how this is done. The issue appears (and is dealt with) already in Floer’s
original proof of excision (as presented in [4]), but we need a more general framework.
When enlarging the gauge group in this way, the standard approach to orienting
moduli spaces breaks down, and an alternative method is needed. We turn to this first.

5.1. Orientations and almost-complex structures

Given an SO(3) bundle P on a closed, oriented, Riemannian 4-manifold X, we
have considered the moduli space of ASD connections, M(X, P), by which we mean the
quotient of the space of ASD connections by the determinani-1 gauge group G(P). This
moduli space, when regular, is orientable; and orienting it amounts to trivializing the de-
terminant line Dy — B(X, P). Two approaches to choosing a trivialization are available
and described in [6]. The first relies on having a U(2) lift of P (or equivalently, an integral
lift v of wy(P)) together with a homology orientation of X: this is the standard approach
generally used in defining Donaldson’s polynomial invariants. The second approach de-
scribed in [6] relies on having an almost complex structure J on X: in the presence of J,
there is a standard homotopy from the operators D, to the complex-linear operator

0r+ 03 Q%' ®r g~ (2" ® Q) ®r B

The complex orientation of the operator at the end of the homotopy provides a preferred
orientation for the determinant line.

The second of these approaches has the disadvantage of requiring the existence
of J. On the other hand, when J exists, the argument provides a simple and direct proof
of the orientability of the determinant line, because the homotopy can be applied to the
entire family of operators over B(X, P). More importantly for us, this second approach
to orientations can be used to establish the orientability of the determinant line over the
quotient of C(X, P) by the full automorphism group Aut(P), not just the group G(P) of
determinant-1 gauge transformations.

To set up this approach to orientations, we consider a pair (Y, K) as usual with
singular bundle data P. Recall that the center Z of G(P) is {1} and that we have the

isomorphism
Aut(P)/(G(P)/Z) = H'(Y; Z/2).

Thus H' (Y; Z/2) acts on B = B(Y, K, P). Fix a subgroup ¢ C H'(Y; Z/2), and consider
the quotient

B=DBY,K,P)/¢.
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We shall require that the non-integral condition hold as usual, so that all critical points
of the Chern-Simons functional are irreducible; but we also want ¢ to act freely on the
set of critical points. This can be achieved (as the reader may verify) by strengthening the
non-integral condition as follows.

Defination 3.1. — We say that (Y, K, P) satisfies the ¢p-non-integral condition if there is a
non-integral surface ¥ C 'Y (in the sense of Definition 3.1) satisfying the additional constraint that ¢|x
18 zero.

When such a condition holds, there is no difficulty in choosing ¢-invariant
holonomy perturbations so that all critical points are non-degenerate and all moduli
spaces of trajectories are regular. We will write &, B for typical critical points in the quo-
tient BB, and M(&, B) for the moduli spaces of trajectories. To show these moduli spaces
are orientable (and to eventually orient them), we start on the closed manifold S' x Y
which we equip with an S'-invariant orbifold-complex structure: in a neighborhood of
S! x K, the model is the Z/2 quotient of a complex disk bundle over the complex mani-
fold S! x K. Up to homotopy, such an almost complex structure is determined by giving
a non-vanishing vector field on Y that is tangent to K along K. As described above, the
family of operators D, on the orbifold S' x Y is homotopic to a family of complex op-
erators. As in the standard determinant-1 story, by excision, we deduce that the moduli
spaces M(a, B) on R x (Y, K) are orientable. We also see that if 7 and 7 are two ho-
motopy classes of paths from @ to f, then an orientation for Mz (@, ) determines an
orientation for Mz (&, B). This allows us to define A(&, B) as the two-clement set that
orients all of these moduli spaces simultaneously. For any given 8, we can also consider
on R x Y the 4-dimensional operator that interpolates between Dy at the +00 end and
its complex version 55 + 9% at the —o0 end. If we define A (,B_ ) to be the set of orientations
of the determinant of this operator, then we have isomorphisms

A@, B) = A@)A(B).

We are therefore able to define the Floer complex in this situation by the usual recipe: we
write it as

C(Y.K. Py’ =P Ap)
5

and its homology as I(Y, K, P)’.

The construction of I(Y, K, P)? in this manner depends on the choice of almost-
complex structure J on S' x Y. If J and J' are two S'-invariant complex structures, then
the class

(61(]) — 0 (]/))/2
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determines a character § : ¢ — {£1}, and hence a local system Z; with fiber Z on B=
B/¢. The corresponding Floer homology groups I and I defined using the orientations
arising from J and J" are related by

I'(Y,K,P)? =1I(Y,K,P; Z;)?,

as can be deduced from the calculations in [6].

In the special case that ¢ is trivial, the group 1(Y, K, P)? coincides with I(Y, K, P)
as previously defined: a choice of isomorphism between the two depends on a choice
of trivialization of J-dependent 2-element set A(0), where 0 is the chosen base-point.
Another special case is the following:

Proposition 5.2. — Suppose that ¢ is a group of order 2 in H' (Y; Z./2) and that we are in
one of the following two cases:

(@) the ink K is empty and the non-zero element of ¢ has non-trivial pairing with wq(P); or
(b) K is non-empty and its fundamental class has non-zero pairing with ¢.

Then we have
I(Y,K,P)=1(Y,K,P)? & I(Y, K, P)*.

Proof. — In the first case, the complex C(Y, K, P) (or simply C(Y, P)) has a rel-
ative Z/8 grading, and the action of the non-trivial element of ¢ on the set of critical
points shifts the grading by 4, so that I(Y, P)? is Z/4 graded. In the second case, there
is a relative Z/4 grading on C(Y, K, P), and the action shifts the grading by 2, so that
I(Y, K, P)? has only a Z/2 grading. In either case, the group I(Y, K, P) is obtained from
I(Y, K, P)? by simply unwrapping the grading, doubling the period from 4 to 8, or from
2 to 4 respectively. U

As a simple example, we have the following result for the 3-torus:

Lemma 5.3. — In the case that Y is a 3-torus and K is empty, let P — T° be an SO(3)
bundle and ¢ any two-element subgroup of H' (T°; Z/2). Suppose that wy(P) pairs non-trivially with
the non-zero element of ¢. Then 1(T3, P)? =Z.

Proof. — This 13 an instance of the first item in the previous lemma, given that
I(T3,P) = Z @ Z. Alternatively, it can be seen directly, as the representation variety in
B(T?, P)/¢ consists of a single point. 0J

We can similarly enlarge the gauge group on 4-dimensional cobordisms, so as to
make the groups I(Y, K, P)? functorial. Thus, suppose we have a cobordism (W, S, P)
from (Y, Ky, Py) to (Yo, Ko, Py). Let ¢ C H'(W; Z/2) be chosen subgroup, and let ¢;
be its image in H'(Y;; Z/2) under the restriction map. Suppose that the singular bundle
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data P; satisfies the ¢;-non-integral condition for : = 0, 1. After choosing metrics and
perturbations, the group ¢ acts on the usual moduli spaces on M(W, S, P; B, By), and
we have quotient moduli spaces 1\_/I(W, S, P; Bl, ,50). To set up orientations, we need to
choose an almost-complex structure J on (W, S): i.e. an almost-complex structure on
W such that S is an almost-complex submanifold. This is always possible when W has
boundary, as long as S is orientable. (The orientability of S is a restriction on the applicability
of this framework.) We denote by J; the translation-invariant complex structure on R x Y;
which arises from restricting J to the ends, and we use J; in constructing the Floer groups
I(Y;, K;, P,)? as above. Then J on (W, S) orients the moduli spaces appropriately and
we have a well-defined chain map

CY, Ky, Pl)¢71 — C(Yy, Ky, Po)%,
and a map on homology,
I(W, S, P)? : I(Y1, Ky, P)” — (Yo, Ko, P))™.

In this way we have a functor (not just a projective functor) from the category whose
morphisms are cobordisms (W, S, P) equipped with a subgroup ¢ of H'(W; Z/2) and
an almost-complex structure J.

The use of almost-complex structures also provides a canonical mod 2 grading
on the Floer groups I(Y, K, P)?. In the chain complex, a generator corresponding to a
critical point B is in even or odd degree according to the parity index of the operator
whose determinant line is A (B), as defined above.

5.2. Drusconnected 3-manifolds

We now extend the above discussion to the case of 3-manifolds that are not nec-
essarily connected: we begin with a possibly disconnected closed, oriented 3-manifold Y,
containing a link K with singular bundle data P. The configuration space B(Y, K, P)
is the product of the configuration spaces of the components. This is acted on by
H!(Y; Z/2), and we suppose that we are given a subgroup ¢ of this finite group with
which to form the quotient space B(Y, K, P). We require that the ¢-non-integral con-
dition hold on each component of Y. We choose a translation-invariant almost-complex
structure J on (R x Y, R x K) in order to determine orientations of moduli spaces, and
after choosing metrics and perturbations we arrive at Floer homology groups

I(Y,K,P)?

with no essential changes needed to accommodate the extra generality. We do not exclude
the case that Y is empty, in which case its Floer homology is Z.
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Since the complex that computes 1(Y, K, P)? is essentially a product, there is a
Kiinneth-type theorem that describes this homology. To illustrate in the case of two
components, if Y = Y! 1 Y?, and ¢ = ¢' x ¢?, then there is an isomorphism of chain
complexes

C(Y', K", PH* @ C(Y%L K% P)? — C(Y,K, P)?

under which the Floer differential 4 on the right becomes the differential on the tensor
product given by

da®b)=d'a®@b+e€'a® db,

where €' is the sign operator on C(Y', K, P)?' thatis —1 on generators which have
odd degree and +1 on generators which have even degree. As a result of this isomor-
phism on chain complexes, there is a short exact sequence relating the homology groups
I[=1(Y, K, P)? to the groups I' = I(Y;, K;, P)?":

(28) Tor1', 1) > 1 —-»1'® I’
Note that we also have an isomorphism of complexes
C(Y". K, P)” ® C(Y'.K',P)* — C(Y.K.P)’

where the differential on the left is @ ® 1 + €* ® d'. These two isomorphisms are inter-
twined by the map

aQ b e’hQ€'a

The change in sign results from the need to identify the determinant line of the direct
sum of two operators with the tensor product of the determinant lines (see [23] for a
discussion).

Now consider again a cobordism (W, S, P) between (possibly disconnected) 3-
manifolds with singular bundle data, (Y, K, P;) and (Y,, Ky, Py). We do not require
that W is connected; but to avoid reducibles, we do suppose that W has no closed com-
ponents. Let ¢ be a subgroup of H'(W; Z/2) and let ¢, be its restriction to Y. Let J
be a complex structure on (W, S) and J; its restriction to the two ends, : = 1, 0. With
metrics and perturbations in place, we obtain a chain map and an induced map of Floer
homology groups,

(W, S, P)? : 1(Y, Ky, P)? — (Yo, Ko, Pp)®.

The previous definitions need no modification. There is a difference however when
we consider the composition law and functoriality. Suppose that the above cobordism
(W, S) is broken into the union of two cobordisms along some intermediate manifold-
pair (Y9, Kj/9),s0 (W, S) = (W', S) U(W”",5"), with W a cobordism from Y, to Y s.
By restriction, ¢ gives rise to ¢" and ¢”, and J gives rise to J' and J”. The composite map
1s equal to the map arising from the composite cobordism only if an additional hypothesis
holds:
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Proposition 5.4. — In the above setting, we have
LW, S, P)? =1(W",S", P o I(W,S,P)*

provided that the group ¢ C H' (W; Z/2) contains the image ¥ of the connecting map in the Mayer-
Vietoris sequence,

H(Y,2; Z/2) — H' (W; Z/2).

Remarks. — Note that ¥ 1s non-zero only if Y, /9 has more than one component. In
general, knowing ¢’ and ¢” does not determine ¢ without additional information; but
the additional hypothesis that v is contained in ¢, is enough to determine ¢.

Proof of the Proposition. — The hypothesis of the proposition ensures that the relevant
moduli spaces on the composite cobordism have a fiber-product description. To illustrate
the point in a simpler situation (so as to reduce the amount of notation involved), consider
a closed Riemannian 4-manifold X decomposed into X' and X" along a 3-manifold Y
with more than one component. Suppose that the metric is cylindrical near Y. Let P be
an SO(3) bundle on X, let M(X, P) be the moduli space of anti-self-dual connections,
and suppose that all these anti-self-dual connections restrict to irreducible connections
on each component of Y. We can then consider the Hilbert manifolds of anti-self-dual
connections, M(X', P") and M(X"”, P”) on the two manifolds with boundary, in a suitable
L} completion of the spaces of connections (as in [20, Section 24]). There are restriction
maps

M(X/ , P/) M(X//, P//)

\ /

Bi-1/2(Y, Ply)

and one can ask whether the fiber product here is the same as M(X, P). The answer is no,
in general, because of our use of the determinant-1 gauge group: in the determinant-1
gauge transformation, the stabilizer of an irreducible connection on Y is {#=1}", where n is
the number of components of Y; but not every element in the stabilizer can be expressed
as a ratio (g')~'(¢") of elements in the stabilizer of the connections on X’ and X”. Thus
M(X, P) may map many-to-one onto the fiber product. The hypothesis on ¥ in the
proposition ensures that we are using gauge groups for which the corresponding moduli
space on X is exactly the fiber product. UJ

We can summarize the situation by saying that we have a functor to the category
of abelian groups from a suitable cobordism category. The morphisms in this category
consist of cobordisms (W, S, P) equipped with an almost-complex structure J on (W, S)
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and a subgroup ¢ of H'(W; Z/2). When composing two cobordisms, we must define ¢
on the composite cobordism to be the largest subgroup of H'(W; Z/2) which restricts to
the given subgroups on the two pieces.

There is a variant of the above proposition corresponding to the case that we glue
one outgoing component of W to an incoming component. The context for this is that
we have (W, S) a cobordism from (Y, K;) to (Y, Kg), where

Yl :YI’IU"'UYlJ
YO :YQ’ILJ"'tJYO’3

with Y, , =Y, ,. We suppose also that P is given so that its restriction to Y,, and Yo,
are identified. From (W, S, P) we then form (W*, S*, P*) by gluing these two compo-
nents. This is a cobordism between manifolds (Y7, K;) and (Y, K{) with r—1 and s — 1
components respectively. Let ¢* be a subgroup of H' (W*; Z/2) which contains the class dual
lo the submanifold Y, , = Yo, where the gluing has been made. Let ¢ be the subgroup of
H'(W; Z/2) obtained by pull-back via the map W — W*. We then have:

Proposition 5.5. — The map
I(W*, S*, P)?  I(Y;, K}, P)?T — I(Y;, K5, Py
is obtained from the map
LW, S, P)? : 1(Y, Ky, P)? — 1(Y,, Ko, Pp)?
by taking the alternating trace at the chain level over the Z|2-graded factor

Hom(C(Y,,, K, ), C(Yo.,, Ko,)™).

Progf: — There are two issues here. The first is issue of signs, to verify that it is
indeed the alternating trace that arises: this issue is dealt with in [23, Lemma 2.4], and
the same argument applies here. The second issue is the choice of correct gauge groups,
and this 1s the same point that arises in the previous proposition. 0

Remark. — As a simple illustration, suppose that Y is connected and (W, S) is a
trivial product cobordism from (Y, K) to (Y, K). Suppose that ¢ is trivial and ¢* is
generated by the class dual to Y in the closed manifold W* obtained by gluing the two
ends. Then the closed pair (W*, S*) has an associated moduli space M(W*, S*, P*)?" and
an associated integer invariant obtained by counting points with sign. The proposition
asserts that this integer is the Euler characteristic of I(Y, K, P). If we had stuck with
the determinant-1 gauge group and examined M(W*, S*, P*) instead, then the integer
invariant of this closed manifold would have been twice as large.
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5.3. Floer’s excision revisited

Floer’s excision principle [4, 9] concerns the following situation (see also [23]). Let
Y be a closed, oriented 3-manifold not necessarily connected, and let Ty, Ty be a pair of
oriented tori in Y, supplied with an identification 4 : T} — Ty. Let Y’ be obtained from
Y by cutting along T, and Ty and reglueing using the given identification (attaching
each boundary component arising from the cut along T to the corresponding boundary
component arising from the cut along T, respecting the boundary orientations). Again,
Y’ need not be connected. We suppose that Y contains a link K, disjoint from the tori,
and we denote by K’ the resulting link in Y'. We also suppose that singular bundle data P
is given on Y, and that the identification 4 : T, — T’ 1s lifted to an identification P|y, —
P|,, so that we may form singular bundle data P’ on Y'. We require as a hypothesis that
wy(P) 1s non-zero on T (and hence on Ty). From an alternative point of view, we may
regard P as being determined by a 1-manifold w, in which case we ask that @ - T'; 1s odd
and that £ maps the transverse intersection @ N T} to w N Ty, so that we may form o’
mY'.

When K and K’ are absent (which was the case in Floer’s original setup), the
condition that w- T is odd forces T’ to be non-separating. In the presence of K, however,
it may be that T'; separates Y, in which case @ must have an arc which joins components
of K which lie in different components of Y \ T}.

Let ¢ C H'(Y; Z/2) be the subgroup generated by the duals of T; and Ty, and let
¢' C H'(Y'; Z/2) be defined similarly using the tori in Y'. As long as Y and Y’ have no
components disjoint from the tori, the ¢-non-integral condition is satisfied on account
of the presence of the surfaces T;. If there are any other components of Y (and there-
fore of Y’), we impose the non-integral condition as a hypothesis, as usual (though such
components are irrelevant in what follows). In order to fix signs, we use almost-complex
structures as in Section 3. 1: we fix an R-invariant complex structure J on (R x Y, R x K),
which we choose in such a way that the manifolds {0} x T; are almost-complex subman-
ifolds (with their given orientations). By cutting and gluing we also obtain an almost
complex structure J' on Y'.

Theorem 5.6. — Under the above hypotheses, there are mutually-inverse isomorphisms
(Y, K, P)? «— I(Y,K,P)?,
or equivalently
(Y, K)? «— I“(Y, K",

arising from standard cobordisms (W, S) and (W, S), Srom (Y, K) to (Y',K') and from (Y',K') to
(Y, K) respectively.
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FiG. 4. — The excision cobordism W from Y to Y’

Progof- — The standard cobordism W from Y to Y is the one that appears in Floer’s
original theorem and is illustrated in [23, Figure 2]. The relevant part of this cobordism is
redrawn here in Figure 4. This part is a product T' x U, where T is the torus obtained by
identifying T} and T’ using 2 and U is the 2-manifold with corners depicted as the shaded
part in the figure. The subset T x U C W meets Y and Y’ in 2-sided collar neighborhoods
of Ty UT) and T UT}. The links K and K’ are contained in the parts of Y and Y’ that
are disjoint from these collars, and there is a surface S = [0, 1] x K lying in the remaining
part of W, providing the cobordism between them. Our choices equip W with singular
bundle date Py and an almost-complex structure Jyw which is a product structure on the
subset T' x U.

Let T and T} be positive and negative push-offs of T; in Y; (for i = 1, 2). The
dual classes to these four tori redundantly generate the same group ¢ C H'(Y; Z/2). Let
(T)* be defined similarly in Y’. These eight tori sit over the eight corners of U in the
figure. For each of the four dotted edges of U, there is copy of [0, 1] x T lying above it
in W. Let ¢y C H'(W; Z/2) be the subgroup generated by the classes dual to these four
copies of [0, 1] x T. This subgroup restricts to ¢ and ¢" on the two ends. Equipped with
this data and its complex structure Jy, the cobordism thus gives rise to a map

(W, S, Py)? : I(Y, K, P)* — LY, K/, P)?.
An entirely symmetrical construction gives a map in the opposite direction,
LW, S, Pi)® : 1(Y, K, P)* — I(Y,K, P)*.

To show that the maps arising from these cobordisms are mutually inverse, we
follow Floer’s argument, as described in [4, 23]. The setup is symmetrical, so we need
only consider one composite, say the union

V=WUy W
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Fic. 5. — The composite cobordism V=W Uy W from Y to Y

with its embedded surface Sy =S U S. This composite cobordism, part of which is de-
picted in Figure 5, contains four copies of [0, 2] x T (lying above the dotted lines again).
We take

v CH'(V;2/2)

to be the subgroup generated by the dual classes of these four hypersurfaces together with
the image of the boundary map in the Mayer-Vietoris sequence: 1.e. the classes dual to
the components of Y’ C V. The complex structure on V is the product structure on the
subset T x (U U U) shown in the figure. By Proposition 5.4, the composite of the maps
obtained from the cobordisms (W, S) and (W, S) is the map

I(V, Sy, Py)?".

So we must show that this map is the identity.

Floer’s proof rests on the fact that the cobordism V can be changed to a product
cobordism by cutting along the 3-torus T x y (where y is the curve depicted in the
figure) and gluing two copies of T x D? to the resulting boundary components. If we
write V' for the resulting product cobordism, we see that it contains a product surface Sy
and acquires from V (by cutting and gluing) a complex structure Jy» which respects the
product structure. Furthermore, the subgroup ¢y becomes a group ¢y in H'(V; Z/2)
which is the pull-back of ¢ from H'(Y; Z/2). Thus

IV, Sy, Py)? =1d

and we are left with the task of showing that V and V' (with their attendant structures)
give the same map on I(Y, S,P)?. This last task is easily accomplished by using the
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fact that ¢y restricts to the 3-torus T X y to give the non-trivial 2-element subgroup
of H'(T x y; Z/2) generated by T x {point}, so that

I(T x y, P)? =Z,

by Lemma 5.3. The subgroup ¢y also contains the class dual to T x y, so that Proposi-
tion 5.5 applies. The relative invariant of T x D? is 1 € Z in the Floer group of T X y, so
the result follows, just as in Floer’s original argument. 0J

5.4. Proof of Proposition 1.4

We now apply the excision principle, Theorem 5.6, to prove Proposition 1.4 from
the introduction. The proposition can be generalized to deal with knots K in 3-manifolds
other than S?, so we consider a general connected, oriented Y and a knot K C Y. From
(Y, K) we form a new closed 3-manifold T}, depending on a choice of framing for K,
as follows. We take a standard coordinate circle C C T* and we glue together the knot
complements to form

TS = (TP\N°(C)) U (Y\N°(K)),

gluing the longitudes of K (for the chosen framing) to the meridians of C and vice
versa. In T?, let R be coordinate 2-torus parallel to C and disjoint from it, and let
V¥ C H'(T}; Z/2) be the 2-element subgroup generated by the dual to [R] in Tj. Let
w; C T? be another coordinate circle transverse to R and meeting it in one point.

We may now consider the instanton Floer homology group 1! (T%), as well as its
companion 1! (T})? defined using the larger gauge group. From the first half of Propo-
sition 5.2, we have

(29) 17(TR) =1 (TR @ 1" (TR
Our application of excision is the following result:

Proposition 5.7. — There is an isomorphism 1°(Y, K) = I*! (T‘?{)””J respecting the relative
Z. /4 grading of the two groups.

Proof. — By definition, we have I*(Y, K) = I°(Y, K%), where K" is the union of
K and a meridional circle L. and o is an arc joining the two components. The circle
L has a preferred framing, because it is contained in a small ball in Y. Let N(K) be a
tubular neighborhood of K that is small enough to be disjoint from L, and let T, be
its oriented boundary. Let Ty be the oppositely-oriented boundary of a disjoint tubular
neighborhood of L in Y. Let /#: T, — T’y be an orientation-preserving diffeomorphism
that maps the longitudes of K to the meridians of L. and vice versa, and maps w N'T,
to w N'Ty. We can cut along T, and T, and reglue using /. Theorem 5.6 applies. Note
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that because T} and T, are null-homologous, the relevant subgroup ¢ in H'(Y; Z/2) is
trivial. The pair (Y', K') that results from cutting and gluing has two components. One
component is a sphere S? containing K’ which is the standard Hopf link H. The other
component is T};. The tori T} and T}, are respectively a standard torus separating the two
components of the Hopf link in S?, and the torus R in Tj.. The subgroup of H'(Y'; Z/2)
that they generate 1s the 2-element group ¥, while ' is the union of an arc joining the two
components of H and the coordinate circle w; in T?. Since I(S%, H) = Z, the excision
theorem gives

I°(Y,K) = 1¢(S", H) @ I/ (TR) Y =1/(T)",
which is what the proposition claims. U

The group 1°'(T}) (defined using the determinant-1 gauge group) is exactly the
group that Floer associates to a knot K in [9, Section 3]. In that paper, this homology
group is written L. (P, K), but to keep the distinctions a little clearer, let us write Floer’s
group as ['°"(Y, K). Because of the relation (29), we can recast the result of the previous
proposition as

IP‘]Oer(Y’ K) — Iu (Y, K) ® Iu (Y, K)

On the other hand, in [23], it was explained that, over Q at least, one can decompose
[Moer(Y, K) into the generalized eigenspaces of degree-4 operators u(point), belonging to
the eigenvalues 2 and —2. The generalized eigenspace for 42 is, by definition, the group
KHI(Y, K) of [23]. Since the two generalized eigenspaces are of equal dimension, we at
least have

1"y, K; Q) = KHI(Y, K; Q) @ KHI(Y, K; Q)
as vector spaces. Thus we eventually have
I'(Y,K) ® Q = KHI(Y, K; Q)

as claimed in Proposition 1.4.

5.5. A product formula _for split links

For a second application of Floer’s excision theorem, consider a pair of connected
3-manifolds Y, Yy, and their connected sum Y, #Y5, as well as their disjoint union Y =
Y, UY,. Given links K; C Y, for : =1, 2, chosen so as to be disjoint from the embedded
balls that are used in making the connected sum, we obtain a link K; U Ky, in Y,#Y,.
In the special case that Y, and Y, are both S*, the resulting link is a split link (as long
as both K; are non-empty). Of course, we can also form the union Kin Y=Y, UY,.
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Note that any cobordism S from K to K’ in the disjoint union Y gives rise also to a “split”
cobordism S between the corresponding links in Y,#Y5, as long it is disjoint from the
balls.

Let H; C Y; be a Hopflink contained in a standard ball, and let w; be an arc joining
its two components, so that

IF(Y;, K) =19(Y;, K; UH)).
Write v = w; U wy. The group

(Y, KUH, UHy)
1s isomorphic to the tensor product

F(Y,, Kp) ® F(Y,, Ky)

over the rationals, on a account of the Kiinneth theorem (28). On the other hand, it is
also related to the connected sum:

Proposition 5.8. — There s an isomorphism
I°(Y, KUH, UH,) =T*(Y,#Y,, K)
which respects the Z/4 gradings, and s natural_for “split cobordisms™.

Progf: — In Y, let T be a the boundary of a tubular neighborhood of one of the
two components of the Hopflink H; C Y, and let Ty, C Yy be defined similarly, but with
the opposite orientation. Choose an orientation-preserving diffeomorphism % between
these tori, interchanging longitudes with meridians. The manifold (Y’, K’) obtained by
cutting and gluing as in the excision theorem is disconnected. Its first component Y/ is a
3-sphere containing a standard Hopf link K. Its second component Yj is the connected
sum Y #Y, containing the link

Ké:KlLJKQUH/,

where H' 1s a standard Hopf link. All the tori involved in this application of excision
are null-homologous, so no non-trivial subgroups of H'(Y; Z/2) are involved. Thus we
obtain from Theorem 5.6 an isomorphism

(30) (Y, KUH, UH,) = 1¢(Y,K)) @ I? (Y}, K})
=1°(Y|,K)) ® I (Y, #Y,, K, UK, UH).

On the right, the first factor is Z. The curve ' in the second factor is an arc joining the
two components of the Hopflink H'. So the right-hand side is simply I*(Y,#Y,, K; UKy)
as desired. O
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(. N\ e
=

F1. 6. — Knots Ky, K| and K differing by the unoriented skein moves, in two different views

Corollary 5.9. — If at least one of T (Y, K;) is torsion-fiee, we have an isomorphism
F(Y1,K) @ F(Ys, Ko) = F(Y,#Y,, K, UK,)

arising from an excision cobordism. The isomorphism is natural_for the maps induced by “split” cobor-
disms.

6. Cubes

6.1. The skein cobordisms

We consider three links Ky, K; and K; in a closed 3-manifold Y which are related
by the unoriented skein moves, as shown in Figure 6. What this means is that there 1s
a standard 3-ball in Y outside which the three links coincide, while inside the ball the
three links appear as shown. Two alternative views are given in the figure. In the top
row, we draw the picture as it is usually presented for classical links, when a projection
in the plane is given: here the links K; and K, have one fewer crossings that K. In the
bottom row of the figure, an alternative picture is drawn which brings out the symmetry
more clearly: we see that there is a round ball B® in Y with the property that all three
links meet the boundary sphere in four points. These four points form the vertices of a
regular tetrahedron, and the links Ky, K; and K are obtained from the three different
ways of joining the four vertices in two pairs, by pairs of arcs isotopic to pairs of edges of
the tetrahedron.

The second view in Figure 6 makes clear the cyclic symmetry of the three links.
Note that there s a preferred cyclic ordering determined by the pictures: if the picture
of K, is rotated by a right-handed one-third turn about any of the four vertices of the
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F1G. 7. — The twisted rectangle T that gives rise to the cobordism S, ; from K, to K;

tetrahedron, then the result is the picture of K;_;. We may consider links K, for all integers
¢ by repeating these three cyclically.

We next describe a standard cobordism surface S; ;- from K; to K;_; inside the
cylindrical 4-manifold [0, 1] X Y, for each :. Because of the cyclic symmetry, it is sufficient
to describe the surface Sy ;. This cobordism will be a product surface outside [0, 1] x B.
Inside [0, 1] x B?, the first coordinate ¢ € [0, 1] will have a single index-1 critical point
on Sy ;. The intrinsic topology of Sy | is therefore described by the addition of a single
1-handle. To describe the geometry of the embedding, begin with the 1/4-twisted rectan-
gular surface T C B? shown in Figure 7, and let T° be the complement of the 4 vertices
of T. Let ¢ be a Morse function on T° with ¢ = 0 on the two arcs of Ky and # =1 on the
two arcs of K, and with a single critical point on the center of T with critical value 1/2.
The graph of this Morse function places T? into [0, 1] x B?. The cobordism S, | is the
union of this graph with the product part outside [0, 1] x B,

We put an orbifold Riemannian metric g on [0, 1] X Y (with cone-angle 7 along the
embedded surface Sy ; as usual). We choose the metric so that it is a cylindrical product
metric of the form

d’ + éy

on the subset [0, 1] x (Y \ B®). We also require that the metric be cylindrical in collar
neighborhoods of {0} x Y and {1} x Y.

Suppose now that instead of a single ball we are given N disjoint balls By, ..., By
in Y. Generalizing the above notation, we may consider a collection of links K, C Y for
v € {0, 1, 2}¥: all these links coincide outside the union of the balls, while K, N B; consists
of a pair of arcs as in Figure 6, according as the ¢-th coordinate v; 13 0, 1 or 2. We extend
this family of links to a family parametrized by v € Z~, making the family periodic with
period 3 in each coordinate v;.
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We give Z™ the product partial order. We also define norms

|l = sup i

1
i =" v
[

Then for a pair v, u € ZN with v > u and |v — u|, = 1, we define a cobordism S,, from
K, to K, in [0, 1] x Y by repeating the construction of S, ,. for each ball B; for which
v; = u; + 1. For the sake of uniform notation, we also write S,, for the product cobordism.
These cobordisms satisfy

Swu = Svu © Swv

whenever w > v >y with |w — u|s < 1.

It is notationally convenient to triangulate RN as a simplicial complex RN with
vertex set Z~N by declaring the n-simplices to be all ordered (n 4 1)-tuples of vertices
@Y, ..., v") with

I &

and |v” — v"|« < 1. In this simplicial decomposition, each unit cube in Z~ is decomposed
into N! simplices of dimension N. The non-trivial cobordisms S,, correspond to the 1-
simplices (v, u) of RY. We also talk of singular n-simplices for this triangulation, by which
we mean (n+ 1)-tuples (v°, ..., v") with

0

v’ > !

> > "
and |v” — v"|o < 1. We can regard these singular simplices as the generators of the
singular simplicial chain complex, which computes the homology of RY.

We will be applying instanton homology, to associate a chain complex C”(Y, K,)
to each link K,. To do so, we need to have an w so that (Y, K,, ®) satisfies the non-
integral condition. We choose an @ which is disjoint from all the balls B, ..., Bx. Such
a choice for one K, allows us to use the same w for all other K,. When considering the
cobordisms S,,, we extend @ as a product. We impose as a hypothesis the condition that
(Y, Ky, w) satisfies the non-integral condition, for all v.

We put an orbifold metric g, on (Y, K,) for every v, arranging that these are all
isometric outside the union of the N balls. As in the case N =1 above, we then put an
orbifold metric g,, on the cobordism of pairs, ([0, 1] X Y, S,,) for every 1-simplex (v, )
of RN. We choose these again so that they are product metrics in the neighborhood of
{0} x Y and {1} x Y, and also on the subset [0, 1] x (Y \ B), where B is the union of the
balls. Inside [0, 1] x B; we can take standard metric for the cobordism, which depends
only on ¢, not otherwise on « or v.
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In order to have chain-maps with a well-defined sign, we need to choose I-
orientations for all the cobordisms that arise. From the definition, this entails first choos-
ing singular bundle data

P,— (Y,K,)

for each v, corresponding to the chosen w. It also entails choosing auxiliary data a,
(a metric, perturbation and basepoint in B(Y, K,)), for all v. The metric is something
we have already discussed, but for the perturbation and basepoint we make arbitrary
choices. We fix (P,, a,) once and for all, and make no further reference to them. For
each cobordism S,,, we have a well-defined notion of an I-orientation, in the sense of
Definition 3.9. We wish to choose I-orientations for all the cobordisms, so that they be-
have coherently with respect to compositions. The following lemma tells us that this is
possible.

Lemma 6.1. — 1t s possible to choose 1-orientations vy, for each cobordism S,,, so that
whenever (W, v, u) is a singular 2-simplex of R, the corresponding 1-orientations are consistent with
the composition, so that

(31> Mwu = vy © Lyy-

Progf. — The proof only depends on the fact that the composition law for
I-orientations is associative. Begin by choosing an arbitrary I-orientation !, for each
singular 1-simplex (v, «). For any singular 2-simplex (w, v, «), define n(w, v, ) € Z/2
according to whether or not the desired composition rule (31) holds: that is,

’ v, ’ /
/’qu = (_l)ﬂ(w ’ u)luvu © /’va'
We seek new orientations
0 (v,
Mvy = (=D . u)/’L;u

so that the (31) holds for all 2-simplices. The 6 that we seek can be viewed as a 1-cochain
on RY with values in Z/2, and the desired relation (31) amounts to the condition that the
coboundary of 6 is n:

80 =n.

Because the second cohomology of RN is zero, we can find such a 6 if and only if 7 is
coclosed.

To verify that 1 is indeed coclosed, consider a singular 3-simplex (w, v, u, z). The
value of 81 on this 3-simplex is the sum of the values of 7 on its four faces. Choose any
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I-orientation v for S,,.. There are four paths from w to z along oriented I-simplices,
Y0, - - - » V3. Viewing these as singular 1-chains, they are:

Yo=(w,2)

= w,u)+ 2

Yo =(w,v) + (v, 0) + (4, 2)

ys = (w,v) + (v, 2).

For each path y,, a=0, ..., 3, define ¢, € Z/2 by declaring that ¢, = 0 if and only if the
composite of the chosen I-orientations " along the 1-simplices of y, is equal to v. Thus,
for example,

l l I b
Moy © Moy © /’Lu.z - (_1) .

In the given cyclic ordering of the 1-chains y,, the differences y,.; — ¥, form the boundary
of a face of the 3-simplex, for each a € Z/4. Thus we see,

¢ — o =n(w, u, 2)
o — 1 =n(w, v, )
¢3 — Pa=n(v, 4, 2)

o — s =n(w, v, 2).

The sum of the value of n on the 4 faces of the singular 3-simplex is therefore zero, as
required. O

To define maps in the Floer homology we make the pair ([0, 1] x Y, S,,) into a pair
of cylindrical manifolds, by adding the half cylinders (—o0, 0] x (Y, K,) and [, 00) x
(Y, K,). The four-manifold is simply R x Y, and we call the R coordinate ¢. The metric
is locally a product metric everywhere except on the subset

[O, 1] X (Bi1 UUBM)

where the union is over all z with v; # ;. With a slight abuse of notation, we continue to
denote by S,, the non-compact embedded surface with cylindrical ends,

Sy CR X Y.

This orbifold metric on R x Y is one of a natural family of metrics, which we now
describe. Let us write

I={i,...,0}=supplv —u) C{1,...,N},
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‘L'3 Tl ‘L'z

FiG. 8. — The family of metrics G,, parametrized by T € R' (R? in this example)

and let us denote our original orbifold metric by g,,(0). For each
t=(t,...,7,) e RRER",

we construct a Riemannian manifold
R % Y, 7(1)

by starting with (R x Y, g,,(0)), cutting out the subsets R x B; form=1,...,d, and
gluing them back via the isometry of the boundaries R x S* given by translating the ¢
coordinate by 7, . After an adjustment of our parametrization, we can assume that the
{ coordinate on R x Y has exactly d critical points when restricted to the singular locus
Syu, and that these occur in {7; } X B, form=1,...,d. (See Figure 8.) We write G, for
this family of Riemannian metrics.

Suppose now that (w, v, ) be a singular 2-simplex. Let I and J be the support of
w — v and v — u respectively, so that I U] is the support of w — « and I N ] is empty. There
is a natural identification

(32) Guu = Guy X Gy,
arising from R™ — R x RJ.

Lemma 6.2. — Orientations can be chosen_for G, for all singular 1-simplices (v, u) of RN
such that for all singular 2-simplices (w, v, u), the natural identification (32) us orientation-preserving.

Progf: — The proof'is essentially the same as the proof of the previous lemma. [J

There is an action of R on the space of metrics G,, by translation (adding a com-
mon constant to each coordinate of T € RY). We can therefore normalize T by requiring

that
Z T, = 0.
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We write évu C Gy, for this normalized family (which we can also regard as the quotient
of G, by the action of translations). As coordinates on G,, we can take the differences

T:

o+l T

)

a=1,...,d.

There is a natural compactification of évu, which we can think of informally as resulting
from allowing some of the differences to become infinite: it parametrizes a family of
broken Riemannian metrics of the sort considered in Section 3.9. This compactification,
which we call Gj’u, is constructed as follows. We consider all simplices o = (v, ..., v")
with v° = v and v" = « (including the 1-simplex (v, «) itself amongst these). For each such
simplex o, we write

%

GO' - Gv[)vl X e X Gvn—lvn.

The compactification éju is then the union
(33) Gl =JG..

The definition of the topology on this union follows the usual approach for broken tra-
jectories: see for example [20]. The space GJr is a polytope: if o is an n-simplex, then
the corresponding subset G, C GJr is the interior of a face of codimension n — 1. In
particular, the codimension-1 faces of the compactification are the parts

GUJ' X GJ’M

for all s with v > s > u. Thus each face parametrizes broken Riemannian metrics broken
along a single cut (Y, K,), for some s. (A family of Riemannian metrics with much the
same structure occurs in the same context in [3], where it is observed that the polytope is
a permutohedron.)

In Section 3.9, when we considered general families of broken metrics, we chose
to orient the boundary faces of the family using the boundary orientation. In our present
situation, we need to compare the naturally-arising orientations to the boundary orienta-
tion:

Lemma 6.3. — Suppose that orientations v/zave been chosen for G, for all 1-simplices (v, u) so
as lo satisfy the conditions of Lemma 6.2. Onient G, by making the identification

G,, =R xG,,

where the R coordinate ts the center of mass of the coordinates t; on Gy,. Then for any 2-simplex
(w, v, u) the product orientation on G, X Gy, differs from the boundary orientation of

éwv X éuu C aéwu
by the sign (—1)%im G,
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Proof: — From the identification G, = G,, X G,, we obtain an orientation-
preserving identification

Ry % Guu = (R; X Gyy) X (Ry X Gy,

where the Ry, R}, Ry factors correspond to centers of mass of the appropriate ;. Thus,
the R coordinate on the left is a positive weighted sum of the R; and Ry coordinates on
the right. This becomes an orientation-preserving identification

qu = Gwv X R’S X Gvu,

where the coordinate Ry is related to the prev1ous R, and Ry coordinates by t3 = t, — ¢.
The boundary component qu X Gvu in 8G+ arises by letting the Rj3 coordinate go to
+00, so

é;u D Gy X (=00, +00] x Gy,

The orientation of the boundary is determined by the outward-normal-first convention,
which involves switching the order of the first two factors on the right. This introduces
the sign (—1)dmGur, ]

6.2. Maps from the cobordisms

We continue to consider the collection of links K, in Y indexed by v € ZN. Recall
that we have singular bundle data P, over each (Y, K,) satisfying the non-integral con-
dition, and fixed auxiliary data a,, so that we realize explicit chain complexes for each
Floer homology group: we write

Cv = C*(Y’ Kva Pv)

for this chain complex. Its homology is I°(Y, K,)). We write €, for the critical points, so

that
C.=PzA®).

Bely

Now suppose that (v, «) is a singular 1-simplex, andlet 8 € €,, & € €,. The cobor-
dism of pairs, with cylindrical ends attached, namely the pair

R XY, Sy,

carries the family of Riemannian metrics G,, (trivial in the case that v = u). We choose
generic secondary perturbations as in Section 3.9, and we write

M. (B, @) = Gy,

for the corresponding parametrized moduli space.
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There is an action of R on M,, by translations, covering the action of R on G,,
given by

(Tila""fi,[)H(Til _t"""[i{[_t)'

(The choice of sign here is so as to match a related convention in [20].) In the special
case that v = u, the cobordism is a cylinder, and ¢ € R acts on M,,, by pulling back by the
translation (7, %) = (t +¢, ) of R X Y. When v = u, we exclude the translation-invariant
part of M, (a0, &), so MUU is the quotient by R only of the non-constant solutions. When
v # u, the action of R on G, 1s free and we can form the quotient évu considered earlier,
so that we have

M, (B, &) = G
We can also choose to normalize by the condition
a=1

and so regard C}vu as a subset of G,,.
We have not specified the instanton and monopole numbers here, so each
M, (B, &) 1s a union of pieces of different dimensions. We write

M,.(B, @); C M, (B, @)

for the union of the d-dimensional components, if any.

As in Section 3.9, we may consider a natural completion of the space M,.(B, &)
over the polytope of broken Riemannian metrics éju (defined at (33) above): we call
this completion Mju (B, a). To describe it explicitly in the present set-up, we consider all
singular simplices 0 = (v°, ..., v") with v° = v and v" = « (including the 1-simplex (v, «)
itself amongst these). For each such simplex o and each sequence

B=(8".... 8"

with B° = B and B" = «, we consider the product
(34) M, (B) = Myt (B, B1) % -+ x My1,0 (B, ).

As a set, the completion is the union
MY B0 =M. B).
o B

For each singular simplex o, there is a map

M, (B) — G,
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where o' is obtained from o by removing repetitions amongst the vertices. The union of
these maps is a map

M (8, a) = G

The space Mju(ﬂ , &) 1s given a topology by the same procedure as in the spaces of broken
trajectories (see [20] again).

Proposition 6.4. — For a fixed singular 1-simplex (v, w), and any B, o for which the 1-
dimensional part M, (B, &), is non-empty, the completion NI (B, )1 is a compact 1-manifold with
boundary. Its boundary consists of all zero-dimensional products of the form (34) with n = 2,

M, i1 (B, B) x M1 (8", ),

corresponding to singular 2-simplices (v, v', u).

Progf: — This follows from the general discussion in Section 3.9. There it is ex-
plained that the compactified moduli space over the family has three types of boundary
points, described as (a)—(c) on p. 138. The three case described there correspond to the
cases:

(a) the case v > v! > u(i.e. a face of (U}ju arising from a non-degenerate 2-simplex);

(b) the case v' = v, corresponding to a singular 2-simplex;

(c) the case v' = u, which is also a singular 2-simplex, and which may coincide
with the previous case if v = , i.e. if the original 1-simplex is singular. U

We now consider orientations in the context of the proposition above. For this
purpose, let us fix I-orientations p,, for all cobordism S,, satisfying the conclusion
of Lemma 6.1, and let us fix also orientations for all G,, satisfying the conclusion of
Lemma 6.2. If we are then given elements of A () and A(B), we may orient M, (B, o)
using the fiber-first convention as in Section 3.9. Having oriented M, (8, o) we then
orient M, (8, @) as a quotient: giving R its standard orientation, and putting it first, we
write

(35) M, (B, @) =R x M, (8, @)

as oriented manifolds. Note that there is another way to orient Mvu that 1is different from
this one: we could orient évu (as we have done) as the quotient of G,,, and then orient MW
as a parametrized moduli space over G,.. The difference between these two orientations
Is a sign

(36) (= )dmOnt = (=l

We shall always use the first orientation (35) for M,,.
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Having so oriented our moduli space Mvu(ﬂ, «), we obtain a group homomor-
phism

My, - Gy = C,
by counting points in zero-dimensional moduli spaces, as in Section 3.9.

Lemma 6.5. — For every singular 1-simplex (w, u) we have

E [v—uli (lw—vi—=D+1 » y
(_1) Myy © Myyy = 0,
v

where the sum 1s over all v with w > v > u.

Progf- — There is a degenerate case of this lemma, when w = w. In this case, my,,
1s the Floer differential 4, on C,,, and the lemma states that —di = 0. For the non-
degenerate case, where w > u, the sum involves two special terms, namely the terms
where v = w and v = u. Extracting these terms separately, we can recast the formula as

(5 oot on,)

vFEW,u

+ (_l)lw_u‘l+1ﬁ74wu ody —d,o ﬁzwu =0,
or equivalently

(37> ( Z (_ 1)(divau+1)dimGwv+lﬁzvu o ﬁlwv)

vFEW,u
+ (=) MGy o d, —d, o iy, =0.

This formula is simply a special case of the general chain-homotopy formula (23), but to
verify this we need to compare the signs here to those in (23). To make this comparison,
let us first rewrite the last formula in terms of the homomorphism m,,, defined in the
same way as 1, but using the orientation convention of Section 3.9, so that

;hvu = (_ l)dimeﬁlvu

as in (36). After multiplying throughout by (—1)%™ Gue | the formula becomes

( § (_ 1)(d1vau+l)dlmGwvﬁ’lvu o r_nwu)

vFEwW,u

+ (= 1) ™G o dy — d, © iy = 0.



176 P. B. KRONHEIMER, T. S. MROWKA

In this form, the formula resembles the formula (23), with the only difference being the
extra +1 in the first factor of the first exponent. This extra term is accounted for by
Lemma 6.3 and is present because the product orientation on éwv X évu is not equal to
its boundary orientation as a face of éwu ]

In order to define away some of the signs, we observe that the formula in the lemma
above can be written as

(_ I)Z w;+s(w,u) Z(_ l)s(v,u)—i-s(w,v)ﬁ,lvu o ;nwv — 0’

v

where s is given by the formula

(38) s(v,u)=%|v—u|(|v—u|—1)+Zvi.

With our choices of homology orientations 1, etc. still understood, we make the follow-
ing definition:

Definition 6.6. — In the above setting, we define homomorphisms
Jou 1 Gy — G,
by the formula
Fou=(— I)S(U,u)ﬁ,lvu
Jor all singular 1-simplices (v, u).
Note that in the case v = u we have
Jow=(=D="d,.
With these built-in sign adjustments, the previous lemma takes the following form.

Proposition 6.7. — For any singular 1-simplex (w, u), we have
§ )vuﬂ)v = Oa

where the sum s over all v with w > v > u.

For each singular 1-simplex (v, u), we now introduce

Clvu] = QB Cy.

v>v'>u
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(Here v’ runs over the unit cube with extreme vertices v and «.) We similarly define

Flo= P fow.

so we have
Flvy] : Clvu] — Clvu].

The previous proposition then becomes the statement

Flvu]* =0,
so that (C[vu], Flvu]) is a complex. The basic case here is to take v = (1, ..., 1) and
u=(0,...,0), in which case G[vu] becomes
(39) c= P c.
v'ef0,1}N

with one summand for each vertex of the unit N-cube. The corresponding differential F
has a summand f,»,y : G,y — C, for each vertex, together with summands f,, for each
v’ > /. The general G[vu] is also a sum of terms indexed by v’ running over the vertices
of a cube of side-length 1, though the dimension of the cube is [v — u|, in general, which
may be less than N.

The remainder of this subsection and the following one are devoted to proving the
following theorem, which states that the homology of the cube G[vu] coincides with the
homology of a single C,, for appropriate w:

Theorem 6.8. — Let (v, u) be any 1-simplex, and let w = 2v — u. Then there is a chain map

(G fww) = (Glvu], Flvu])

inducing an isomorphism in homology. Thus in the case that v = (1,...,1) and u=(0,...,0),
the homology of (G, F), where G 1s as in (39), s wsomorphic to the homology of (Cy,, fy), where
w=(2,...,2).

To amplify the statement of the theorem a little, we can point out first that in
the case v = u, the result is a tautology, for both of the chain complexes then reduce to
(Cy, fov). Next, we can look at the case |[v — u|; = 1. In this case, K, and K, differ only
inside one of the N balls, and we may as well take N = 1. In the notation of Figure 6, we
can identify K, and K, with K, and Ky, in which case K,, 1s Ky. The complex Glvu] is
the sum of the chain complexes for the two links K, and K,

GGy
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—d, 0
Flvu] =
wa= (4 7)
where f( is minus the chain map induced by S;o. Thus (C[vu], F[vu]) is, up to sign, the

mapping cone of the chain map induced by the cobordism. The theorem then expresses
the fact that the homologies of Cy, C; and Cj are related by a long exact sequence,

and

in which one of the maps arises from the cobordism S;y. The proof of the theorem will
also show that the remaining maps in the long exact sequence can be taken to be the ones
arising from S and Spy. This 1s the long exact sequence of the unoriented skein relations,
mentioned in the introduction. For larger values of |[v — u|, the differential F[vu] still has
a lower triangular form, reflecting the fact that there is a filtration of the cube (by the sum
of the coordinates) that is preserved by the differential.

Corollary 6.9. — In the situation of the theorem above, there is a spectral sequence whose E,
term 1s
P .k
v'ef0,1}N

and which abuts to the instanton Floer homology 19 (Y, Ky,), forw = (2, ..., 2).

The signs of the maps in this spectral sequence are determined by choices of I-
orientations for the cobordisms S,, and orientations of the families of metrics G, subject
to the compatibility conditions imposed by Lemmas 6.1 and 6.2. These compatibility
conditions still leave some freedom. For both lemmas, the compatibility conditions mean
that the orientations for all 1-simplices (v, «) are determined by the orientations of S,
and G, for the edges, 1.e. the 1-simplices (v, %) for which |v — u|; = 1. These are the
simplices that will contribute to the differential 4, in the spectral sequence above. For
these, the space Gy, is a point, so an orientation is determined by a sign (—1)°®" for
each v, u. The condition of Lemma 6.2 is equivalent to requiring the following: for every
2-dimensional face of the cube, with diagonally opposite vertices w > « and intermediate
vertices v and v’, we need

(40) S(w,v)8(v,u) =14+ 8w, v)S®, u) (mod 2).

We can achieve this condition by an explicit choice of sign, such as

1n—1

(41) S, 0= v,
=0

where ¢ is the unique index at which v; and «; differ.
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Corollary 6.10. — Let I-orientations be chosen for the cobordisms S, so that the conditions of
Lemma 6.1 hold. For each edge (V' u') of the cube, let 1°(S,,/) be the map 1°(Y, K,) — 1°(Y, K,)
induced by S,y with this I-orientation. Then the spectral sequence in the previous corollary can be set up
s0 that the differential d, is the sum of the maps

(=1’ O1(S,)

over all edges of the cube, where

N
SV, ) = Z V!
=1
and 1y ts the index at which v" and u' differ.

Progf. — The difference between § and the § that appears here is > v mod 2,
which is s(v', «) mod 2 in the case of an edge (V', «). O

Theorem 6.8 will be proved by an inductive argument. The special case described
at the end of the theorem is equivalent to the general case, so we may as well take

w=(02,...,2)
v=(1,...,1)
u=1(0,...,0).

Thus v and « span an N-cube. We again write (G, F) for (C[uv], F[uv]) in this context.
For each i € Z, let us set

c= P c..
v'e(l,0}N-1

Each G, can be described as G[v'«/] for some v, ' with |[v" — «/|; = N — 1. We have

C == Cl @ Co,
generalizing the case N = 1 considered above, and we can similarly decompose F in block
form as
F, O
F= ,
(Fl() Foo)
where

F;= @ Jorowp-

v ef 10N

To prove the theorem, we will establish:
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Proposition 6.11. — There is a chain map
(Cy, Fo9) — (G, F)

inducing 1somorphisms in homology.

This proposition expresses an isomorphism between the homologies of two cubes,
one of dimension N — 1, the other of dimension N. Theorem 6.8 for the given w, v
and u 1s an immediate consequence of N applications of this proposition. Just as in the
case N = 1, the proposition will be proved while establishing that there is a long exact
sequence in homology arising from the anti-chain maps,

Fs: F: F
+-+ —> (C3, Fy3) —> (Cy, Fay) —> (C1, 1)) —> (Co, Fyp) —> -+
(In the above sequence, the chain groups and anti-chain maps are periodic mod 3, up to

sign.)

7. Proof of Proposition 6.11

7.1. The algebraic setup

The proof is based on an algebraic lemma which appears (in a mod 2 version) as
Lemma 4.2 in [29]. We omit the proof of the lemma:

Lemma 1.1 ([29, Lemma 4.2]). — Suppose that for each 1 € Z we have a complex (C;, d;)
and anti-chain maps

fi:Ci— Cpy.

Suppose that the composite chain map f—, o f; is chain-homotopic to O via a chain-homotopy j;, in that
dioyi +7idi +fiotfi=0

Jor all 1. Suppose furthermore that for all v, the map
Ji-i T Jicggi : Gi = Gis

(which is a chain map under the hypotheses so far) induces an isomorphism in homology. Then the induced
maps in homology,

(ﬁ)* :H (G, d) — Ho(Ciy, diy)
Jorm an exact sequence; and for each v the anti-chain map

D st (fis,):8)

®: C;, — Cone(fi-)



KHOVANOV HOMOLOGY IS AN UNKNOT-DETECTOR 181

induces 1somorphisms in homology. Here Cone(f;) denotes C; @ C;_y equipped with the differential

d 0
i dia )’

Given the lemma, our first task is to construct (in the case ¢ = 2, for example) a
map

Joo 1 Go —> Gy

satisfying

(42) FolJoo +JooFa0 + FioFy = 0.

After constructing these maps, we will then need to show that the maps such as
FiJs1 +JooFs : G — Gy

(which is a chain map) induce isomorphisms in homology. This second step will be
achieved by constructing a chain-homotopy

K30 . C3 —> Co
with
(43) Fo K3 + KsFs3 + FiJ31 + JooFs0 + Id =0,

where Id is a chain-map that is chain-homotopic to £1. The construction of J and K
and the verification of the chain-homotopy formulae (42) and (43) occupy the remaining
two subsections of this section of the paper.

7.2. Construction of J

We will construct J; ;o for all z so that (in the case : = 2, for example) the relation
(42) holds. Recalling the definition of G, we see that we should write

(44) Joo = Z](v’z)(u’m

where the sum is over all v > « in {0, 1}~!. The desired relation then expands as the
condition that, for all w’, « in {0, 1},

(45) Z(ﬁu/@)(i/oﬁ(wu)(um) +JiwawoSww FSenwok w’Q)(v’l)) =0.
U/

Our task now is to define j,, for v =v'2 and « = «'0 in Z~, where (v', «') some singular
1-simplex in the triangulation of RN~' of RN~
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We have previously considered I-orientations for S,, and orientations of families of
metrics Gy, in the case that (v, %) is a singular 1-simplex. We now extend our construc-
tions to the case of an arbitrary pair (v, «) with v > u. (So we now allow |v — u| to be
larger than 1. At present we are most interested in the case |v — u|o = 2; and in the next
section, 3 will be relevant.) We still have natural cobordisms S,, when [v — u|; > 1, ob-
tained by concatenating the cobordisms we used previously. So for example, when N =1,
the cobordism Sy is the composite of the cobordisms So; and Sy.

For the I-orientations, we can begin by choosing I-orientations as before for 1-
simplices (v, u), so that the conditions of Lemma 6.1 hold. Then we simply extend to all
pairs v > u so that the consistency condition

Mwu = Myy © Ky

holds for all w > v > u.

For arbitrary v > u, the cobordism (R x Y, S,,) also carries a family of metrics
G/, of dimension n = |v — u|,. We define G/, first in the case N = 1. In this case, we can
regard S,, as the composite of n cobordisms, where n = |v — u|, and each cobordism is
a surface on which the ¢ coordinate as a single critical point. Unlike the previous setup,
these critical points cannot be re-ordered, as they all lie in the same copy of R x B, (where
B, is a 3-ball), rather than in distinct copies R x B,. As an appropriate parameter space
in this case, we define G/ to be

(46) G, ={(t,...t) eR"| 1,41 > 1 +1,, Ym <n},

and construct the metrics so that 7, is the ¢ coordinate of the critical point in the m-th
cobordism (much as we did in the construction of G, earlier, on p. 170). For larger N,
we construct G, as a product of G overalli=1,..., N. In the case that [v — u[ = 1,
the space G, coincides with G,, = R" as defined before; while if |[vxy — ux] = 2 and
|vj — uj| < 1 forj <N — 1, then G/, is a half-space. Whenever w > v > u, we have self-
evident maps
G, — G, xG|,.

These maps are either surjective, or have image equal to the intersection of the codomain
with a product of half-spaces. Following Lemma 6.2, we can choose orientations for all
the G/ so these maps are always orientation-preserving.

Next we examine the topology of the cobordism S,, in the case that N =1 and
v — uloo = 2. For the following description, we revert to considering S,, as a compact
surface in a product I X Y, rather than a surface with cylindrical ends in R x Y.

Lemma 7.2. — In the situation depicted in Figures 6 and 7, the composite cobordism Sy o =
S1.00S91 from Ky to Ky in I XY has the form

(I x Y, Vy0)#(S*, RP?)
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F16. 9. — The arc 6 as the intersection of Ty ; and T

where the RP? is standardly embedded in S* with self-intersection +2, as described in Section 2.7.

Remark. — The cobordism V) o that appears in the above lemma is diffeomorphic
to S3.9, viewed as a cobordism from Kj to K3 by reversing the orientation of I X Y.

Proof of the Lemma. — Arrange the composite cobordism Sy  so that the ¢ coordinate
runs from O to 1 across Sy ; and from 1 to 2 across S o. The projection of Sy | to Y meets
the ball B® in the twisted rectangle T =Ty | depicted in Figure 7, while the projection of
S1.0 similarly meets B? in a twisted rectangle T . The intersection Ty; N'T} o in B® is a
closed arc 8, joining two points of K;. The preimages of § in Sy ; and S, are two arcs in
So.0 whose union 1s a simple closed curve

y C SQ,O-

On y, the ¢ coordinate takes values in [1/2, 3/2]. A regular neighborhood of [0, 2] x &
in [0, 2] x Y is a 4-ball meeting Sy ; in a M6bius band: the band 1s the neighborhood of
Y n SQ,().

This Mobius band in the 4-ball can be seen as arising from pushing into the ball
an unknotted Mobius band in the 3-sphere. The Mobius band M in the 3-sphere is the
union of three pieces:

(a) a neighborhood of {0} x & in {0} x Ty ;;

(b) a neighborhood of {2} x § in {2} x T ¢;

(c) the pair of rectangles [0, 2] X €, where € is a pair of arcs, one in each component
Of K1 N BB.

This Mobius band M possesses a left-handed half-twist. The half-twist is the result of
two quarter-turns, one in each of the first two pieces of M in the list above. The signs of
the quarter-turns can be seen in Figure 9: a neighborhood of § in Ty ; has a rght-hand
quarter turn for the standard orientation of B, but this 3-ball occurs in the boundary of
the 4-ball with its opposite orientation; and a neighborhood of § in T ( has a lgfi-hand
quarter turn for the standard orientation of B, and this 3-ball occurs with its positive
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orientation in the boundary of the 4-ball. Thus the M6bius band in the boundary of the
4-ball has a left-hand half-twist resulting from two left-handed quarter-turns.

The RP? obtained from Mobius band with a left-handed half-twist is the standard
RP’ with self-intersection +2. OJ

The fact that the composite cobordism Sy from (Y, Ky) to (Y, Ky) splits off a sum-
mand (S*, RP?) (as stated in the lemma above) implies, by standard stretching arguments,
that this composite cobordism induces the zero map in homology:

(fio o o)« =0:17(Y, Ky) — 1°(Y, Ky).

This is essentially the same point as the vanishing theorem for the Donaldson invariants
of connected sums. It is important here that the summand (S*, RP?) carries no reducible
solutions, which might live in moduli spaces for which the index of D is negative: see
the examples of moduli spaces in Proposition 2.10. Although it is zero at the level of
homology, at the chain level, the map induced by the composite may be non-zero. The
one-parameter family of metrics involved in the stretching provides a chain homotopy,
showing that the map is chain-homotopic to zero. This is what will be used to construct
the chain-homotopy Jo in Definition 7.3 below. But first, we must make the family of
metrics explicit and extend our notation to the case of more than one ballin Y.

Staying for a moment with the case of one ball, we have already set up a family of

metrics GY,, which in this case is a 2-dimensional half-space:

Gy={(t, )| =1+n}
We extend this family of metrics to a family
(47) Gy = Gy UGy,

as follows. The boundary of G, consists of the family of metrics with 7, = 7, + 1, all
of which are isometric to each other, by translation of the coordinates. Fixing any one
of these, say at T, = 0, we construct a family of metrics parametrized by the negative
half-line R™, by stretching along the sphere S* which splits off the summand (S*, RP?)
in Lemma 7.2. (This family of metrics can be completed to a family parametrized by
R~ U {—00}, where the added point is a broken metric, cut along this S*.) Putting back
the translation parameter, we obtain our family of metrics Gj, parametrized by R™ x R.
The space Gy 1s the union of these two half-spaces, along their common boundary.

Suppose now that N is arbitrary, and that vy — ux =2 and v; — ;=0 or 1 for
J < N. The space of metrics G/, is a half-space: it is a product

/o __pm—l1 ’
G, =R" x Gy,

where m is the number of coordinates in which v and u differ, and G}, is a 2-dimensional
half-space as above. The coordinates on R"~! are the locations t of the critical points
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in the balls B; corresponding to coordinates : < N where v and « differ. We extend this
family of metrics to a family

G =R""x (G, UGL) =G, UG/

where G is as before. We again use the notation G,, for the quotient by translations:

%

Gy, =Gy /R

Let us consider the natural compactification G} of G,,, where w = w'2, u =0
and |w’ — /| < 1. This 1s a family of broken Riemannian metrics whose codimension-1

faces are as follows.

(a) First, there are the families of broken metrics which are cut along (Y, K,)
where w > v > w. This face is parametrized by éwv X évu. These faces we
can classify further into the cases

(i) the case vy = 0, in which case the first factor G, has the form G/, UG”, |
where (v}zm involves stretching across the S?;
(i) the similar case vy = 2, where the second factor has the form é;u U (v};/u,
(ii1) the case vy = 1, in which case éwv and (V}W are both the simpler fami-
lies described in the previous subsection leading to the construction of the
maps f,, etc.
(b) Second, there is the family of broken metrics which are cut along the S°.

Now let B € €, and a € €, be critical points, corresponding to generators of the
complexes C, and C, respectively. The family of metrics G,, gives rise to a parametrized
moduli space

M,.(B, @) = G,
Dividing out by the translations, we also obtain
My (B, ) = G

We have already oriented the subset G/, C G,,, so we have chosen orientation for G,,. As
before, we orient M,, (B, @) using our chosen I-orientations and a fiber-first convention,
and we orient Mvu(ﬁ , ) as the quotient of M,, (B, @) with the R factor first. The zero-
dimensional part

M, (B, @)y C M,,(B, @)

(if any) 1s a finite set of oriented points as usual, and we define j,, by counting these points,
with an overall correction factor for the sign:
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Definition 7.3. — Given v > u in Z~ with vx — ux =2 and v; — u; < 1 for j < N, we
define

Jou s Gy = G,

by declaring the matrix eniry from B to o to be the signed count of the pownts in the zero-dimensional
moduli space M.,,(B, @) (if any), adjusted by the overall sign (—1)5%*, where s(v, u) is again defined
by the formula (38).

Having defined j,, in this way, we can now construct Jo : Gy = Gy in terms of j,,
by the formula (44). We must now prove the chain-homotopy formula (42), or equiva-
lently the formula (43), which we can equivalently write as

(48) Y Sodoot Y it D Suun=0.

{vlvn=0} {vlon=2} {vlon=1}

As usual, the proof that this expression is zero is to interpret the matrix entry of
this map, from y to «, as the number of boundary points of an oriented 1-manifold, in
this case the manifold M,,(y, «). This is in essence an example of the chain-homotopy
formula (23), resulting from counting ends of one-dimensional moduli-spaces M;u(y, o)
over éxv The three types of terms in the above formulae capture the three types of
boundary faces (a) above, together with the terms of the form “9 o mg £ mg 0 0” in (23).
This is just the same set-up as the proof that F); o Fjp = 0 in the previous section, and
our signs are once again arranged so that all terms contribute with positive sign.

The only remaining issue for the proof of (48) is the question of why there is no
additional term in this formula to account for a contribution from the face (b) of éf;u
This face does not fall into the general analysis, because the cut (S°, S') does not satisfy
the non-integral condition. (We have w = 0 on this cut.) Analyzing the contribution from
this type of boundary component follows the standard approach to a connected sum—in
this case, a connected sum with the pair (S*, RP?) along a standard (S*, S'). There is no
contribution from this type of boundary component, however, by the usual dimension-
counting argument for connected sums, because all solutions on (S*, RP?) are irreducible
and the unique critical point for (S, S') is reducible.

7.3. Construction of K

We turn to the construction of K3, and the proof the formula (43). We start with a
look at the topology of the composite cobordism

S3p =S 0 SQI 0 S39

from K3 to Ky in the case N = 1. Our discussion is very closely modeled on the exposition
of [24, Section 5.2].
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FiG. 10. — Two intersecting Mobius bands, M3, and My, inside Ss

Arrange the ¢ coordinate on the composite cobordism Ss so that ¢ runs from 3 — ¢
to 3 —j across S;. In the previous subsection we exhibited a Mébius band (called M there)
inside Soq. Let us now call this Mobius band Mayy. It is the intersection of Soy with a 4-ball
arising as the regular neighborhood of [1, 3] x §. Just as we renamed M, let us now write
89 for the arc §. There is a similar Mobius band M3, in Ss), arising as the intersection of
Ss; with the regular neighborhood of [0, 2] x §5,.

The arcs 8y and 83; in B both lie on the surface Ty, where they meet at a single
point at the center of the tetrahedron. The two Mébius bands M3, and My meet Ty in
regular neighborhoods of these arcs; so the intersection M3, N My is a neighborhood in
Ty, of this point. (See Figure 10.) The union

M3, := M3; UMy,

has the topology of a twice-punctured RP? and it sits in a 4-ball Bs, obtained as regular
neighborhood of the union of the previous two balls, B, and By,. The 3-sphere S35, which
forms the boundary of By meets M3 in two unknotted, unlinked circles. The following
lemma helps to clarify the topology of the cobordism Ss.

Lemma 7.4. — If we remove (B3, M) from the pair ([0, 3] X Y, Ss0) and replace z't with
(Bso, A), where A s a union of two standard disks in the 4-ball, then the resulting cobordism S from
Ky t0 Ko = Ky is the trivial cylindrical cobordism in [0, 3] x Y.

Progf: — 'T'his is clear. U

Altogether, we can identify five separating 3-manifolds in [0, 3] x Y, namely the
three 3-spheres Ss), S5, and Sy obtained as the boundaries of the three balls, and the
two copies of Y,

YQZ{I}XY
Y ={2} xY
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| ]

Fic. 11. — The five 3-manifolds, Yy, Y1, S50, 831 and Sy in the composite cobordism ([0, 3] x Y, S39)

which contain the links Ky and K. Just as in [24, Section 5.2], each of these five 3-
manifolds intersects two of the others transversely, in an arrangement indicated schemat-
ically in Figure 11, and each non-empty intersection is a 2-sphere.

We can form a family of Riemannian metrics égo on this cobordism whose
compactification (V}?O is a 2-dimensional manifold with corners—in fact, a pentagon—
parameterizing a family of broken Riemannian metrics. The five edges of this pentagon
correspond to broken metrics for which the cut is a single one of the five separating 3-
manifolds,

S € {830, 831, S0, Yo, Y1}
We denote the corresponding face by
Q(S) C G,

The five corners of the pentagon correspond to broken metrics where the cut has two
connected components, S U §', where

{8, 8"} C {830, 851, 800, Yo, Y1},

1s a pair of 3-manifolds that do not intersect. (There are exactly five such pairs.) In the
neighborhood of each edge and each corner, the family of metrics has the model form
described in Section 3.9. As special cases, we have

Q) = Gs1 x Gyg
QY2 = Cv}32 X GQO-
We can, if we wish, regard Gy as the quotient by translations of a larger family Gy

of dimension 3. We can regard the previously-defined family G}, = R" x R* as a subset
of G in such a way that its image in Gy is the indicated quadrilateral in Figure 12.
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O(S30)

Fi6. 12. — The family of metrics Gso containing the image of family G},

Turning now to the case of arbitrary N, we proceed as we did in the previous
subsection. That is, we suppose that we have w and « in ZN, with wx — ux = 3 and
w; —u; =0 or 1 for j < N. The space of metrics G/, is the product of R"™" with a 2-
dimensional quadrant, where m is again the number of coordinates in which w and u
differ:

/o m—1 /
qu =R X GBO'

If we write w = w'3 and u = «/0 with w’, ¥’ € Z¥~!, then we can identify the R"! here
with G,y,. We extend G/, to a larger family

Gu =R"" x G39 =Gy X Gy

where G3p D G, is the interior of the pentagon just described, and we set éwu = Gy./R.
By suitably normalizing the coordinates, we can choose to identify

qu = Gw’u’ X GBO-

We can complete G,, to a family of broken Riemannian metrics G} whose
codimension-1 faces are as follows.

(a) First, the faces of the form Gy X Gy with w > v > parameterizing metrics
broken at (Y, K,). These we further subdivide as:
(1) the cases with vy = wy;
(i) the cases with vy = un;
(i) the cases with vy = wyx — 1 (these correspond to the edge Q(Y,) of the
pentagon, in the case N = 1);
(iv) the cases with vy = wx — 2 (these correspond to the edge Q(Y)) of the
pentagon, in the case N =1).
(b) Second, the faces of the form G, x Q(S) for S =83, Sy or Ss.
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Our chosen orientation of G/, determines an orientation for the larger space Gy,.
Over the compactification G} we have moduli spaces M/ («, B) as usual. Mimicking
Definition 7.3, we define the components of K as follows:

Definition 7.5. — Given v > u in ZN with vy — ux = 3 and v; — u; < 1 forj < N, we
define

ky, : G, — C,

by declaring the matrix entry from B to o to be the signed count of the points in the zero-dimensional
moduli space M, (B, o0)o (if any), adjusted by the overall sign (—1)5", where (v, u) is again defined
by the formula (38).

The map K : G3 — G 1s defined in terms of these £,, by

<49> KSO = Zk(v’S)(u’O)-
The last stage of the argument is now to prove the formula (43):
Proposition 7.6. — The anti-chain-map
FoKso + K3 Fs5 + FiJs51 +J20Fs0
Srom G to Gy 15 chain-homotopic to £1.

Remark. — Our definitions mean that G, and Gs are the same group, but the
differential Fs3 is —F, because of the sign (—1)5* in (38).

Proof. — Let w > u be given, with w = (w’, 3) and « = («,0), with w’, v €
{0, 1}N~1. We must prove a formula of the shape:

(50) DD I S Y R S S 9

{vlon=0} {vlvn=3} {vlon=1}

+ Z ].vufwv + :l:nwu =0
{vlon=2}

where n,,, are the components of a map N chain-homotopic to 1 from Cs to Gy. As
usual, the proof goes by equating the matrix-entry of the left-hand side, from y to «, with
the number of ends of an oriented 1-manifold, in this case the 1-manifold

ML(% O{) 1
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As such, the above formula has again the same architecture as the general chain-
homotopy formula (23). In the latter formula, the terms 9 o mg and mg o 0 correspond to
special cases of the first two terms of (50), of the special form

ﬂukwu or kwuﬁuw .

With the exception of these terms and the term =£n,,, the terms in (50) in the four sum-

mations are the contributions from the first four types of faces of é;u Specifically, the
case (i) gives rise to the terms £y,fyy With w > v > u in 50; the case (ii) gives rise similarly
to the terms f,, Ay, ; the cases (iii) and (iv) provide the terms 7,/ and fy,juy-

The terms from faces (b) of type G,y X Q(S31) and Gy X Q(Sy) are all zero,
for the same reason as in the previous subsection: for these families of broken metrics we
have pulled off a connect-summand (S*, RP?).

What remains is the contribution corresponding to the face of the form G/, x
Q(S30). We will complete the proof of the lemma by showing that these contributions
are the matrix entries of a map n,, which is chain-homotopic to £1. That is, we define
ny, (¥, o) by counting with sign the ends of M,,,(y, @), which lie over this face; we define
Ny, to be the map with matrix entries n,,(y, o), and we define N to be the map G; to Gy
whose components are the n,,. With this understood, we then have

Fo K3 + KsFs3 + FJ3 + JooF3 =N =0.

From this it follows formally that N is an anti-chain map; and to complete the proof of
the proposition, we must show:

(51) the map N s chain-homotopic to the identity.

The face G,y x Q(83p) parametrizes metrics on a broken Riemannian manifold
with two components, obtained by cutting along S3,. Recall that S is a 3-sphere meet-
ing the embedded surface S, in a 2-component unlink. One component of the broken
manifold is the pair (Bsy, Ms), equipped with a cylindrical end, were B is the standard
4-ball described above: it contains the embedded surface Ms, obtained by plumbing
two Mobius bands. The second component has three cylindrical ends: we denote it by
(W', '), and it is obtained by removing Bs, from (R x Y, S,,,) and attaching a cylindri-
cal end. The manifold-pair (Bsy, M) carries the 1-parameter family of metrics Q(Ss),
obtained by stretching along Sy, or 83, as T — —00 or 4-00 respectively, while the cobor-
dism W’ with cylindrical ends carries a family of metrics G,,. The dimension of G, 1s
equal to |w’" — «|;.

As in Lemma 7.4, we consider now the cobordism (W, S) obtained from (W', S)
by attaching to the S35y end a pair (Bsp, A), where A is a pair of standard disks in the
4-ball Bsy having boundary the unlink. The manifold W is topologically a cylinder on Y,
and in the case N = 1 the embedded surface S is also a trivial, cylindrical cobordism
from K3 (= Kj) to Ky, as Lemma 7.4 states. For larger N, we can identify S with the
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cobordism standard Sy, from K; to K,, where w = w0 and u = #/0. (So K is the same
link as K,, = Kys.)

Lemma 7.771. — The cobordism (1 x Y, Sz,) from Ky to K, equipped with the family of
metrics G, gives rise to the identity map from Cy to G, in the case w = u and the zero map otherwise.

Progf: — The family of metrics Gy, includes the redundant R factor, so the induced
map counts only translation-invariant instantons. These exist only when w = u, in which
case they provide the identity map. 0J

In light of the lemma, we can prove the assertion (51), if we can show that N
is chain-homotopic (up to an overall sign) to the map obtained from the cobordism S
with the family of metrics Gz,. We will do this by introducing a third map, N’, whose
components 7/, count solutions on the pair (W', S’) with its three cylindrical ends.

To define N’ in more detail, recall again that the third end of this pair is a cylinder
on the pair (839, dA), which is a 2-component unlink. For the pair (Sso, dA), the critical
points comprise a closed interval

To see this, note that the fundamental group of the link complement is free on two gen-
erators and we are looking at homomorphisms from this free group to SU(2) which send
each generator to a point in the conjugacy class of our preferred element (24). This con-
jugacy class is a 2-sphere, and (up to conjugacy) the homomorphism is determined by
the great-circle distance between the images of the two generators. In this closed interval,
the interior points represent irreducible representations, while the two endpoints are re-
ducible. To be more precise, in order to identify the critical points with [0, 7] in this way,
we need to choose a relative orientation of the two components of the unlink d A, because
without any orientations the two generators of the free group are well-defined only up to
sign. Changing our choice of orientation will change our identification by flipping the
interval [0, 7T ].

For a generic perturbation of the equations, any solution on (W', §') lying in a zero-
dimensional moduli space is asymptotic to a critical point in the interior of the interval
on this end [17, Lemma 3.2]. We define #, (y, «) by counting these solutions over the
family of metrics G,,, and we define N" as usual in terms of its components 7, (y, ).

Each critical point on (8s3p, dA) extends uniquely to a flat connection on the pair
(B3, A). So we can regard N’ also as obtained by counting solutions on the broken
manifold with two pieces: (W', S") and (Bsg, A), with their cylindrical ends. Since this
broken manifold is obtained in turn from (I x Y, Sz,) by stretching across 83y, we see by
an argument similar to the previous ones that N’ is chain-homotopic to the map arising
from the cobordism (I x Y, Sy,) with its family of metrics Gy, 1.e. to the identity map,
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by the lemma. (See also [17, Section 3.3].) All that remains now is to prove:
(52) N =N/, up to an overall sign.

The components 7, (y,a) of N’ count the points of the moduli spaces
MW, S; ¥, @)y on the three-ended manifold W’, and as stated above, this moduli space
comes with a map to the space of critical points on the Ss, end:

r: MW, S5y, ) = €(8sp, 0A) = [0, ].

The components n,,(y, &) of N on the other hand count the points of a fiber product of
the map r with a map

51 Mgsyy) (Bso, Mgp)1 — €(830, 0A)

where the left-hand side is the 1-dimensional part of the moduli space on the pair
(Bso, Msg) equipped with a cylindrical end and carrying the 1-parameter family of met-
rics Q(Ss). To show that N = N’ up to sign, it suffices to show that the map s is a proper
map of degree £1 onto the interior of the interval [0, ]. (The actual sign here depends
on a choice of orientation for the moduli space Ms,,)(B3o, M3).)

The two ends of the family of metrics Q(Ss3p) on (Bsy, Msp) correspond to two
different connected-sum decompositions of (Bsy, Ms), both of which have the form

(Bso, M3p) = (Bsg, A)#(S", RP?)

where A is a standard annulus in the 4-ball, with A = dA, and RP? is (as before) a stan-
dard RP? with positive self-intersection. Since these are two different decompositions, we
really have two different annuli A involved here; so we should write the first summand as
(Bso, At) or (Bsp, A_) to distinguish the two cases. The two annuli can be distinguished as
follows: either annulus determines a preferred isotopy-class of diffeomorphisms between
its two boundary components (the two components of the unlink d A); but the annuli A}
and A_ determine isotopy classes of diffeomorphisms with the opposite orientation.
Considering the gluing problem for this connected sum, we see that the parame-
trized moduli space has two ends, one for each end of the parameter space Q(S3), and
that each end is obtained by gluing the standard irreducible solution on (S*, RP?) to a
flat, reducible connection on (Bsp, AL). The limiting value of the map s on the two ends
is equal to critical point in €(S3, dA) arising as the restriction to (839, dA) of the unique
flat solution on (Bsp, A+). In each case, this value is one of the two ends of the inter-
val [0, r]; and if Ay gives rise to the endpoint 0 € [0, ], then A_ will give rise to the
endpoint 77, because the two different annuli provide identifications of the two boundary
components that differ in orientation, as explained above. O
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7.4. The absolute Z/4 grading

We return briefly to Theorem 6.8, which expresses the existence of a quasi-
isomorphism between two complexes. The complex (C,,, f) 18 just the complex that
computes I“(K,), to within an immaterial change of sign in f,,,,; so this complex carries
a relative Z/4 grading. In the spirit of Proposition 4.4, we can fix absolute Z/4 gradings
on all the complexes C,, for v € Z¥, in such a way that the maps f,,y when [v — V|, = 1
have degree

=X Sow) = bo(Ky) 4+ bo(Ky) = 1 = by (Ky) 4 bo (Ky).
For general v > u, let us also write
L, w) = —x (Su) — bo(Ky) + bo(K,)
= [v —uly = bo(Ky) 4 bo(K,).

Let us denote by (n) a shift of grading by » mod 4, so that if A has a generator in degree
¢ then A(n) has a generator in degree : — n. Then the cobordism S,, equipped with just a
fixed metric (not a family) induces a chain map of degree 0,

C,— Ct(v,u)).

Having fixed an absolute Z/4 grading for (C,, f,,,y) in this way, we can ask how
we may grade the other complex (C[vy], F[vu]) in Theorem 6.8 so that the quasi-
isomorphism respects the Z/4 grading. Let us then refine the definition of CGlvu] by
specifying a grading mod 4:

Cluul= P Cu (i),
where
J) ==, w) — v —uly

=—1(v, ) — [V —uli —n+ bo(K,) — by(Ky)

where n = |v —u|, (the dimension of the cube). With this definition, it 1s easily verified that
the differential Flvu] has degree —1. So (CG[vu], F[vu]) is another Z/4-graded complex.
We then have the following refinement of the theorem:

Proposition 7.8. — If Cy, and Glvu] are given absolute Z/4 gradings as above, then the

quast-isomorphism of Theorem 6.8 becomes a quasi-isomorphism
C, — Clvu]

of Z /4 graded complexes.
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Proof. — The quasi-isomorphism is exhibited in the proof of Theorem 6.8 as the
composite of n maps, each of which (as is easy to check) has a well-defined Z/4 degree.
The composite map has a component

Cy = Gy(j(v)) C Clvu]

which is the map induced by the cobordism S,,,. The Euler number of this surface is —n,
so the map C,, = C, induced by S,,, has degree

t(w,v) =n—by(K,) + by (K,)

with respect to the original Z/4 gradings. This last quantity coincides with j(v); so the
map has degree 0 as a map

Cy, = G, ((v)) C Clvu]. U

8. Unlinks and the E; term

8.1. Statement of the result

We now turn to classical knots and links K, and invariants I*(K) and I*(K) intro-
duced in Section 4.3 above. We will focus on the unreduced version, I*(K), and return to
the reduced version later. Recall that we have defined

(K) = 1“(S*, K LI H)

where K is regarded as a link in R* and H is a standard Hopf link near infinity, with @
an arc joining the components of H. From this definition, it is apparent that the results
of Section 6 apply equally well to the invariant I*(K) as they do to I(Y, K) in general.
Thus for example, if Ky, K; and K are links in S* which differ only inside a single ball,
as in Figure 6, then there is a skein exact sequence

o THKY) > THK)) = F(Kg) — -

in which the maps are induced by the elementary cobordisms Sy, etcetera. More gener-
ally, we can consider again a collection of links K, indexed by v € {0, 1, 2} which differ
by the same unoriented skein relations in a collection of N disjoint balls in R®. From
Corollary 6.9 we obtain:

Corollary 8.1. — For links K, as above, there is a spectral sequence whose E, term is

P r«.,)

ve{0,1}N
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and which abuts to the instanton Floer homology 1*(K,), for v = (2, ..., 2). The differential d, is
the sum of the maps induced by the cobordisms S,, with v > u and |v — u| =1, equipped with 1-

orientations satisfying the conditions of Lemma 6.1 and corrected by the signs (—1)°V" as given in
Corollary 6.10.

Let K be a link in R* C S* with a planar projection giving a diagram D in R?. Let
N be the number of crossings in the diagram. As in [16], we can consider the 2~ possible
smoothings of D, indexed by the points v of the cube {0, 1}, with the conventions of
[16, 30], for example. This labeling of the smoothings is consistent with the convention
illustrated in Figure 6. This gives 2~ different unlinks K,,. For each v > u in {0, 1}Y, we
have our standard cobordism S,, from K, to K,.

We can consistently orient all the links K, for v € {0, 1}, and all the cobordisms
Syu, so that S, = K, — K. To do this, start with a checkerboard coloring of the regions
of the diagram D, and simply orient each K, so that, away from the crossings and their
smoothings, the orientation of K, agrees with the boundary orientation of the black re-
gions of the checkerboard coloring. We can then give each S,, the I-orientation it obtains
as an oriented surface. The resulting I-orientations respect composition: they satisfy the
conditions of Lemma 6.1.

We therefore apply Corollary 8.1 to this situation. We learn that there is a spectral
sequence abutting to I*(K) whose E; term is

E, = EB I'(K,).

ve(0,1}N

In this sum, each K, is an unlink. The differential 4, 1s

(53) =Y (—1)IT(S,,),

v>u

where each cobordism S, is obtained from a “pair of pants” that either joins two compo-
nents into one, or splits one component into two. We can consider the spectral sequence
of Corollary 8.1 in this setting, about which we have the following result.

Theorem 8.2. — In the above situation, the page (E,, d\) of the spectral sequence furnished
by Corollary 8.1 s tsomorphic (as an abelian group with differential) to the complex that computes the
Khovanov cohomology of K (the mirror image of K) from the given diagram. Therefore, the Ey term of
the spectral sequence is isomorphic to the Khovanov cohomology of K. The spectral sequence abuts to the
instanton homology T (K).

The proof of Theorem 8.2 will occupy Sections 8.2 through 8.6.

Remarks. — "The relation expressed by this theorem, between I*(K) and Kh(K),
pays no attention to the bigrading that is carried by Kh(K). It is natural to ask, for ex-
ample, whether at least the filtration of I*(K) that arises from the spectral sequence is a
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topological invariant of K. More generally, one can ask whether the intermediate pages
of the spectral sequence, as filtered groups, are invariants of K (see [2] for the similar
question concerning the spectral sequence of Ozsvath and Szabd). A related question is
whether the intermediate pages are functorial for knot cobordisms. Although the bigrad-
ing is absent, there is at least a Z/4 grading throughout: carrying Proposition 7.8 over
to the present situation, we see that there is a spectral sequence of Z/4 graded groups
abutting to I*(K) whose E; term is

(54) Ei= P FK)k),
ve{0,1}N
with
(55) ko = —by(K,) + 260(Ky) — by(K) — N,

In deriving this formula from the formula for j(v'), we have used the fact that the
cobordisms between the different smoothings are all orientable, which implies that
lv — |1 = by(v) — by(v') mod 2. The formula for £, can also be written (mod 4) as

ky = —bo(Ky) + by(K) = N_ +N,,

where N_ and N, are the number of positive and negative crossings in the diagram.
From this version of the formula, it is straightforward to compare our Z/4 grading to the
bigradings in [16]. The result is that the Z/4-graded E, page of our spectral sequence is
isomorphic to Kh(K) with the Z/4-grading defined by

g —h—by(K)

where ¢ and % are the ¢-grading and homological grading respectively. That is, the part
of the Ey term in Z/4-grading o is

EB Kh'/(K).

Ji—by(K)=ct

Understanding the E,; page and the differential ¢, means computing I*(K,) for an
unlink K, and computing the maps given by pairs of pants. We take up these calculations
in the remaining parts of this section.

8.2. Unlinks

We write U, for the unlink in R® with = components, so that Uy is the empty link
and U, 1s the unknot. We take specific models for these. For example, we may take U, to
be the union of standard circles in the (x, y) plane, each of diameter 1/2, and centered on
the first z integer lattice points along the x axis; and we can then orient the components
of U, as the boundaries of the standard disks that they bound.
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0

Uo Uo U,
Fic. 13. — A skein sequence relating Uy (twice) and U,

Given any subset i = {7,...,2,} C {l,...,n}, there is a corresponding m-
component sublink U; of U,. We will identify U; with U, in a standard way, via a
self-evident isotopy (preserving the ordering of the components).

We have already seen that I(Uy) is Z (Proposition 4.2). There are two possible

identifications of I*(Uy) with Z, differing in sign. We fix one of them, once and for all by
specifying a generator

u, € F(U)),
so that
I'(Uy) =Z
This Z occurs in grading 0 mod 4, by convention.
Lemma 8.3. — For the unknot U, the instanton homology T°(U) is fiee of rank 2,
FUHN=ZZOZ,
with generators in degrees O and —2 mod 4.

Progf: — Draw a diagram of the Hopf link H with an extra crossing, so that by
smoothing that crossing in two different ways one obtains the links H (again) and HLI U,
(see Figure 13). The skein sequence for this situation gives a long exact sequence

o T(UY) 5 TH(UY) S T(Ug) > F(Up) — - -,

in which the maps ¢ and 4 have degree —2 and 0 respectively, while ¢ has degree 1.
From our calculation of I*(U,) it follows that ¢ = 0 and that I*(U)) is free of rank 2 with
generators in degrees 0 and —2. The generator of degree —2 is the image of a, while the
generator of degree 0 is mapped by b to a generator of I*(Uy) = 1°(S?, H). 0J

We wish to have explicit generators of the rank-2 group I*(U;) defined without
reference to the auxiliary Hopf link H. To this end, let D be the standard disk that U,
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bounds in the (x, ) plane. Let D' be the oriented cobordism from the empty link U, to
U, obtained by pushing the disk D a little into the 4-dimensional cylinder [—0, 1] x R?.
Similarly, let D™ be the cobordism from U, to U, obtained from D with its opposite
orientation. These oriented cobordisms give preferred maps

F(DF) : F(Uy) — F(U))
(D7) : F(U)) — F(Up)
of degrees 0 and 2 respectively.

Lemma 8.4. — There are preferred generators v, and v_ for the rank-2 group T*(U)), in
degrees O and 2 mod 4 respectively, characterized by the conditions

FD)(my) = vy
and
FD7)(v.) =w
respectively, where Wy is the chosen generator for 1*(Uy) = Z.

Proof. — The proof of the previous lemma shows that a generator of the degree-0
part of I*(U)) is the image of the map 4. So to show that v, as defined in the present
lemma is a generator it suffices to show that the composite map b o I*(D™) is the identity
map on the rank-1 group I*(Up) = 1“(S®, H). This in turn follows from the fact that the
composite cobordism from the Hopf link H to itself is a product.

Similarly, to show that there is a generator v_ of the degree-2 part with the property
described, it suffices to show that the composite map I*(D ™) o a is the identity map I*(Uy).
The composite cobordism is again a product, so the result follows. U

Corollary 8.5. — Write V = (vy,v_) = Z? for the group T°(U,). We then have isomor-
phasms of Z/4-graded abelian groups,

d,: V" - T¥(U,),

Jor all n, with the following properties. First, if Dt denotes the cobordism from Uy to U, obtained from
standard disks as in the previous lemma, then

FDN) () =@,(vi @+ ®vy).

Second, the isomorphism is natural for split cobordisms from U, to itself. Here, a “split” cobordism means
a cobordism_from U, to U, in [0, 1] x R® which is the disjoint union of n cobordisms from U, to U,
each contained in a standard ball [0, 1] x B3.
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Proof. — This follows from the general product formula for split links, Corol-
lary 5.9. O

Remark. — We will see later, in Proposition 8.10, the extent to which this isomor-
phism is canonical.

8.3. An operator of degree 2

Let K be a link, let p be a marked point on K, and let an orientation be chosen for
K at p. We can then form a cobordism S from K to K by taking the cylinder [—1, 1] x K
and forming a connect sum with a standard torus at the point (0, p). This cobordism then
determines a map

(56) o :I*(K) — I*(K)
of degree 2 mod 4.

Lemma 8.6. — For any ink K, and any base-pont p € K, the map o is nilpotent.

Progf: — The map o behaves naturally with respect to cobordisms of links with
base-points. So if Ky, K; and K are three links related by the unoriented skein relation,
then o commutes with the maps in the long exact sequence relating the groups I*(K,).
From this it follows that if o is nilpotent on I*(K,) for two of the three links K; then it is
nilpotent also on the third. By repeated use of the skein relation, we see that it is enough
to check the case that K = U,. Finally, for U}, we can use the exact sequence from the
proof of Lemma 8.3 to reduce to the case of I¥*(Uy), or more precisely to the case of
I°(S*, H), with a marked point p on one of the two components of the Hopf link H. This
last case is trivial, however, because the group has a generator only in one of the degrees
mod 4, which forces o to be zero on I*(Uy). ]

8.4. Puairs of pants

Let IT be a pair-of-pants cobordism from U, to Uy. We wish to calculate the corre-
sponding map on instanton homology. Via the isomorphisms of Corollary 8.5, this map
becomes a map

A:V—->V®V.

The degree of this map is —2.
There is also a pair-of-pants cobordism LI, from U, to U,, which induces a map

V:VQV—->V

of degree 0.
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Lemma 8.7. — In terms of the generators vy and v_ for V, the map A is given by

Vo> Vv_o®v_

Vi (V_Qvi+v, ®v.)
and V s given by

Vi Qv vy

Vi QVvV_ > v_

Vo ® Vi v

v_Q@v_> 0.
Proof: — We begin with A(v,). Because of the Z/4 grading, we know that
A(vy) = A (v @ vy) + Ao(vy @ Vo),

for some integers A, and Ay. Consider the composite cobordism ITy = D* U IT from U,
to Uy, formed from the pair of pants IT by attaching a disk to the incoming boundary
component. The composite cobordism determines a map

AO 17— V®2
with
Ap(ag) =21 (vo @ vy) +Ao(vy Qvo).

Next, form a cobordism IT, =1, UD™ from U, to U, by attaching a disk to the first of
the two outgoing boundary components of ITj. As a cobordism from U, to Uy, the disk
maps v_ to 1; so by the naturality expressed in Corollary 5.9, it maps v_ @ v to v when
viewed as a cobordism from U, to U,. The composite cobordism IT,; therefore defines a
map

A :Z—>YV
with
Ay(ag) = Ayvy.

But IT, 1s simply a disk, with the same orientation as the original IT; so A;(uy) = v, by
definition of v, , and we conclude that A; = 1. We also have A, = 1 by the same argument,
so we have computed A(v,).

As a preliminary step towards computing A(v_), we compute the effect of the
degree-2 operator o on I*(U;). The cobordism which defines o on U, can be seen as a
composite cobordism U; — U, obtained from two pairs of pants: first I1 from U, to Uy,
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then LI from U, to U,. These are oriented surfaces, so the cobordisms are canonically
I-oriented, in a manner that is compatible with composition. By an argument dual to the
one in the previous paragraph, we see that

Vvi®v)=V(v-Qvy) =v_.

Looking at the composite V o A, we see that
o(vy)=2v_.

We also know that o is nilpotent (Lemma 8.6), so we must have
o(v_)=0.

We now appeal to the naturality of o with respect to cobordism of links with base-
points. This tells us that

Aooc=(1®o)oA.
In particular,

A(o(v4)) = (1 @) (A(vy)).
We have already calculated A(v,) and o (v;), so we have,

AQv ) =(1R0o)(v_Qvy+Vv, Qv_)
=2(v_®v_).

It follows that A(v_) =v_ @ v_ as claimed. A dual argument determines the remaining
terms of V in a similar manner. O

8.5. Isotopues of the unlink

Lemma 8.8. — Let S C [0, 1] x R® be a closed, oriented surface, regarded as a cobordism
from the empty link Uy to itself: Then the induced map 1°(S) : 1*(Ug) — 1#(Uy) is multiplication by
25 4f'S consists of k tort; and 1*(S) is zero otherwise.

Proof: — The first point is that the map I*(S) in this situation depends only on S
as an abstract surface, not on its embedding in (0, 1) x R®. This can be deduced from
results of [17], which show that the invariants of a closed pair (X, ) defined using singu-
lar instantons depend on X only through its homotopy class. To apply the results of [17]
to the present situation, we proceed as follows. Since I*(Uy) is Z, the map I*(S) is deter-
mined by its trace; and twice the trace can be interpreted as the invariant of a closed pair
(X, 2) obtained by gluing the incoming to the outgoing ends of the cobordism. Thus X
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is S' x S% and X is the union of S' x H and the surface S. The results of [17] can be
applied directly to any homotopy of S that remains in a ball disjoint from S' x H, and
this is all that we need.

Because of this observation, it now suffices to verify the statement in the case that S
is a standard connected, oriented surface of arbitrary genus. If we decompose a genus-1
surface S as an incoming disk D, a genus-1 cobordism from Uj to itself, and an outgoing
disk D™, we find that I*(S) in this case is given by

F(S)(ug) = (D7) 0 0 o F(D¥) (wy),
which is 2w, by our previous results. For the case of genus g, we look at
F(S)(wy) =F(D7) 0 0¢ 0 (D) (my),
which is zero for all g other than g = 1. 0J

Lemma 8.9. — Let S be an oriented concordance from the standard unlink U, to itself, consisting
of n oriented annuli in [0, 1] x R3. Let T be the permutation of {1, ...,n} corresponding to the
permutation of the components of U, arising from S. Then the standard isomorphism ®,, of Corollary 8.5
intertwines the map

F(S): (U, — F(U,)
with the permutation map
,:V® - QV->VR---®V.
In particular, if the permutation T 1is the identity, then 1*(S) is the identity.

Progf: — We start with the case that the permutation 7 is the identity. Let o; :
I*(U,) — I¥(U,) be the map o applied with a chosen basepoint on the i-th component
of the link. The isomorphism @, intertwines o; with

with o in the i-th spot, by Corollary 8.5. Furthermore, I*(S) commutes with o;, because
the corresponding cobordisms commute up to diffeomorphism relative to the boundary.
Since o (v;) = 2v_, we therefore see that, to show I*(S) is the identity, we need only show
that

Iﬁ(S)(v+®---®v+):v+®--~®v+.

Let A, be the coefficient of v§" ® vET in T4(S) (v®"). (There is no loss of generality in
putting the v, factors first here: it is only a notational convenience.) We must show that
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An = 0for m < nand A, = 1. From our calculation of o etc., we see that we can get hold
of A,, by the formula

F(D;)oao 0---00,l(D})(uy) = 2"A,u.

On the other hand, the composite map on the left is equal to I#(S), where S is a closed
surface consisting of m tori and n — m spheres, viewed as a cobordism from U, to U,.
From the results of the previous lemma, we see that the left-hand side is O if m # 7 and is
2" if m = n. This completes the proof in the case that the permutation 7 is 1.

For the case that S provides a non-trivial permutation t of the components, the
map I*(S) intertwines o; with o.(,. It is again sufficient to show that I*(S) sends v¥" to
itself, and essentially the same argument applies. UJ

As a special case of a cobordism from U, to itself, we can consider the trace of an
isotopy f; : U, = R® (¢ € [0, 1]) which begins and ends with the standard inclusion. As an
application of the lemma, we therefore have:

Proposition 8.10. — Let U, be any oriented link in link-type of U, and let its components be
enumerated. Then there is a canonical isomorphism

U, V- ---®@V—FU,)

which can be described as 1*(S) o @, where @, is the standard isomorphism of Corollary 8.5 and S is
any cobordism_from U, to U, arising from an 1sotopy from U, to U,,, respecting the orientations and the
enumeration of the components.

1If the enumeration of the components of U, is changed by a permutation T, then the isomorphism
W, s changed simply by composition with the corresponding permutation of the factors in the tensor
product.

The following proposition encapsulates the calculations of this section so far.

Proposition 8.11. — Let V be a Z/4-graded free abelian group with generators v_ and v
in degrees —2 and 0. Then for each oriented n-component unlink U, with enumerated components
Ky, ..., K, there is a canonical isomorphism

®,U):V®---QV—IFU,)

with the following properties.

(a) Given an orientation-preserving isotopy from U, to U], respecting the enumeration of the
components, the map T°(S) arising from the corresponding cobordism S intertwines ®,(U,)
with ®,U)).

(b) If the components of U, are enumerated differently, then ®,(U,) changes by composition with
the permutation of the factors in the tensor product.
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(c) If T1,, is the oriented cobordism from U, to some U+, which attaches a pair of pants I1 to
the last component, inside a ball disjoint_from the other components, then the isomorphisms
@,(U,) and D,U, 1) intertwine the corresponding map 1°(I1,) : '(U,) — T*(U,41)
with the map

I1®---®1RQA.

(d) Swmalarly, for an oriented cobordism U,y — U, obtained using a pair of pants L1 on the last
two components, in a ball disjoint from the other components, we obtain the map

1®---Q1® V.

8.6. Rhovanov cohomology

We now have all that we need to conclude the proof of Theorem 8.2. If we write
n(v) for the number of components of K, and enumerate those components, then we
have a canonical identification

E = veo.

ve(0,1}N

The differential 4, is given by the sum (33). The cobordism S,, is the union of some
product cylinders and a single pair of pants, either IT or LI. Proposition 8.11 therefore
tells us that, after pre- and post-composing by permutations of the components, the map
Jvu 18 given either by

=Dl ®.. @ 1®A)
or
D (1®-- @18 V).

The complex (E,, d) that one arrives at in this way is exactly the complex that computes
the Khovanov cohomology of K. The fact that the mirror K of the link K appears in this
statement is accounted for by the fact that, in Khovanov’s definition, the differential is the
sum of contributions from the edges oriented so that |v| increases along the edges, whereas
in our setup the differential d, decreases |v|. It follows that the E, page of the spectral
sequence is isomorphic (as an abelian group) to the Khovanov cohomology Kh(K). This
completes the proof of Theorem 8.2.
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8.7. The reduced homology theories

Recall that for a link K with a marked point x and normal vector v at x, we have
defined

IH(K) = I“(S?, KU L),

where L 1s a meridional circle centered at x and w 1s an arc in the direction of v. There 1s
a skein exact sequence (illustrated for the case of the unknot in Figure 13),

o> K > F(K) > F(K) > F(K) > ---.

Corollary 8.1 has a straightforward adaptation to this reduced theory, which can again
be deduced from the more general result, Corollary 6.9.

The maps in the long exact sequence above have already been described for the
unknot U,. Thus, the map

F(U)) — F(U))

is the same as the map I*(U,) — I*(Uy) = Z given as the quotient map
Vi V/(v_) =Z.

For the unlink U, we similarly have
FU)=V®---®VeV/(v),

as a quotient of V®". (The marked point is on the last component here.) The maps V and
A give rise to maps

V,:VV/{(v_) > V/(v_)
and
A, :V/(v_) > VRV/(v_);

and these are precisely the maps induced by the pair-of-pants cobordisms LI and IT.

In the spectral sequence abutting to I*(K), we can therefore identify E; and d,.
The E; term is obtained from the unreduced version by replacing (at each vertex of
the cube) the factor V corresponding to the marked component by a factor V/{v_).
And the differential 4, is obtained from the unreduced case by replacing V or A by V,
or A, whenever the marked component is involved. The resulting complex is precisely
the complex that computes the reduced Khovanov cohomology of the mirror of K. We
therefore have:

T heorem 8.12. — For a knot or link K wn S_3, there 1s a spectral sequence of abelian groups
whose By term is the reduced Khovanov cohomology of K and which abuts to 1 (K).
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